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Abstract

A timed process algebra is developed for evaluating the temporal worst�case e
�

ciency of asynchronous concurrent systems	 For the sake of simplicity� we use a classical

CCS�like algebra where actions may occur arbitrarily within a continuous time interval�

yielding arbitrary relative speeds of the components	 Via the timed testing approach�

asynchronous systems are then related w	r	t	 their worst�case e
ciency� yielding an e
�

ciency preorder	 We show that this preorder can just as well be based on much simpler

discrete time and that it can be characterized with some kind of refusal traces	 Finally�

precongruence results are provided for all operators of the algebra� where pre�x� choice

and recursion require special attention	

� Motivation and Introduction

Classical process algebras like CCS model asynchronous systems� where the components have
arbitrary relative speeds� To consider the temporal behaviour� several timed process algebras
have been proposed� where usually systems are regarded as synchronous� i�e� have compo�
nents with �xed speeds� The easiest of these is SCCS �Mil��	� since terms are essentially the
same as for CCS
 the natural choice to �x the speeds of components is to assume that each
action takes one unit of time
 so SCCS�semantics di�ers from CCS�semantics essentially by
excluding runs where one component performs many actions while another performs just
one�

Our aim is to evaluate the temporal worst�case e�ciency of asynchronous concurrent systems
modeled with a process algebra� and 
 as in the case of SCCS 
 we want to keep things simple
by using just classical CCS�like process terms� Furthermore� we will use a variant of �must��
testing �DNH��	� where the testing preorder can be interpreted as comparing e�ciency�

A usual treatment of asynchronous systems with a timed process algebra is to allow arbitrary
idling before each action �Mil��� MT��	
 this achieves arbitrary relative speeds� but is not
suitable for de�ning worst�case runs since each action already can take arbitrarily long� Here�
we assume each action to be performed within a given time 
 and to keep things simple as
in SCCS� we take � as a common upper time bound for all actions� This enforces some
progress� but di�erent from SCCS� actions may also be performed faster than necessary

hence� components have arbitrary relative speeds and we take into account all runs of an
asynchronous system� E�g� �Lyn��	 uses upper time bounds for asynchronous systems in the
area of distributed algorithms�

�This work was supported by the DFG�project �Halbordnungstesten��

�
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We compare processes via the testing approach developed by �DNH��	 and extended to timed
testing in a Petri net framework in �Vog��� JV��	� where a timed test is an environment
together with a time bound� A process is embedded into the environment essentially via
parallel composition and satis�es a timed test� if success is reached before the time bound
in every run of the composed system� i�e� even in the worst case� If some process P satis�es
each timed test satis�ed by a process Q� then P may be successful in more environments
than speci�ed by Q� but it may also be successful in the same environments within a shorter
time
 therefore� we call it a faster implementation of Q� and the testing preorder is naturally
an e�ciency preorder�

To de�ne this testing formally� we have to de�ne runs of asynchronous systems� In Section ��
we develop a suitable semantics with upper time bound on actions where time is continuous

we try to formalize our intuitive ideas as directly as possible without anticipating any speci�c
treatment that might be necessary to obtain a precongruence in the end� As regards the
de�nition of testing� the classical embedding in the test environment leads to a testing
preorder which 
 surprisingly 
 is not a precongruence for pre�xing
 instead of re�ning the
preorder to the coarsest such precongruence �cf� �Jen��	�� we get this precongruence directly
by using a slightly di�erent� but also intuitive embedding�

Using continuous time is certainly not as simple as intended
 e�g� initially each process can
make uncountably many di�erent time steps� Our �rst main result in Section � shows that
realism and simplicity can be reconciled� we de�ne an analogous e�ciency preorder based
on discrete time behaviour and show its coincidence with the �rst one� In Section �� as
usual in a testing approach� we characterize the e�ciency preorder 
 here with some kind of
refusal traces� The important point with this second main result is that test environments
are asynchronous systems� hence �temporally weak�� but nevertheless reveal the temporal
behaviour of tested processes quite in detail
 correspondingly� the construction of revealing
tests is a little involved�

We also provide precongruence results for parallel composition� hiding� relabeling and pre�
�xing� Finally� in Section � we re�ne the e�ciency preorder to a precongruence also for
choice� as usual� we additionally have to take into account the �initial� stability of processes�
Quite surprisingly� although we consider a preorder� the additional condition on stability is
not only an implication but an equivalence� The re�ned e�ciency preorder is then shown to
be the coarsest precongruence for all operators of our process algebra that respects inclusion
of discrete behaviour� We also provide a precongruence result for recursion� Here� we avoid
the introduction of least elements ���terms� and application of cpo�techniques �cf� �Hen��	�
and thereby gain some degree of self�containment� but our technique exploits the restriction
to guarded recursion�

We have translated the results for Petri nets from �JV��	 to a process algebra setting for two
reasons� on the one hand� it is shown that the underlying ideas are not model�dependent
 on
the other hand� the developments here are quite di�erent� in particular since process algebras
are much more powerful than �nite safe Petri nets
 see e�g� the progress preorder in Section ��
For an interesting application of our approach see �JV��	� where di�erent implementations
of a bounded bu�er are distinguished w�r�t� their e�ciency
 we intend to carry over this
example into our process algebra setting� expecting the same results�
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� Continuously timed Processes and Tests

We will use a CCS�like process algebra with TCSP�like kA parallel composition� where A
is the set of actions components have to synchronize on� Processes will perform �atomic�
actions instantaneously within time �
 time passes continuously �in this section� in between
their occurrences� For example� process a�P will idle and then perform action a at some time
point in the real interval ��
 �	� evolving to P � To model this� we introduce continuously timed
actions ha� ri� which carry a �timer� r whose initial value can be chosen from the interval ��
 �	
of real numbers� Whenever time passes globally by a certain amount� the timer of a locally
activated action will be decreased accordingly� Timer value � denotes that the idle time of
the respective action has elapsed� hence it must either occur or be deactivated before time
may pass further 
 unless it has to wait for synchronization with another component �i�e�
our processes are patient�� E�g�� process a�P corresponds to ha� �i�P and can idle� process
ha� �i�Q can neither idle nor wait� but component ha� �i�Q in �ha� �i�Q�kfag�ha� �i�P � has to
wait for synchronization on a while component ha� �i�P still may idle�

We also use two distinguished actions� � represents internal activity that is unobservable for
other components
 � is reserved for observers �test processes� only� which use this action in
order to signal success of a test�

De�nition ��� timed actions

Let A be a possibly in�nite set of actions� let � be a special action 
 the success action 
�
and let � be the internal action� We de�ne A� � A�f�g and A�� � A��f�g� Elements
of A�� are denoted by a� b� c� � � � �including � and ���

Let T � ��
 �	 � R�
� be the set of real numbers in the interval ��
 �	� Elements from T

are denoted by �� r� � � �

Let Act � A�� � T � f�� �� � � �g be the set of continuously timed actions� where e�g�
� � ha� ri � Act� We use a as a shorthand for ha� �i and a as a shorthand for ha� �i� which
we call an urgent action� ���

De�nition ��� continuously timed and initial process terms and processes

Let � � A�� � A�� be a function such that the set fa � A j � �� ����a� �� fagg is �nite�
������ � f�g and ��� � � � 
 then � is a general relabelling function�

A �continuously timed� c�process term P is generated by the following grammar�

P ��� �
��� X

��� ha� ri�P
��� P � P

��� PkAP
��� P ��	

��� �X�P
where � �Nil� is a constant� X � � � fX�Y�Z� � � � g is a �process� variable� ha� ri � Act� �
is a general relabelling function and A � A possibly in�nite� Additionally� we only allow
guarded recursion� where also internal timed actions h�� ri may serve as a guard� The set
of c�process terms is denoted by �Pc�

We distinguish several cases� P is an initial process term� if the choice of r is restricted
to r � �
 the set of initial process terms� is denoted by �P�� P is a �continuously timed�
c�process� if P is closed� i�e� all variables X in P are bound by the according �X�operator

the set of c�processes is denoted by Pc� P� � Pc� �P� is the set of initial processes� ���
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� is the Nil�process� which cannot perform any action� but may let pass time without limit�
X � � is a process variable used for recursion� ��P is �action�� pre�xing� known from CCS�
where ha� ri�P is ready to perform action a at some time in ��� r	� P� �P� models the choice
�sum� of two con�icting processes P� and P�� P�kAP� is the parallel composition of two
processes P� and P� that run in parallel and have to synchronize on all actions from A
 this
synchronization discipline is inspired from TCSP�

The general relabelling operation P ��	 subsumes the classically distinguished operations
relabelling and hiding� These will be understood as special cases of a general relabelling in
the following way� if � satis�es the condition ����� � � f�g� then � is a �classical� relabelling
function
 if for a set A � A � satis�es the conditions �jA � � and �jA�� nA � idA�� � then
we consider P�A to be a notation equivalent to P ��	� where A is called a hiding set� The
restrictions on general relabelling functions serve several purposes� ��� � � � ensures that �
cannot be made visible by relabelling� and ������ � f�g ensures that testable processes will
be closed under general relabelling� The �niteness of the set fa � A j � �� ����a� �� fagg will
ensure later on that the number of di�erent actions ever performable by a given c�process is
�nite
 note that we allow in�nite hiding sets� however�

