
On the Number of Iterations for Dantzig-Wolfe
Optimization and Packing-Covering

Approximation Algorithms

Philip Klein1,! and Neal Young2,!!

1 Brown University, Providence, RI, USA; klein@cs.brown.edu
2 Dartmouth College, Hanover, NH, USA; ney@cs.dartmouth.edu

1 Introduction

We start with definitions given by Plotkin, Shmoys, and Tardos [16]. Given
A ∈ IRm×n, b ∈ IRm and a polytope P ⊆ IRn, the fractional packing problem is
to find an x ∈ P such that Ax ≤ b if such an x exists. An ε-approximate solution
to this problem is an x ∈ P such that Ax ≤ (1 + ε)b. An ε-relaxed decision
procedure always finds an ε-approximate solution if an exact solution exists.

A Dantzig-Wolfe-type algorithm for a fractional packing problem x ∈
P, Ax ≤ b is an algorithm that accesses P only by queries to P of the following
form: “given a vector c, what is an x ∈ P minimizing c · x?”

There are Dantzig-Wolfe-type ε-relaxed decision procedures (e.g. [16]) that
require O(ρε−2 log m) queries to P , where ρ is the width of the problem instance,
defined as follows:

ρ(A, P ) = max
x∈P

max
i

Ai · x/bi

where Ai denotes the ith row of A.
In this paper we give a natural probability distribution of fractional packing

instances such that, for an instance chosen at random, with probability 1− o(1)
any Dantzig-Wolfe-type ε-relaxed procedure must make at least Ω(ρε−2 log m)
queries to P . This lower bound matches the aforementioned upper bound, pro-
viding evidence that the unfortunate linear dependence of the running times of
these algorithms on the width and on ε−2 is an inherent aspect of the Dantzig-
Wolfe approach.

The specific probability distribution we study here is as follows. Given m and
ρ, let A be a random {0, 1}-matrix with m rows and n =

√
m columns, where

each entry of A has probability 1/ρ of being 1. Let P be the n-simplex, and let
b be the m-vector whose every entry is some v, where v is as small as possible
so that Ax ≤ b for some x ∈ P .

The class of Dantzig-Wolfe-type algorithms encompasses algorithms and al-
gorithmic methods that have been actively studied since the 1950’s through the
current time, including:
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– an algorithm by Ford and Fulkerson for multicommodity flow [14],
– Dantzig-Wolfe decomposition (generalized linear programming) [4],
– Benders’ decomposition [3],
– the Lagrangean relaxation method developed by Held and Karp and applied

to obtaining lower bounds for the traveling salesman problem [9, 10],
– the multicommodity flow approximation algorithms of Shahrokhi and Mat-

ula [18], of Klein et al. [13], and of Leighton et al. [15],
– the covering and packing approximation algorithms of Plotkin, Shmoys, and

Tardos[16] and the approximation algorithmsofGrigoriadis andKhachiyan[8]
for block-angular convex programs, and many subsequent works (e.g. [20, 6]).

In a later section we discuss some of the history of the above algorithms and
methods and how they relate to the fractional packing problem studied here.

To prove the lower bound we use a probabilistic, discrepancy-theory argu-
ment to characterize the values of random m×s zero-sum games when s is much
smaller than m. From the point of view proposed in [20], where fractional pack-
ing algorithms are derived using randomized rounding (and in particular the
Chernoff bound), the intuition for the lower bound here is that it comes from
the fact that the Chernoff bound is essentially tight.

Some of the multicommodity flow algorithms, and subsequently the algo-
rithms of Plotkin, Shmoys, Tardos and of Grigoriadis and Khachiyan, use a more
general model than the one described above. This model assumes the polytope
P is the cross-product P = P 1 × · · · × P k of k polytopes. In this model, each
iteration involves optimizing a linear function over one of the polytopes P i.
It is straightforward to extend the our lower bound to this model by making
A block-diagonal, thus forcing each subproblem to be independently solved. In
this general case, the lower bound shows that the number of iterations must be
Ω(ε−2(

∑

i ρi) log m), where ρi is the width of P i. This lower bound is also tight
within a constant factor, as it matches the upper bounds of Plotkin, Shmoys,
and Tardos.