�X�P models recursion� Some X � � is guarded in a c�process term P � �Pc� if each
occurrence of X is in a subterm ��Q of P where � � Act �guard�
 note that also internal
timed actions h�� ri may serve as a guard� In this paper� we only consider c�process terms
�X�P where X is guarded in P � We say that P � �Pc is guarded if all X � � are guarded in
P � Note that c�processes are guarded�

Obviously� initial c�process terms coincide essentially with ordinary CCS�like terms� where
ha� �i represents simple a�

In order to economize on parentheses� we determine the precedence of the operators in
decreasing order as follows� relabelling� pre�x� recursion� parallel composition� choice�

Whenever we perform syntactical substitution PfQ�Xg� we assume free�Q�� bound�P � � �
�Barendregt convention�� where free�P � and bound�P � denote the sets of free resp� bound
variables in P � If S is a function S � � 	� �Pc� then S denotes a simultaneous substitution of
all variables� and we write �P 	S for PfS�X��X�S�Y ��Y� � � �g�

We intend choice and parallel composition to be commutative and choice to be associative�
and we anticipate this by a syntactical congruence�

De�nition ��� syntactical congruence

Syntactical congruence 
 � �Pc� �Pc is the least congruence of c�process terms satisfying
for all P�� P�� P� � �Pc and A � A�

�� P� � P� 
 P� � P�

�� �P� � P�� � P� 
 P� � �P� � P��

�� P�kAP� 
 P�kAP�

We regard syntactically congruent c�process terms as equal� Therefore�
P

i�I Pi is used
as a shorthand for the sum of all Pi � �Pc� where i is in a �nite indexing set I� We de�neP

i�� Pi 
 �� and if jIj � �� then
P

j�figPj 
 Pi� ���
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Now the purely functional behaviour of process terms �i�e� which actions they can perform�
is given by the following operational semantics� where syntactical congruence enables us to
use only one SOS�rule for choice and two SOS�rules for parallel composition�

De�nition ��� Operational semantics of functional behaviour

Via the following SOS�rules� a ternary relation�� � �Pc�A��� �Pc� is de�ned inductively�

Prefa
ha� ri�P

a
� P

Para�
a �� A� P�

a
� P �

�

P�kAP�
a
� P �

�kAP�

Para�
a � A� P�

a
� P �

�� P�
a
� P �

�

P�kAP�
a
� P �

�kAP
�
�

Suma

P�
a
� P �

�

P� � P�
a
� P �

�

Rela
P

a
� P �

P ��	
��a�
� P ���	

Reca
P

a
� P �

�X�P
a
� P �f�X�P�Xg

For c�process terms P�P � � �Pc and a � A�� � we write P
a
� P � if �P� a� P �� �� and P

a
�

if there exists a P �� � �Pc such that �P� a� P ��� ���

Finally� we let A�P � � fa � A�� jP
a
�g be the set of activated actions of P � ���

Except for Prefa and Reca� these rules are standard� Prefa allows an activated action to occur
disregarding the value of its timer� Additionally� passage of time will never deactivate actions
or activate new ones� and we capture all behaviour that is possible in the standard CCS�like
setting without time� Note that rule Reca implicitly makes use of guarded recursion �BD��	�
It forces us to de�ne an operational semantics not only for c�processes but also for c�process
terms �in the premise of Reca�� On the other hand� it will simplify proofs of operational
properties� since it connects induction on inferences with induction on the structure of a
c�process�

The set of activated actions of a c�process term P describes its immediate functional be�
haviour
 note that A�X� is empty for process variables X � �� re�ecting that unbound
occurrence of a variable means incomplete implementation and that A�P � records only ac�
tions� not the possibly various timer values associated with the same action in a process�

We have de�ned the set of activated actions via operational semantics� but A�P � can equiv�
alently be determined inductively from the syntactical structure of P alone�

The set of activated actions will we preserved both along passage of time and under substi�
tution of guarded variables
 furthermore� due to the image��niteness of general relabelling
functions� A�P � is always �nite� and this will be used for the characterization of our testing
preorder�

Proposition ���

Let P�Q�R � �Pc be c�process terms� a � A�� and let X � � be guarded in P �

�� A�P � is �nite�

�� PfQ�Xg
a
� R if and only if there exists P � � �Pc with P

a
� P � and R 
 P �fQ�Xg


in particular A�P � � A�PfQ�Xg��

�� A�P � can be calculated by induction on the structure of P �
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�� Nil� A��� � �
�� Var� A�X� � �
�� Pref� A�ha� ri�P � � fag for all a � A��

�� Sum� A�P� � P�� � A�P�� � A�P��
�� Par� A�P�kAP�� � �A�P�� � A�P�� � A� � ��A�P�� � A�P��� nA�
�� Rel� A�P ��	� � ��A�P ��
 � Rec� A��X�P � � A�P �

Proof�
�� Induction on the structure of P �

�� Induction on the structure of P �
Nil� � 
 �fQ�Xg

a
� for no a � A�� �

Var� X guarded in P 
 Y implies X �
 Y 
 this case is analogous to Nil�
Pref� X is guarded in ha� ri�P and �ha� ri�P �fQ�Xg 
 ha� ri��PfQ�Xg�

a
� PfQ�Xg�

which is unique� and ha� ri�P
a
� P � which is unique�

Sum� X guarded in P� � P� � X guarded in P� and P��
�P� � P��fQ�Xg 
 P�fQ�Xg� P�fQ�Xg

a
� R� P�fQ�Xg

a
� R � P�fQ�Xg

a
�

R � 
P � � �P�
a
� P � � P�

a
� P �� � R 
 P �fQ�Xg � 
P � � P� � P�

a
� P � � R 


P �fQ�Xg�
Par� X guarded in P�kAP� � X guarded in P� and P��

Let a � A

then �P�kAP��fQ�Xg 
 P�fQ�XgkAP�fQ�Xg

a
� R�kAR�

� P�fQ�Xg
a
� R� � P�fQ�Xg

a
� R�

� 
P �
�� P

�
� � P�

a
� P �

� � P�
a
� P �

� � R� 
 P �
�fQ�Xg � R� 
 P �

�fQ�Xg
� 
P �

�� P
�
� � P�kAP�

a
� P �

�kAP
�
� �

R�kAR� 
 P �
�fQ�XgkAP

�
�fQ�Xg 
 �P �

�kAP
�
��fQ�Xg�

Let a �� A

then w�l�o�g� �P�kAP��fQ�Xg 
 P�fQ�XgkAP�fQ�Xg

a
� R�kAP�fQ�Xg

� P�fQ�Xg
a
� R� � 
P �

� � P�
a
� P �

� � R� 
 P �
�fQ�Xg

� 
P �
� � P�kAP�

a
� P �

�kAP� �
R�kAP�fQ�Xg 
 P �

�fQ�XgkAP�fQ�Xg 
 �P �
�kAP��fQ�Xg�

Rel� straightforward induction�
Rec� Let X 
 Y and �Y�P

a
� P �f�Y�P�Y g due to P

a
� P � by rule Reca
 then X is

bound in �Y�P and P �f�Y�P�Y g� hence ��Y�P �fQ�Xg 
 �Y�P
a
� P �f�Y�P�Y g 


�P �f�Y�P�Y g�fQ�Xg�
Let X �
 Y 
 then ��Y�P �fQ�Xg 
 �Y��PfQ�Xg� since by Barendregt con�
vention Y is not free in Q� By rule Reca� ��Y�P �fQ�Xg 
 �Y��PfQ�Xg�

a
� R

i� R 
 R�f�Y��PfQ�Xg��Y g and PfQ�Xg
a
� R� for some R� i� �by ind�� R 


R�f�Y��PfQ�Xg��Y g and R� 
 P �fQ�Xg with P
a
� P � for some R� and P � i�

R 
 �P �fQ�Xg�f�Y��PfQ�Xg��Y g 
 �P �f�Y�P�Y g�fQ�Xg and P
a
� P � for

some P � i� R 
 P ��fQ�Xg and P �� 
 P �f�Y�P�Y g and P
a
� P � for some P � and

P �� i� �Y�P
a
� P �� and R 
 P ��fQ�Xg for some P ���

�� Induction on the inference of P
a
��

Nil� �
a
� for no a � A�� � hence A��� � ��

Var� analogously to Nil�



 

Pref� ��P
a
� i� � � ha� ri� hence A���P � � fag

Sum� P� � P�
a
�� P�

a
� �P�

a
�� a � A�P�� � a � A�P��� hence A�P� � P�� �

A�P�� � A�P���
Par�� a �� A � P�kAP�

a
� � a �� A � �P�

a
� �P�

a
�� � a �� A � �a � A�P�� � a �

A�P���� hence i� a � A�P�� � A�P��
Par�� a � A � P�kAP�

a
� � a � A � �P�

a
� �P�

a
�� � a � A � �a � A�P�� � a �

A�P���� hence i� a � A�P�� � A�P��

Rel� P ��	
a
�� 
b � ����a� � P

b
�� 
b � A�P � � ��b� � a� a � ��A�P ��

Rec� �X�P
a
�� P

a
�� a � A�P �� ���

As a �rst step to de�ne timed behaviour� we now give operational rules for the passage of
�wait�time�� all components of a system participate in a global time step� and this passage of
time is recorded for locally activated actions by decreasing their annotated timer in rule Prefc�
Note that time passes disregarding elapsed timers
 this might be necessary for a component
when waiting for a synchronization partner� and this explains the notion �wait�time��

De�nition ��� operational semantics for wait�time

Via the following SOS�rules� a ternary relation �c� � �Pc�T� �Pc� is de�ned inductively�

Nilc
�

�
�c �

Prefc
r� � max�r � �� ��

ha� ri�P
�
�c ha� r

�i�P
Sumc

P�
�
�c P

�
�� P�

�
�c P

�
�

P� � P�
�
�c P

�
� � P �

�

Relc
P

�
�c P

�

P ��	
�
�c P

���	
Parc

P�
�
�c P

�
�� P�

�
�c P

�
�

P�kAP�
�
�c P

�
�kAP

�
�

Recc
P

�
�c P

�

�X�P
�
�c P

�f�X�P�Xg

For c�process terms P�P � � �Pc and � � T� we write P
�
�c P

� if �P� �� P �� ��c� We write

P
�
�c� if there exists a P �� � �Pc such that �P� �� P ��� ��c� ���

Note that a process variable X � � has no time semantics� again re�ecting the fact that
unbound occurrence of a variable means incomplete implementation�

Lemma ��	 properties of passage of wait�time

Let P�P �� P ��� Q�R � �Pc be c�process terms� �� ��� �� �� � T and X � � be guarded in P �

�� P
�
�c if and only if P is guarded� and if P

�
�c P

�� then P � is guarded�

�� If P
�
�c P

� and P
�
�c P

��� then P � 
 P ���

�� PfQ�Xg
�
�c R if and only if there exists P � � �Pc with P

�
�c P

� and R 
 P �fQ�Xg�

�� If P
�
�c P

�� then A�P � � A�P ���

�� P
����
�c P

�� if and only if P
�
�c P

� ��

�c P
�� for some P ��

Proof�
�� By induction on the structure of P �
Nil� � is guarded and �

�
�c ��

Var� P 
 X for X � � is not guarded� and for no �� X
�
�c�



�

Pref� ha� ri�P is guarded and ha� ri�P
�
�c ha� r�i�P with r� � max�r � �� ��� and ha� r�i�P

is guarded� too�
Sum� P 
 P� � P�

�
�c i� for i � �� �� Pi

�
�c P

�
i for some P �

i � hence by ind� i� both
P� and P� are guarded� in which case both P �

� and P �
� are guarded� too� Thus�

P 
 P� � P�
�
�c i� P is guarded and if P

�
�c P

� 
 P �
� � P �

�� then P � is guarded�
Par� analogously to Sum�
Rel� similar to Sum�
Rec� �X�P is guarded i� P is guarded i� by ind� P

�
�c P � for some guarded P � i�

�X�P
�
�c P

�f�X�P�Xg� which is guarded� too�

�� By induction on the inference of P
�
�c P

�� P
�
�c P

�� resp�

�� For the following reason� it su�ces to show the �if��direction�

let X be guarded in P and assume that P
�
�c P

� implies PfQ�Xg
�
�c P

�fQ�Xg
 then

PfQ�Xg
�
�c R implies PfQ�Xg is guarded by ��� and since X is guarded in P � P itself

is guarded
 hence P
�
�c P

� for some P � by �� again� thus PfQ�Xg
�
�c P �fQ�Xg by

assumption and R 
 P �fQ�Xg by ��

Induction on the inference of P
�
�c P

�� using that P and P � are guarded by ���
Nil� �

�
�c � and �fQ�Xg 
 ��

Pref� ��P
�
�c �

��P and ���P �fQ�Xg 
 ���PfQ�Xg�
�
�c �

���PfQ�Xg� 
 ����P �fQ�Xg�

Sum� P 
 P� � P�
�
�c P

� i� �i���� Pi
�
�c P

�
i and X guarded in Pi� and P � 
 P �

� � P �
�

by �� Hence by ind� for i � �� �� Pi
�
�c P �

i implies PifQ�Xg
�
�c P �

ifQ�Xg�

Thus P� � P�
�
�c P

�
� � P �

� implies �P� � P��fQ�Xg 
 P�fQ�Xg � P�fQ�Xg
�
�c

P �
�fQ�Xg� P �

�fQ�Xg 
 �P �
� � P �

��fQ�Xg�
Par� analogously to Sum�
Rel� similar to Sum�
Rec� If X 
 Y � then X not free in �Y�P � i�e� ��Y�P �fQ�Xg 
 �Y�P � and if �Y�P

�
�c P

��

then P
�
�c P

�� for some P �� such that P � 
 P ��f�Y�P�Y g
 now X not free in P �

either� hence P �fQ�Xg 
 P ��

LetX �
 Y 
 then �Y�P
�
�c P

� implies P
�
�c P

�� for some P �� and P � 
 P ��f�Y�P�Xg�

hence by ind� PfQ�Xg
�
�c P

��fQ�Xg� Now by Barendregt convention� ��Y�P �

fQ�Xg 
 �Y��PfQ�Xg� and �Y��PfQ�Xg�
�
�c �P ��fQ�Xg�f�Y��PfQ�Xg��Y g


 �P ��f�Y�P�Y g�fQ�Xg 
 P �fQ�Xg�

�� By induction on the inference of P
�
�c P

�� We only consider the Rec�case in the
induction� since the other cases are clear�

By rule Recc� �X�P
�
�c R implies R 
 P �f�X�P�Xg and P

�
�c P

� for some P � and
by ��� X is guarded in P and P �� Now by rule Reca� induction and Proposition ������
A��X�P � � A�P � � A�P �� � A�P �f�X�P�Xg� � A�R��

�� Induction�
Nil� �

����
�c � and �

�
�c �

��
�c ��

Var� For all X � � and �� �� � T� neither X
�
�c nor X

����
�c �

Pref� ha� ri�P
����
�c ha�max�r � �� � ���� ��i�P and ha� ri�P

�
�c ha�max�r � �� ��i�P

��

�c

ha�max�max�r��� ������ ��i�P and max�max�r��� ������ �� � max�r�������� ���



�

Sum� P� � P�
����
�c P

��
� � P ��

� � �i���� Pi
����
�c P

��
i � �ind���i����
P �

i � Pi
�
�c P

�
i

��
�c P

��
i �

�i����
P �
i � P� � P�

�
�c P

�
� � P �

�
��

�c P
��
� � P ��

� �
Par� analogously to Sum�
Rel� straightforward�

Rec� �X�P
����
�c R i� �by rule Recc� P

����
�c P

�� for some P �� and R 
 P ��f�X�P�Xg i� �by

induction� 
P �� P �� � P
�
�c P

� ��

�c P
�� � R 
 P ��f�X�P�Xg i� �again by rule Recc

and by �� since X is guarded in P and P �� 
P �� P �� � �X�P
�
�c P

�f�X�P�Xg
��

�c

P ��f�X�P�Xg 
 R� �� 

The operational semantics of wait�time allows c�processes to wait forever� but our intention
was that an urgent action has to occur or be disabled� unless it has to wait for a synchro�
nization partner� We will enforce this using an auxiliary function that calculates for a given
action a its residual time R�a� P � in a c�process term P � i�e� the time until it becomes urgent�

De�nition ��
 residual time of actions and c�process terms

The residual time of an action a � A�� in a c�process term P � �Pc is determined by the
following inductively de�ned function R � A�� � �Pc � T�

�� Nil� R�a��� � � for all a � A��

�� Var� R�a�X� � � for all a � A��

�� Pref� R�a� ��P � �

��
�
r if � � ha� ri

� otherwise

�� Sum� R�a� P� � P�� � min�R�a� P���R�a� P���

�� Par� R�a� P�kAP�� �

��
�
max�R�a� P���R�a� P��� if a � A

min�R�a� P���R�a� P��� if a �� A

�� Rel� R�a� P ��	� � minfR�b� P � j b � ����a�g
 � Rec� R�a� �X�P � � R�a� P �

Finally� the residual time of a c�process term P � �Pc is R�P � � minfR�a� P � j a � A�P �g�
where min � �� �� ���

We have chosen R�a�X� � R�a��� � � mainly for technical reasons �cf� Proposition �����
below�� The Par�case will realize the desired behaviour of waiting in a parallel composition�
if P� and P� have to synchronize on a� then the residual time of a in P�kAP� is determined
by the �slower� component with larger residual time
 if P� and P� do not have to synchronize
on a� the �faster� component determines the maximal possible delay of a in P�kAP��

Observe that in the Rel�case ���� ����a� may be empty �where min � � �� or in�nite

for the latter case� we will show below that for any P � �Pc there are only �nitely many
b � A�� with R�b� P � �� � �Proposition ����� together with Proposition ������� such that the
set fR�b� P � j b � ����a�g is �nite and R�a� P ��	� exists� Similarly� R�P � exists for each
c�process term P � and� hence� the residual time is well�de�ned in all cases�

In the following Proposition� we ascertain that only activated actions of a c�process term
can have a residual time less than �� and that the residual time of each action in a c�process



��

term is preserved under substitution of guarded variables� Additionally� we show how the
residual time of a c�process term can be calculated directly from the residual times of its
components� provided there is no parallel composition with synchronisation�

Proposition ���

Let P�P�� P�� Q � �Pc be c�process terms� a � A�� and X � ��

�� R�a� P � � T� and R�a� P � �� � implies a � A�P ��

�� If X is guarded in P � then R�a� P � � R�a� PfQ�Xg�� thus R�P � � R�PfQ�Xg��

�� Except for parallel composition� R�P � may be calculated directly�

�� Nil� R��� � �
�� Var� R�X� � �
�� Pref� R�ha� ri�P � � r
�� Sum� R�P� � P�� � min�R�P���R�P���
�� Rel� R�P ��	� � R�P �
�� Rec� R��X�P � � R�P �

Proof�
�� Induction on the structure of P 
 R�a��� � R�a�X� � � for all a � A�� � Now�
Pref� R�a� ha� ri�P � � r � T and a � A�ha� ri�P �� If a �� a�� then R�a� ha�� ri�P � � � � T�
Sum� R�a� P� � P�� � min�R�a� P���R�a� P�� � T since by ind� R�a� P���R�a� P�� � T�

If R�a� P� � P�� �� �� then w�l�o�g� R�a� P�� �� �� hence by ind� a � A�P�� �
A�P�� � A�P�� � A�P� � P���

Par� By ind� R�a� P���R�a� P�� � T� hence R�a� P�kAP�� � fmin�R�a� P���R�a� P����
max�R�a� P���R�a� P���g � T�
If a � A and R�a� P�kAP�� �� �� then R�a� P�� �� � �� R�a� P��� hence by ind�
a � A�P�� � A�P��� thus a � A�P�kAP���
If a �� A and R�a� P�kAP�� �� �� then R�a� P�� �� � � R�a� P�� �� �� hence by ind�
a � A�P�� � A�P��� thus a � A�P�kAP���

Rel� fR�b� P � j b � ����a�g � fR�b� P � j b � ����a� � A�P �g � fR�b� P � j b � ����a� n
A�P �g� and by ind�� fR�b� P � j b � ����a� n A�P �g � f�g and� hence fR�b� P � j b �
����a�g � f�g � fR�b� P � j b � ����a� � A�P �g� which is �nite� thus R�a� P ��	� �
min�f�g � fR�b� P � j b � ����a� � A�P �g� � T by ind� If R�a� P � �� �� then
R�b� P � �� � for some b � ����a� � A�P �� hence by ind� b � A�P �� and ��b� � a
implies a � A�P ��	��

Rec� R�a� �X�P � � R�a� P � � T by ind�� and R�a� �X�P � � R�a� P � �� � implies
a � A�P � by ind�� hence a � A��X�P ��

�� Induction on the structure of P �
Nil� R�a��� � � for all a � A�� and �fQ�Xg 
 ��
Var� X is not guarded in P 
 X� and the case P 
 Y �
 X is analogously to Nil�
Pref� ���P �fQ�Xg 
 ���PfQ�Xg�� henceR�a� ��P � � R�a� ���PfQ�Xg�� � R�a� ���P �

fQ�Xg��
Sum� X guarded in P� � P� � X guarded in P� and X guarded in P�� R�a� P� �

P�� � mini����R�a� Pi� � mini����R�a� PifQ�Xg� � R�a� P�fQ�Xg�P�fQ�Xg� �
R�a� �P� � P��fQ�Xg��

Par� Rel� analogously�



��

Rec� If X 
 Y � then X is bound in �Y�P � hence R�a� �Y�P � � R�a� ��Y�P �fQ�Xg��
If X �
 Y � then ��Y�P �fQ�Xg 
 �Y��PfQ�Xg� by Barendregt convention� and
X guarded in �Y�P implies X guarded in P � hence by ind� R�a� ��Y�P �fQ�Xg� �
R�a� �Y��PfQ�Xg�� � R�a� PfQ�Xg� � R�a� P � � R�a� �Y�P ��

�� We exploit the �niteness of A�P � and the restriction on general relabelling functions
� in order to swap minima�

�� R��� � mina�A���R�a��� � mina��R�a��� � ��

�� R�X� � mina�A�X�R�a�X� � mina��R�a�X� � ��

�� R�ha� ri�P � � mina��A�ha�ri�P �R�a�� ha� ri�P � � R�a� ha� ri�P � � r�

�� R�P��P�� � mina�A�P��P��R�a� P��P�� � mina�A�P���A�P��min�R�a� P���R�a� P���
� min�mina�A�P���A�P��R�a� P���mina�A�P���A�P��R�a� P���
��
� min�mina�A�P��R�a� P���mina�A�P��R�a� P��� � min�R�P���R�P����

�� R�P ��	� � mina�A�P 	�
�R�a� P ��	� � mina���A�P ��minb�����a��A�P �R�b� P �
��
�

minb�A�P �R�b� P � � R�P ��

�� R��X�P � � mina�A��X�P �R�a� �X�P �� � mina�A�P �R�a� P � � R�P �� ���

The e�ect of waiting on the residual time of activated actions is described by the following
lemma� if time advances by amount �� then the residual time of an activated action is
decreased by the same amount� unless it has already been less than �� in which case it is
zero afterwards� This behaviour is realized locally by rule Prefc of De�nition ����

Lemma ����

For c�process terms P�P � � �Pc and � � T let P
�
�c P

�
 then for all a � A�P � � A�P ��
we have either R�a� P ��R�a� P �� � �� or R�a� P � 	 � and R�a� P �� � ��

Proof�
In this proof� we will deal with minima and maxima in order to calculate residual times�
In these calculations� we will often use the following properties without mentioning it�

Let I be a �nite set� � � T and �xi�i�I � �yi�i�I be families of real numbers�
�� mini�I �xi � yi� � mini�I xi �mini�I yi�
�� If xi � yi � � for all i � I� then mini�I xi �mini�I yi � ��
�� If xi � yi � � for all i � I� then mini�I xi �mini�I yi � ��
�� maxi�I �xi � yi� � maxi�I xi �maxi�I yi�
�� If xi � yi � � for all i � I� then maxi�I xi �maxi�I yi � ��
�� If xi � yi � � for all i � I� then maxi�I xi �maxi�I yi � ��

Proof�
�� Let mini�I xi � xj with j � I
 then mini�I �xi � yi� � xj � yj � xj � mini�I yi �

mini�I xi �mini�I yi�
�� Let mini�I yi � yk with k � I
 then mini�I xi�mini�I yi � mini�I xi�yk � xk�yk � ��
�� Follows from �� and ��
�� Let maxi�I xi � xj with j � I
 then maxi�I �xi � yi� � xj � yj � xj � maxi�I yi �

maxi�I xi �maxi�I yi�
�� Follows from ��



��

�� maxi�I xi �maxi�I yi � � by �� Let maxi�I yi � yk with k � I
 then � � xk � yk �
maxi�I xi � yk � maxi�I xi �maxi�I yi�

After verifying A�P � � A�P �� with Lemma �� ��� we now perform induction on the

structure of the inference tree of P
�
�c P

�� using Lemma �� �� again
 the property trivially
holds for � and X� since A��� � A�X� � �
 now�

Pref� ha� ri�P
�
�c ha�max�r � �� ��i�P � �R�a� ha� ri�P � � r 	 � � R�a� ha�max�r �

�� ��i�P � � R�a� ha� �i�P � � �� � �R�a� ha� ri�P � � r � � � R�a� ha� ri�P � �
R�a� ha�max�r � �� ��i�P � � r � �r � �� � ��

Sum� P��P�
�
�c P

�
��P �

� � �i���� Pi
�
�c P

�
i � �i�����a�A�Pi��A�P �

i
� �R�a� Pi��R�a� P �

i � �
� � �R�a� Pi� 	 � � R�a� P �

i � � ���� For a � A�P� � P�� � A�P �
� � P �

�� by ind� one
of the following cases applies�
i� 
i���� R�a� Pi� 	 � � R�a� P �

i � � �
 then R�a� P� � P�� � mini����R�a� Pi� 	 �
and R�a� P �

� � P �
�� � mini����R�a� P �

i � � ��
ii� �i���� R�a� Pi��R�a� P �

i � � �
 thenR�a� P��P���R�a� P �
��P �

�� � mini����R�a�
Pi��mini����R�a� P �

i � � ��
iii� R�a� P�� � R�a� P �

�� � � � R�a� P�� � R�a� P �
�� � � by ����� �or vice versa�


then R�a� P� � P�� � R�a� P �
� � P �

�� � mini����R�a� Pi� � mini����R�a� P �
i � �

R�a� P���R�a� P �
�� � ��

Par� P�kAP�
�
�c P

�
�kAP

�
� � �i���� Pi

�
�c P

�
i �

For any a � �A�P���A�P����A by ind� one of the following cases applies�
i� �i���� R�a� Pi� 	 � � R�a� P �

i � � �
 then R�a� P�kAP�� � maxi����R�a� Pi� 	 �
and R�a� P �

�kAP
�
�� � maxi����R�a� P �

i � � ��
ii� R�a� P���R�a� P �

�� � � � R�a� P�� � R�a� P�� �or vice versa�

then R�a� P�kAP�� � R�a� P �

�kAP
�
�� � maxi����R�a� Pi� � maxi����R�a� P �

i � �
R�a� P���R�a� P �

�� � ��
For any a � �A�P���A�P��� nA by ind� one of the following cases applies�
i� 
i����R�a� Pi� 	 � � R�a� P �

i � � �
 then R�a� P�kAP�� � mini����R�a� Pi� 	 �
and R�a� P �

�kAP
�
�� � mini����R�a� P �

i � � ��
ii� �i����R�a� Pi��R�a� P �

i � � �
 thenR�a� P�kAP���R�a� P �
�kAP

�
�� � mini����R�a�

Pi��mini����R�a� P �
i � � ��

iii� R�a� P�� � R�a� P �
�� � � � R�a� P�� � R�a� P �

�� � � by ����� �or vice versa�

then R�a� P�kAP���R�a� P �

�kAP
�
�� � mini����R�a� Pi��mini����R�a� P �

i � � ��

Rel� P ��	
�
�c P

���	� P
�
�c P

�

� �a�A�P ��A�P ���R�a� P ��R�a� P �� � � � �R�a� P � 	 � � R�a� P �� � ���
� �a�A�P 	�
��A�P �	�
��minb�����a�R�b� P ��minb�����a�R�b� P �� � � �
�minb�����a�R�b� P � 	 � � minb�����a�R�b� P �� � ���
� �a�A�P 	�
��A�P �	�
��R�a� P ��	��R�a� P ���	� � � �
�R�a� P ��	� 	 � � R�a� P ���	� � ����

Rec� �X�P
�
�c R implies R 
 P �f�X�P�Xg and P

�
�c P

� for some P � by rule Recc�
hence induction yields
�a�A�P ��A�P �� R�a� P ��R�a� P �� � � � �R�a� P � 	 � � R�a� P �� � ��
and since P � is guarded by Lemma �� ��� with Proposition ����� follows
�a�A��X�P ��A�P �f�X�P�Xg�R�a� �X�P ��R�a� P �f�X�P�Xg� � R�a� P ��R�a� P �� �
� � �R�a� �X�P � � R�a� P � 	 � � R�a� P �f�X�P�Xg� � R�a� P �� � ��� ����



��

Using the residual time of a c�process term� we are now able to restrict wait�time to the timed
behaviour we had in mind originally and which we call �idle�time�� Alternatively� idle�time
could have been de�ned via SOS�rules intertwined with the rules for wait�time�

De�nition ���� passage of idle�time

For P�P � � �Pc and � � T we write P
�
�c P

� if P
�
�c P

� and � � R�P �� ����

Most of the properties of wait�time stated in Lemma �� carry over to idle�time analogously�
gathered in Proposition ���� below� Note that c�processes without activated actions may
idle for an arbitrary amount of time by ��� �� and ��� but if there are activated actions� they
may idle at most for time � by ��� �� and ��

Proposition ���� properties of idle�time

Let P�P �� P ��� Q�R � �Pc be c�process terms and �� ��� �� �� � T�

�� P
�
�c i� P is guarded and � � R�P �� and P � is guarded if P

�
�c P

�� �urgency�

�� If P
�
�c P

� and P
�
�c P

��� then P � 
 P ��� �determinism�

�� If P
�
�c P

�� then A�P � � A�P ��� �persistency�

�� If A�P � � � and P
�
�c P

�� then R�P � � R�P �� � �� �termination�

�� If A�P � �� � and P
�
�c P

�� then R�P ��R�P �� � � �progress�

�� P
����
�c P �� if and only if P

�
�c P

� ��
�c P

�� for some P �� �continuity�

Proof�
�� Implication of De�nition ���� and Lemma �� ���

�� Implication of De�nition ���� and Lemma �� ���

�� Implication of De�nition ���� and Lemma �� ���

�� Implication of �� and Proposition ������

�� Implication of Lemma ����� De�nition ���� and De�nition ����

�� Follows from De�nition ���� and Lemma �� ���
P

����
�c P ��

� P
����
�c P

�� � �� �� � R�P � �by Def� �����

� 
P � � P
�
�c P

� ��

�c P
�� � � � R�P � � �� � R�P �� � �by Lemma �� ���

� 
P � � P
�
�c P

� ��

�c P
�� � �� � R�P �� �by Def� ���� and �� and ���

� 
P � � P
�
�c P

� ��
�c P

�� �by Def� ����� ����

Both� purely functional and timed behaviour of processes will now be combined in the
continuous language of processes� As usual� we will abstract from internal behaviour� but
note that internal actions gain some �visibility� in timed behaviour� since their presence
possibly allows to pass more time in between the occurrence of visible actions� For technical
reasons� we also need a continuous language that records � �s when we compare processes
w�r�t� their temporal progress in the next section�



��

De�nition ���� continuous language of processes

Let P�P � � �Pc be c�process terms� We write P
�
�c P

� if either 
 � A�� and P
�
� P �� or


 � T and P
�
�c P

�� We extend this to sequences w and write P
w
�c P

� if P 
 P � and

w � � or there exist Q � Pc and 
 � �A�� �T� such that P
�
�c Q

w�

�c P
� and w � 
w��

For a sequence w � �A�� �T�� let w�� be the sequence w with all � �s removed� let act�w�
be the sequence of elements from A�� in w� and let ��w� be the sum of time steps in w

note that ��w�� � � ��w�� We write P

v
�c P

�� if P
w
�c P

� and v � w�� �

For a c�process P � Pc we de�ne CL� �P � � fw jP
w
�cg to be the continuous � �language�

containing the continuous � �traces of P � and CL�P � � fw jP
w
�cg to be the continuous

language� containing the continuous traces of P � ����

We state in passing that the set of c�processes is closed under occurrence of actions or passage
of time� i�e� P � Pc and P

w
�c P

� implies P � � Pc again�

Based on the continuous language of c�processes� we are now ready to de�ne timed testing
and to relate c�processes w�r�t� their e�ciency� thereby de�ning an e�ciency preorder�

De�nition ���� continuously timed tests

An initial process P � P� is testable if � does not occur in P � Any initial process O � P�

may serve as a test process �observer��

A c�timed test is a pair �O�R�� whereO is a test process and R � R�
� is the real time bound�

A testable process P c�satis�es a c�timed test �P mustc �O�R��� if each w � CL���PkAO�
with ��w� 
 R contains some ��

For testable processes P and Q� we call P a continuously faster implementation of Q�
written P wc Q� if P c�satis�es all c�timed tests that Q c�satis�es� ����

Note that in contrast to e�g� �DNH��	� execution and not only activation of an � is necessary
for satisfaction of a c�timed test� Note that ��PkAO is a shorthand for �h�� �i�P �kAO�
Usually� one considers the behaviour of PkAO when de�ning a test� This is also done
in �Jen��	� where it is shown that surprisingly the resulting e�ciency preorder is not a
precongruence for pre�x and therefore has to be re�ned afterwards� In order to avoid this
complication� we have chosen ��PkAO instead� gaining the same result directly� From an
intuitive point of view� the additional � �pre�x represents some internal setup activity before
the actual test begins�

Runs with duration less than R may not contain all actions that occur up to time R
 hence we
only consider runs with a duration greater than the time bound R for test satisfaction� Ob�
serve that this de�nition of c�satisfaction would be of questionable usefulness� if c�processes
were able to stop time� i�e� to reach a state from where no time step is possible any more

we will see later on �cf� Corollary ������ that this doubt is unsubstantiated�

At this point� it is by no means clear how to check P wc Q for given testable P and Q�
Obviously� it is impossible to apply the de�nition directly� since there are uncountably many
time bounds and� hence� c�timed tests to apply� And even if we could decide P wc Q from
CL�P � and CL�Q� only �which is not the case�� CL�P � and CL�Q� are still uncountable and
hard to handle�



��

� Discretization

Intuitively� satisfaction of a c�timed test essentially depends on the �slowest� sequences in
CL���PkAO�
 in this section� we will show that these are generated by discrete behaviour
only� i�e� those traces with only time steps of duration �� This will yield a simple theory�

De�nition ��� discrete language of processes

Let P�P � � �Pc be c�process terms� We write P
�
�d P

� if either 
 � A�� and P
�
� P ��

or 
 � � and P
�
�c P

�
 in the latter case we say that P performs a unit time step� For

sequences w � �A�� � f�g��� we de�ne P
w
�d and P

w��
�d analogously to De�nition �����

For a c�process P � Pc we de�ne DL� �P � � fw jP
w
�dg to be the discrete � �language�

containing the discrete � �traces of P � and DL�P � � fw�� jw � DL��P �g to be the discrete
language� containing the discretes traces of P � ���

Observe that by de�nition DL�P � � CL�P � and DL��P � � CL� �P ��

We are mainly interested in initial processes �which can be seen as the processes of an
ordinary untimed process algebra�� Therefore� we will �rst characterize syntactically those
c�processes in Pc that are reachable from an initial process by only discrete behaviour� These
terms represent a discretely timed process algebra and their structure is important e�g� in
the proof of Proposition ����

De�nition ��� process terms and urgent process terms

An urgent process term U is generated by the following grammar�

U ��� �
��� a�I

��� U � U
��� UkAU

��� U ��	 �recall that a is ha� �i�

where I � �P� is an initial process term� a � A�� � A � A and � a general relabeling
function� The set of urgent processes terms is denoted by �P�� and P� � �P� � Pc is the
set of urgent processes


A �discretely timed� process term P is generated by the following grammar�

P ��� I
��� U

��� PkAP
��� P ��	

where I�A�� are as above and U � �P� is an urgent process term� The set of process
terms is denoted by �P� the set of �discretely timed� processes is P � �P � Pc� Obviously
�P� � �P� � �P � �Pc� ���

Intuitively� an urgent process term is reached whenever a process term performs a unit time
step� Hence� an urgent process term usually must not let time pass further
 but this is
allowed for process terms without activated actions� consider � � P� � P� for this case�
which can be seen as both� initial and urgent� Process variables X � � are always initial�
since they may not let pass time at all� hence cannot be reached by a time step�

Proposition ���

Let P � �P be a process term and a � A�� �



��

�� R�a� P � � f�� �g� thus R�P � � f�� �g
 if P � �P�� then R�a� P � � �� thus R�P � � ��

�� If P
a
� P �� then P � � �P and �b�A��R�b� P � � R�b� P ��� and P � � �P� if P � �P��

�� If P
�
�c P

�� then P � � �P�
 in particular� P
�
�d P

� implies P � � �P��

�� There are P� � �P� and w � f�g�� such that P�
�w
�d P � where w � � if P � �P��

�� There are P � � �P and w � fag�� such that P
w
�d P

� and R�a� P �� � ��

Proof�
�� By induction on the structure of P using De�nition ��� of initial processes� De�ni�
tion ��� of processes and De�nition ����

�� Induction on the structure of P �

Clear for � and X � ��
Pref� ha� �i�P

a
� P � �P and �b�A�� R�b� P � � �� since P � �P�� Analogously for ha� �i�P �

Sum� If P� � P�
a
� P �

� then w�l�o�g� P�
a
� P �

� and since P� � �P� � �P� � �P by ind� P �
� �

�P� too� Furthermore� by ind�� �b�A�� R�b� P� � P�� � min�R�b� P���R�b� P��� �
R�b� P�� � R�b� P �

��� Additionally� P� � P� � �P� i� P�� P� � �P�� hence by ind�
P �
� � �P��

Par� Let a � A
 then P�kAP�
a
� P �

�kAP
�
� implies P�

a
� P �

� and P�
a
� P �

�� hence by ind�
P �
�� P

�
� � �P� thus P �

�kAP
�
� � �P� Furthermore� by ind�� for all b � A� R�b� P�kAP�� �

max�R�b� P���R�b� P��� � max�R�b� P �
���R�b� P �

��� � R�b� P �
�kAP

�
�� and for all b �

A�� n A� R�b� P�kAP�� � min�R�b� P���R�b� P��� � min�R�b� P �
���R�b� P �

��� �
R�b� P �

�kAP
�
���

Now let a �� A
 then w�l�o�g� P�kAP�
a
� P �

�kAP� with P�
a
� P �

�� hence by ind�
P �
� � �P� thus P �

�kAP� � �P� R�b� P�kAP�� � R�b� P �
�kAP�� follows as above�

Furthermore� P�kAP� � �P� i� P�� P� � �P�� hence by ind� in both cases P �
�kAP

�
� � �P��

P �
�kAP� � �P� resp�

Rel� If P ��	
a
� P ���	� then P

c
� P � for some c � ����a�� hence by ind� P � � �P�

thus P ���	 � �P� Furthermore� by ind�� R�b� P ��	� � minfR�c� P � j c � ����b�g �
minfR�c� P �� j c � ����b�g � R�b� P ���	�� Additionally� by ind�� P ���	 � �P� if
P � �P��

Rec� If �X�P
a
� P � then P � 
 P ��f�X�P�Xg and P

a
� P �� for some P ��� Now by

ind� P �� � �P� since P � �P� and P ��f�X�P�Xg � �P� since �X�P � �P�� hence
P � � �P� � �P� Since �X�P� P � � �P�� we have furthermore for all b � A�� �
R�b� �X�P � � R�b� P �� � ��

�� Induction on the structure of P �the additional property for �d now follows with
De�nition ������

Clear for � and X � ��
Pref� ha� �i�P

�
�c ha� �i�P � �P� and ha� �i�P

�
�c ha� �i�P � �P�� since P � �P��

Sum� If P� � P�
�
�c P

�
� � P �

� then P�
�
�c P

�
� and P�

�
�c P

�
� where P�� P� � �P� � �P� � �P�

hence by ind� P �
�� P

�
� � �P�� thus P �

� � P �
� � �P��

Par� Rel� similarly to Sum�

Rec� If �X�P
�
�c P

� then P � 
 P ��f�X�P�Xg and P
�
�c P

�� for some P ��� Now P �� � �P�

by ind� and by Lemma �� �� X is guarded in P ��
 furthermore� �X�P � �P� and for
any subterm ha� ri�Q of P �� we have Q � �P�� hence Qf�X�P�Xg � �P�� and thus
P � 
 P ��f�X�P�Xg � �P��



� 

�� Induction on the structure of P �
Nil� � � �P� and P� 
 �

�
�d �� thus w � ��

Var� If P 
 X � �� then P� 
 h�� �i�X � �P� and P�
�
�d h�� �i�X

�
�d X�

Pref� For P 
 ha� �i�Q � �P� we may choose P� 
 h�� �i�ha� �i�Q � �P� with P�
�
�d

h�� �i�ha� �i�Q
�
�d P �

For P 
 ha� �i�Q � �P� we have Q � �P�� hence we may choose P� 
 ha� �i�Q � �P�

with P�
�
�d P � thus w � ��

Sum� If P 
 Q�R � �P�n �P�� then P� 
 h�� �i��Q�R� � �P� with P�
�
�d h�� �i��Q�R�

�
�d

P �
If P 
 Q � R and Q�R � �P�� then there are by ind� and the additional property

Q�� R� � �P� with Q�
�
�d Q and R�

�
�d R
 hence P� 
 Q� �R� � �P� and P�

�
�d P

by rule Sumc� thus w � ��
Par� For P 
 QkAR with Q�R � �P there are by ind� Q�� R� � �P�� and u� v � f�g��

such that Q�
�
�d Q

� u
�d Q and R�

�
�d R

� v
�d R� Since Q�� R� � �P�� we have also

�Q�kAR�� � �P�� hence P� 
 Q�kAR�
�
�d Q�kAR� by rule Parc� Now by iterated

application of rule Para�� Q�kAR� u
�d QkAR� v

�d QkAR� hence P�
�uv
�d P � If P � �P��

then also Q�R � �P�� hence by induction u � v � �� thus w � uv � ��

Rel� For P 
 Q��	 there are by ind� Q� � �P� and w � f�g� such that Q�
�
�d Q

� w
�d Q�

Since Q� � �P� we have P� 
 Q���	
�
�d Q

���	 with �� and rule Relc� Now by iterated
application of rule Rela exploiting the condition ��� � � � on general relabelling

functions� we get Q���	
w
�d Q��	� hence P�

�w
�d P � If P � �P�� then also Q � �P��

hence w � � by induction�

Rec� �X�P � �P�� hence P� 
 h�� �i��X�P � �P� and P�
�
�d h�� �i��X�P

�
�d �X�P �

�� If R�a� P � � � we may choose P � 
 P and w � � and are done� Hence assume �by
��� in the following R�a� P � � �� in particular P is not � or X � � or �X�Q� We perform
induction on the structure of P �
Pref� ha� �i�Q

a
�d Q � �P� � �P� hence we may choose w � a�

Sum� For P 
 Q � R there are by ind� Q�� R� � �P and u� v � fag�� such that Q
u
�d Q

�

and R
v
�d R

� with R�a�Q�� � R�a�R�� � � and by assumption uv �� �� If w�l�o�g�
u �� �� then P 
 Q�R

u
�d Q

� 
 P � with R�a� P �� � � and w � u�
Par� For P 
 QkAR there are by ind� Q�� R� � �P and u� v � fag�� such that Q

u
�d Q

�

and R
v
�d R

� with R�a�Q�� � R�a�R�� � ��
If a �� A� then by iterated application of rule Para�� P 
 QkAR

u
�d Q�kAR

v
�d

Q�kAR� 
 P � with R�a� P �� � � and we may choose w � uv�
If a � A� let w�l�o�g� juj � jvj
 then by iterated application of rule Para�� P 

QkAR

u
�d Q

�kAR
�� 
 P � with R�a� P �� � � since R�a�Q�� � �� and we may choose

w � u�
Rel� Let P 
 Q���	 and B � ����a� � A�Q��
 B � fb�� � � � � bng is �nite since A�Q�� is