Previous Lower Bounds. In 1977, Khachiyan [12] proved an Ω(ε−1) lower
bound on the number of iterations to achieve an error of ε

In 1994, Grigoriadis and Khachiyan proved an Ω(m) lower bound on the
number of iterations to achieve a relative error of ε = 1. They did not consider
the dependence of the number of iterations on ε for smaller values of ε.

Freund and Schapire [5], in an independent work in the context of learning
theory, prove a lower bound on the net “regret” of any adaptive strategy for
playing repeated zero-sum games against an adversary. This result is related to,
but different from, the result proved here.

2 Proof of Main Result

For any m-row n-column matrix A, define the value of A (considered as a two-
player zero-sum matrix game) to be

V (A) .= min
x

max
1≤i≤m

Ai · x
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where Ai denotes the ith row of A and x ranges over the n-vectors with non-
negative entries summing to 1.

Theorem 1. For m ∈ IN, n = Θ(m0.5), and p ∈ (0, 1/2), let A be a random
{0, 1} m×n matrix with i.i.d. entries, each being 1 with probability p. Let ε̄ > 0.

With probability 1 − o(1),

– V (A) = Ω(p), and
– for s ≤ min{(lnm)/(pε̄2), m0.5−δ} (where δ > 0 is fixed), every m × s sub-

matrix B of A satisfies

V (B) > (1 + cε̄)V (A)

where c is a constant depending on δ.

Our main result follows as a corollary.

Corollary 1. Let m ∈ IN, ρ > 2, and ε > 0 be given such that ρε−2 = O(m0.5−δ)
for some constant δ > 0.

For p = 1/ρ, and n = m0.5, let A be a random {0, 1} m× n matrix as in the
theorem. Let b denote the m-element vector whose every element is V (A). Let
P = {x ∈ Rn : x ≥ 0,

∑

i xi = 1} be the n-simplex.
Then with probability 1 − o(1), the fractional packing problem instance x ∈

P, Ax ≤ b has width O(ρ), and any Dantzig-Wolfe-type ε-relaxed decision pro-
cedure requires at least Ω(ρε−2 log m) queries to P when given the instance as
input.

Assuming the theorem for a moment, we prove the corollary. Suppose that
the matrix A indeed has the two properties that hold with probability 1 − o(1)
according to the theorem. It follows from the definition of V (A) that there exists
x∗ ∈ Pn such that Ax∗ ≤ b. That is, there exists a (non-approximate) solution
to the fractional packing problem.

To bound the width, let x̄ be any vector in P . By definition of P and A, for
any row Aj of A we have Aj · x̄ ≤ 1. On the other hand, from the theorem we
know that V (A) = Ω(p) = Ω(1/ρ). Since bj = V (A), it follows that Aj · x̄/bj is
O(ρ). Since this is true for every j and x̄ ∈ P , this bounds the width.

Now consider any Dantzig-Wolfe-type ε-relaxed decision procedure. Suppose
for a contradiction that it makes no more than s ≤ ρ(cε)−2 lnm calls to the
oracle that optimizes over P . In each of these calls, the oracle returns a vertex
of P , i.e. a vector of the form

(0, 0, . . . , 0, 1, 0, . . . , 0, 0)

Let S be the set of vertices returned, and let P (S) be the convex hull of these
vertices. Every vector in P (S) has at most s non-zero entries, for its only non-
zero entries can occur in positions for which there is a vector in S having a 1 in
that position. Hence, by the theorem with ε̄ = ε/c, there is no vector x ∈ P (S)
that satisfies Ax ≤ (1 + ε)b.
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Consider running the same algorithm on the fractional packing problem Ax ≤
b, x ∈ P (S), i.e. with P (S) replacing P . The procedure makes all the same queries
to P as before, and receives all the same answers, and hence must give the
same output, namely that an ε-approximate solution exists. This is an incorrect
output, which contradicts the definition of a relaxed decision procedure.

3 Proof of Theorem 1

For any m-row n-column matrix A, define the value of A (considered as a two-
player zero-sum matrix game) to be

V (A) = min
x

max
1≤i≤m

Ai · x

where Ai denotes the ith row of A and x ranges over the n-vectors with non-
negative entries summing to 1.
Before we give the proof of Theorem 1, we introduce some simple tools for
reasoning about V (X) for a random {0, 1} matrix X .

By the definition of V , V (X) is at most the maximum, over all rows, of the
average of the row’s entries. Suppose each entry in X is 1 with probability q, and
within any row of X the entries are independent. Then for any δ with 0 < δ < 1, a
standard Chernoff bound implies that the probability that a given row’s average
exceeds (1 + δ)q is exp(−Θ(δ2qnX)), where nX is the number of columns of
X . Thus, by a naive union bound Pr[V (X) ≥ (1 + δ)q] ≤ mX exp(−Θ(δ2qnX))
where mX is the number of rows of X . For convenience we rewrite this bound
as follows. For any q ∈ [0, 1] and β ∈ (0, 1], assuming mX/β → ∞,

Pr[V (X) ≥ (1 + δ)q] = o(β) for some δ = O

(

√

ln(mX/β)
qnX

)

. (1)

We use an analogous lower bound on V (X). By von Neumann’s Min-Max The-
orem

V (X) = max
y

min
i

X ′
i · y

(where X ′ denotes the transpose of X). Thus, reasoning similarly, if within any
column of X (instead of any row) the entries are independent,

Pr[V (X) ≤ (1 − δ)q] = o(β) for some δ = O

(

√

ln(nX/β)
qmX

)

, (2)

assuming nX/β → ∞. We will refer to (1) and (2) as the naive upper and lower
bounds on V (X), respectively.
Proof of Theorem 1.

The naive lower bound to V (A) shows that

Pr[V (A) ≤ p(1 − δ0)] = o(1) for some δ0 = O

(
√

lnn

pm

)

= o(1). (3)

Thus, V (A) ≥ Ω(p) with probability 1 − o(1).
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Let s = min{(lnm)/(pε̄2), m0.5−δ}. Assume without generality that s =
(lnm)/(pε̄2) (by increasing ε̄ if necessary).

We will show that with probability 1− o(1) any m× s submatrix B of A has
value

V (B) > (1 + cε̄)V (A) (4)

The definition of value implies that V (B′) ≥ V (B) for any m× s′ submatrix B′

of B (where s′ ≤ s). Thus we obtain (4) for such submatrices B′ as well.
For any of the m rows of B, the expected value of the average of the s entries

is p. We will show at least r = s2 lnn of the rows have a higher than average
number of ones and by focusing on these rows we will show that V (B) is likely
to be significantly higher than V (A).

For appropriately chosen δ1, the probability that a given row of B has at least
' = (1 + δ1)ps ones is at least

(s
#

)

p#(1 − p)s−# = exp(−O(δ2
1ps)). (That is, the

Chernoff bound is essentially tight here up to constant factors in the exponent.)
Call any such row good and let G denote the number of good rows. In particular
choosing some

δ1 = Ω

(

√

ln(m/r)
ps

)

= Ω

(
√

lnm

ps

)

= Ω(ε)

the probability that any given row is good is at least 2r/m and the expectation
of G is at least 2r. Since G is a sum of independent random {0, 1} random
variables, Pr[G < r] < exp(−r/8).

By the choice of r, this is o(1/ns), so with probability 1− o(1/ns), B has at
least r good rows.

Suppose this is indeed the case and select any r good rows. Let C be the r×s
submatrix of B formed by the chosen rows. In any column of C, the entries are
independent and by symmetry each has probability at least p(1+ δ1) of being 1.
Applying the naive lower bound (2) to V (C), we find

Pr[V (C) ≤ p(1 + δ1)(1 − δ2)] = o(1/ns) for some δ2 = O

(
√

s lnn

pr

)

. (5)

By the choice of r, δ2 = o(δ1). Thus (1 + δ1)(1− δ2) = 1 + Ω(δ1). Since V (B) ≥
V (C), we find that, for any m × s submatrix B, V (B) ≥ p(1 + Ω(δ1)) with
probability 1 − o(1/ns).

Since there are at most
(n

s

)

≤ ns distinct m × s submatrices B of A, the
probability that all of them have value p(1+Ω(δ1)) is 1−o(1). Finally, applying
the naive upper bound to V (A) shows that

Pr[V (A) ≥ p(1 + δ3)] = o(1) for some δ3 = O

(

√

lnm

pn

)

. (6)

Since δ3 = o(δ1), the result follows. *+
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4 Historical Discussion

Historically, there are three lines of research within what we might call the
Dantzig-Wolfe model. One line of work began with a method proposed by Ford
and Fulkerson for computing multicommodity flow. Dantzig and Wolfe noticed
that this method was not specific to multicommodity flow; they suggested de-
composing an arbitrary linear program into two sets of constraints, writing it
as

min{cx : x ≥ 0, Ax ≥ b, x ∈ P} (7)
and solving the linear program by an iterative procedure: each iteration in-
volves optimizing over the polytope P . This approach, now called Dantzig-Wolfe
decomposition, is especially useful when P can be written as a cross-product
P1 × · · · × Pk, for in this case minimization over P can be accomplished by
minimizing separately over each Pi. Often, for example, distinct Pi’s constrain
disjoint subsets of variables. In practice, this method tends to require many it-
erations to obtain a solution with value optimum or nearly optimum, often too
many to be useful.

Lagrangean Relaxation

A second line of research is represented by the work of Held and Karp [9, 10]. In
1970 they proposed a method for estimating the minimum cost of a traveling-
salesman tour. Their method was based on the concept of a 1-tree, which is a
slight variant of a spanning tree. They proposed two ways to calculate this esti-
mate; one involved formulating the estimate as the solution to the mathematical
program

max
u

[

ub + min
x∈P

(c − uA)x
]

(8)

where P is the polytope whose vertices are the 1-trees. They suggested an it-
erative method to find an optimal or near-optimal solution: While they given
some initial assignment to u, find a minimum-cost 1-tree with respect to the
edge-costs c − uA. Next, update the node-prices u based on the degrees of the
nodes in the 1-tree found. Find a min-cost 1-tree with respect to the modified
costs, update the node-prices accordingly, and so on.

Like Dantzig and Wolfe’s method, this method’s only dependence on the
polytope P is via repeatedly optimizing over it. In the case of Held and Karp’s
estimate, optimizing over P amounts to finding a minimum-cost spanning tree.
Their method of obtaining an estimate for the solution to a discrete-optimization
problem came to be known as Lagrangean relaxation, and has been applied to
a variety of other problems.

Held and Karp’s method for finding the optimal or near-optimal solution
to (8) turns out to be the subgradient method, which dates back to the early
sixties. Under certain conditions this method can be shown to converge in the
limit, but, like Dantzig and Wolfe’s method it can be rather slow. (One author
refers to the “the correct combination of artistic expertise and luck” [19] needed
to make progress in subgradient optimization.)
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Fractional Packing and Covering

The third line of research, unlike the first two, provided guaranteed convergence
rates. Shahrokhi and Matula [18] gave an approximation algorithm for a special
case of multicommodity flow. Their algorithm was improved and generalized by
Klein, Plotkin, Stein, and Tardos [13], Leighton et al. [15], and others. Plotkin,
Shmoys, and Tardos [16] noticed that the technique could be generalized to apply
to the problem of finding an element of the set

{x : Ax ≤ b, x ∈ P} (9)

where P is a convex set and A is a matrix such that Ax ≥ 0 for every x ∈ P . In
particular, as discussed in the introduction, they gave an ε-relaxed decision
procedure that required O(ρε−2 log m) queries to P , where ρ is the width of
the problem instance.

A similar result was obtained independently by Grigoriadis and Khachiyan [8].
Many subsequent algorithms (e.g. [20, 6]) built on these results. Furthermore,
many applications for these results have been proposed.

This method of Plotkin, Shmoys, Tardos and Grigoriadis, Khachiyan im-
proves on Dantzig-Wolfe decomposition and subgradient optimization in that it
does not require artistry to achieve convergence, and it is effective for reasonably
large values of ε. However, for small ε the method is frustratingly slow. Might
there be an algorithm in the Dantzig-Wolfe model that converges more quickly?

Our aim in this paper has been to address this question, and to provide
evidence that the answer is no. However, our lower bound technique is incapable
of proving a lower bound that is superlinear in m, the number of rows of A.
The reason is that for any m-row matrix A, there is an m-column submatrix B
such that V (B) = V (A). This raises the question of whether there is a Dantzig-
Wolfe-type method that requires a number of iterations polynomial in m but
subquadratic in 1/ε.
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