�nite� By induction� for i � �� � � � � n� there are Qi � �P and vi � fbig� such that
Qi��

vi�d Qi and ���j�i R�bj� Qi� � � by ��� hence �b�B R�b�Qn� � �� Furthermore�
�� and Proposition ����� imply �b�����a�nB R�b�Q�� � � � R�b�Qn�� Hence for

w � fag� with jwj �
Pn

i�� jvij we have P 
 Q���	
w
�d Qn��	 
 P � with R�a� P �� �

minfR�b�Qn� j b � ����a�g � �� ���
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Proposition ��� states technical properties of �discrete� process terms and discrete behaviour

they are crucial in the proofs of many further developments and are gathered in a more
readable manner in Corollary ��� below�

First� in ������ we ascertain that the residual time of �actions in� process terms is always either
� or �� re�ecting that process terms can perform either no time a step or a unit time step�
Properties �� and �� ensure that discrete behaviour of a process term yields a process term
again� validating the match between the operational De�nition ��� of discrete behaviour and
the syntactical De�nition ��� of discrete process terms� Additionally� occurrence of actions
can only increase the residual time of �actions in� a process term� Properties �� and �� are of
rather technical nature� but their statements are of intuitive interest� too� any process term

is reachable from an initial process term by a
�
�d step only� and repetition of a single action

will eventually yield a process term� in which this action is not urgent any more� This will
be important when characterizing the testing preorder in the next section�

Corollary ���

�� The set �P contains exactly those process terms that are reachable from some initial
process term P � �P� by only discrete behaviour�

�� The set �P� contains exactly those process terms that are reachable from some initial
process term P � �P� by performing only a ��time�step�

�� For each process term P � �P there is a discretely reachable successor P � � �P with
R�P �� � ��

�� All three results above hold true for respective processes either�

�� Let P � P be a process and P
w
�d P

� for some w � DL�P �� Then for each R � R�
�

there is a w� � DL�P �� �hence ww� � DL�P ��� such that ��ww�� 
 R�

Proof�
�� By Proposition ������ �� and ���

�� By Proposition ����� and ���

�� By iterated application of Proposition ������ since A�P � is �nite�

�� �P is closed under �d and Pc is closed under �c� hence under �d� thus P � �P �Pc

is closed under �d�

�� Let P
w
�d P � and R � R�

� � Then P � w�

�d P �� for some P �� with RT�P ��� � � by ��

and ��� hence P �� �
�d P

��� for some P ��� by Proposition ������� thus ww�� � DL�P � with
��ww��� � ��w���� Now either ��ww�� 
 R� or we proceed analogously with P ���� ���

From Corollary ����� follows that the set of processes is closed under discrete behaviour�
i�e� P � P and P

w
�d P � for some w � DL� �P � implies P � � P again� Furthermore�

Corollary ����� states that at least discrete behaviour never yields a time stop� Theorem ���
will indicate that this is su�cient also for our de�nition of c�timed tests to make sense�

So far� we only know that discrete behaviour of an initial process is part of its continuous
behaviour� viz DL�P � � CL�P �� We now aim to show that discrete behaviour already
contains enough information for checking P wc Q for testable P and Q� For this purpose�
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we will map each continuous trace of an initial �c��process to a discrete trace of the same
process� Related traces will exhibit the same behaviour� but at di�erent points in time� We
�rst relate the intermediate c�processes reached when performing such traces�

De�nition ��� progress preorder of c�process terms

The progress preorder is the least ternary relation ��� � �Pc �T� �Pc� satisfying�

�� Nil� � �� � for all � � T
�� Var� X �� X for all � � T
�� Pref� ha� r�i�P �� ha� r�i�P if r� � r� � �
�� Sum� P� � P� �� Q� �Q� if �i���� Pi �� Qi

�� Par� P�kAP� �� Q�kAQ� if �i���� Pi �� Qi

�� Rel� P ��	 �� Q��	 if P �� Q
 � Rec� a� �X�P �� �X�P

b� P �f�X�P�Xg �� �X�P if P � �� P
c� �X�P �� P

�f�X�P�Xg if P �� P
� ���

Intuitively� P �� Q means that P and Q are essentially identical up to the values of timers�
and if P is ahead of Q� then for at most time �� However� Q may be ahead of P for an
arbitrary amount of time� which is realized locally in the Pref�case� where we allow r� 	 r��

In cases Rec b� and c�� �X�P and P �f�X�P�Xg are regarded as structurally identical in
two speci�c situations
 this is necessary to make Proposition ������a� below true� if P 

�X�R �� �X�R 
 Q and Q makes a time step� then only for Q recursion is unfolded by rule
Recc� An alternative would have been permitting � time steps in the discrete behaviour�
which we have reprobated for the sake of compactness� since they only alter recursive terms
and blow up discrete traces unnecessarily�

Proposition ���

For c�process terms P�Q�R � �Pc and �� �� � T let P �� Q� Furthermore� let a � A�� �
X � � and �� ��� �� � T�

�� P �� P for all P � �Pc�

�� X is guarded in P i� X is guarded in Q�

�� A�P � � A�Q��

�� R�a�Q��R�a� P � � �� in particular R�Q��R�P � � ��

�� If � � ��� then P ��� Q�

�� PfR�Xg �� QfR�Xg�

 � If P
a
� P �� then there exists Q� such that Q

a
� Q� and P � �� Q

�� and vice versa�

�� a� If P
�
�c P

� and � � � � �� then P � ���� Q�

b� If Q
�
�c Q

� and � � � � �� then P ���� Q
��

c� If P
���c P

�� Q
���c Q

� and � � � � �� � �� � �� then P � �������� Q
��

�� In all three cases of ��� �c may be replaced by�c�



��

Proof�
�� Induction on the structure of P �

�� Induction on the inference of P �� Q
 only the Rec�cases � �� are non�trivial�
a� Clear�
b� X guarded in �Y�P i� X guarded in P i� �ind�� X guarded in P � i� X guarded in
P �f�Y�P�Y g� �For the last �i��� observe for ��� that Y is guarded in P � hence in P �

by ind�� so all occurrences of X in �Y�P are guarded in P �f�Y�P�Y g� Observe for ���
and X 
 Y that again Y is guarded in P � hence in P � by ind��

c� Analogously to b��

�� Induction on the inference of P �� Q
 in the Rec�cases observe that X is guarded in
P and apply �� and Proposition ������

�� We perform induction on the inference of P �� Q�

If P 
 Q 
 � or P 
 Q 
 X� then �a�A�� R�a�Q� � R�a� P � � � � � � �� since
A�P � � A�Q� � �� Now�
Pref� ha� r�i�P �� ha� r�i�P � r� � r� � �� �a��A�� R�a�� ha� r�i�P ��R�a�� ha� r�i�P � �

r� � r� � � � R�a�� ha� r�i�P ��R�a�� ha� r�i�P � � � � � � ��
Sum� P� � P� �� Q� �Q� � �i���� Pi �� Qi � �a�A���i���� R�a�Qi��R�a� Pi� � � �

�a�A�� R�a�Q� �Q���R�a� P� � P�� � mini����R�a�Qi��mini����R�a� Pi� � ��
Par� P�kAP� �� Q�kAQ� � �i���� Pi �� Qi � �a�A���i���� R�a�Qi� �R�a� Pi� � � �

�a�A�� maxi����R�a�Qi��maxi����R�a� Pi� � � � mini����R�a�Qi��mini����R�a�
Pi� � �� �a�A��R�a�Q�kAQ���R�a� P�kAP�� � ��

Rel� P ��	 �� Q��	� P �� Q� �a�A�� R�a�Q��R�a� P � � �
� �a�A�� minb�����a�R�b�Q��minb�����a�R�b� P � � �
� �a�A�� R�a�Q��	��R�a� P ��	� � ��

Rec� a� R��X�P � �R��X�P � � � � ��
b� Since X is guarded in P � it is guarded in P � by ��� hence R�a� P �f�X�P�Xg� �
R�a� P �� by Proposition ������ Now R�a� �X�P ��R�a� P �f�X�P�Xg� � R�a� P �
�R�a� P �� � � by ind�

c� Analogously to b��

For the additional property we can either choose a � A�P � � A�Q� with R�P � � R�a� P �
and get R�Q� �R�P � � R�a�Q��R�a� P � � �� or we have A�P � � A�Q� � � and by
Proposition ������ R�Q��R�P � � �� � � ��

�� Induction on the inference of P �� Q
 in particular� r��r� � � � �� in De�nition ������

�� Induction on the inference of P �� Q
 the case P 
 Q is covered by �� and ��� and
covers Nil� Var and Rec a��
Pref� ��P �� ��P depends on �� � and � only� hence ���P �fR�Xg 
 ���PfR�Xg� ��

���PfR�Xg� 
 ���P �fR�Xg�
Sum� Par� Rel� straightforward induction by �distributivity� of substitution�
Rec� b� Y is not free in P �f�Y�P�Y g and �Y�P � hence assume X �
 Y 
 then by Baren�

dregt convention P �f�Y�P�Y gfR�Xg 
 P �fR�Xgf�Y�PfR�Xg�Y g� Now
P � �� P implies P �fR�Xg �� PfR�Xg by ind�� hence �P �fR�Xg�f�Y�PfR�Xg
�Y g �� �Y��PfR�Xg� 
 ��Y�P �fR�Xg�

c� Analogously to b��



��

	� Induction on the inference of P
a
� P ��

Nil� �
a
� for no a � A�� �

Var� X
a
� for no a � A�� and no X � ��

Pref� Let ha� r�i�P �� ha� r�i�P 
 then ha� r�i�P
a
� P and ha� r�i�P

a
� P and P �� P by

��� hence P �� P by ��
Sum� Par� Rel� straightforward induction�
Rec� a� Clear�

b� X is guarded in P and also in P � by ��

On the one hand� P �f�X�P�Xg
a
� R only if �by Proposition ������


P �� � P � a
� P �� � R 
 P ��f�X�P�Xg only if �by ind��


P ��� P ��� � P
a
� P ��� � P �� �� P

��� � R 
 P ��f�X�P�Xg
only if �by Rule Reca and ���

P ��� P ��� � �X�P

a
� P ���f�X�P�Xg � R 
 P ��f�X�P�Xg �� P

���f�X�P�Xg�

On the other hand� �X�P
a
� R only if �by rule Reca�


P ��� � P
a
� P ��� � R 
 P ���f�X�P�Xg only if �by ind��


P ��� P ��� � P � a
� P �� � P �� �� P

��� � R 
 P ���f�X�P�Xg
only if �by Proposition ����� and ���

P ��� P ��� � P �f�X�P�Xg

a
� P ��f�X�P�Xg �� R 
 P ���f�X�P�Xg�

c� Analogously to b��


�a� By De�nition ����� it su�ces to show P
�
�c P

� � � � � � � � P � ���� Q by
induction on the overall size of P and Q �where the size is the number of operators� also
counting �X��

Clear for � and X�
Pref� ha� r�i�P �� ha� r�i�P � r� � r� � �� We distinguish two cases�

i� � � r��

then ha� r�i�P
�
�c ha� r� � �i�P and

r� � r� � �� r� � �r� � �� � r� � r� � � � � � �� ha� r� � �i�P ���� ha� r�i�P �
ii� � 
 r��

then ha� r�i�P
�
�c ha� �i�P and

r� � r� � �� r� � � � r� 	 � � �� r� � � � � � �� ha� �i�P ���� ha� r�i�P �
Sum� Par� Rel� straightforward induction�
Rec� a� �X�P

�
�c R due to R 
 P ��f�X�P�Xg and P

�
�c P

�� for some P �� by rule Recc�
Hence P �� P implies P �� ���� P by ind� and thus P ��f�X�P�Xg ���� �X�P by
De�nition ���� �b��

b� P �f�X�P�Xg
�
�c R implies by �� and Lemma �� �� that 
P �� � P � �

�c P
�� and

R 
 P ��f�X�P�Xg� Hence by ind� P �� ���� P � such that R ���� �X�P by
De�nition ���� �b�� Note that P � has at most the size of P �f�X�P�Xg� and the
sizes might be equal if P � does not contain a free X
 but in any case� P has a
smaller size than �X�P and� thus� induction is applicable�

c� Similar to a� with induction and ��


�b� Similar to ��a�� We only consider the Pref�case�
ha� r�i�P �� ha� r�i�P � r� � r� � �� We distinguish two cases�
i� � � r��

then ha� r�i�P
�
�c ha� r� � �i�P and



��

r� � r� � � � �r� � ��� r� � r� � r� � � � � � �� ha� r�i�P ���� ha� r� � �i�P �
ii� � 
 r��

then ha� r�i�P
�
�c ha� �i�P and

�� r� � � � � � �� ha� r�i�P ���� ha� �i�P �


�c� If �� �� � �� we get P � ����� Q by ��a� and P � �������� Q
� by � � �� ��� �� and

��b�� Otherwise� P
���
�c P

�� �
�c P

� with � � �� � � � � by Lemma �� ��� Now P �� �� Q by
��a�� P �� ����� Q

� by ��b� and P � �������� Q
� by ��a� again�

�� By the proof of �� ���

Proposition ��� provides the elements for emulating each continuous trace of an initial process
by a discrete trace that exhibits the same behaviour but consumes more time�

Lemma ��	

Let P � P� be an initial process
 then for each w � CL�P � there is a v � DL�P �� such
that act�v� � act�w� and ��v� � ��w��

Proof�
We will construct for each w � CL��P � a v � DL� �P �� such that act�v� � act�w� and
��v� � ��w�
 furthermore� we will show that for Pw and Pv reached after w and v we
have Pv �	�v��	�w� Pw
 by Corollary ������ this will imply Pv � P� Then w�� � CL�P ��
v�� � DL�P �� act�v�� � � act�w�� � and ��v�� � � ��v� � ��w� � ��w�� ��

The proof is by induction on jwj� where for w � � we can choose v � �
 then P �� P by
Proposition ������ hence Pv ���� Pw�

Hence� assume that for w � CL��P � we have constructed v � DL� �P � as desired and con�
sider w� � w
 � CL��P �� We denote the processes reached after w� and the corresponding
v� by Pw� and Pv� �

If 
 � a � A�� then v� � va with act�v�� � act�w�� and ��v�� � ��v� � ��w� � ��w���
We have Pw

a
� Pw� and by Proposition ���� � there is a Pv� such that Pv

a
� Pv� and

Pv� �	�v��	�w� Pw� � i�e� Pv� �	�v���	�w�� Pw� �

Now let 
 � � � T� If � � ��v� � ��w� we choose v� � v
 obviously� act�v�� � act�w���
��v�� � ��v� � �� ��w� � ��w��� Furthermore� ��v�����w�� � ��v����w��� � �� hence
Pv �	�v��	�w� Pw and Proposition ������b� yield Pv� 
 Pv �	�v���	�w�� Pw� �

If on the other hand � 
 ��v� � ��w�� we choose v� � v�� With Proposition ������
from Pv �	�v��	�w� Pw we conclude R�Pv� � ��v� � ��w� � R�Pw� and R�Pw� � � 

��v�� ��w� by De�nition ����� i�e� R�Pv� 
 � and R�Pv� � � by Proposition ������ now
by Proposition ������ Pv is guarded i� Pw is guarded� and Pw is guarded by De�nition ����
and Lemma �� ��
 hence by Proposition ������� the time step � is allowed after v and v� �
v� � DL� �P � with act�v�� � act�w��� Furthermore� ��v�� � ��v� � � � ��w� � � � ��w���
and �nally� � � � and � � ��v����w� give � � ��v����w������ and ��v����w� 	 � gives
��v�� ��w� � �� � � �
 so with Proposition ������c� we conclude Pv� �	�v��	�w����� Pw� �
i�e� Pv� �	�v���	�w�� Pw� � �� 

With this emulation result we can restrict attention to discretely timed testing based on
discrete behaviour and discrete time bounds�
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De�nition ��
 discretely timed tests

For a testable process P � P�� an observer O � P� and D � N� de�ne P mustd �O�D��
if each w � DL���PkAO�� with ��w� 
 D contains some �� The relation wd is de�ned
accordingly� ���

We now give our �rst main result� although wd is based on fewer tests and much more
restricted behaviour than wc� it turns out that both relations de�ne the same e�ciency
preorder� By this� we have also reached simplicity� we can now work with a CCS�like untimed
algebra� extended syntactically by urgent terms �see De�nition ���� and semantically by ��
time�steps�

Theorem ���

The relations wc and wd coincide� ���

Proof�
Let P and Q be testable processes� O an observer and R � R�

� � We �rst show

P mustc �O�R� � P mustd �O� bRc�

Assume P �mustc �O�R�
 then there is a w � CL���PkAO� without � and ��w� 
 R
 now
by Lemma �� � there is a v � DL���PkAO� without � and ��v� � ��w� 
 bRc� hence
P �mustd �O� bRc�� Now assume P �mustd �O� bRc�
 then there is a w � DL���PkAO�
without � and ��w� 
 bRc� hence ��w� � bRc�� 
 R
 since DL���PkAO� � CL���PkAO��
the same w causes P �mustc �O�R��

With this result we conclude � �O�R� � Q mustc �O�R� � P mustc �O�R� i� � �O�R� �
Q mustd �O� bRc� � P mustd �O� bRc�� hence P wc Q i� P wd Q�

Checking P wc Q now reduces to checking P wd Q� But as for testing in general� it is
impossible to apply the de�nition of wd directly� since there are still in�nitely many discretely
timed tests to apply� And as indicated in Section �� we cannot decide P wd Q from DL�P �
and DL�Q� only� since DL���PkAO� generally cannot be determined from DL�P � and DL�O�
alone� e�g� synchronization allows activated actions in one component to wait for a partner
in the other one� which is not the case in stand�alone behaviour of a single component�
recorded in DL�P �� DL�O� resp� Technically� DL�inclusion is not a precongruence for parallel
composition� Thus� in the next section we will re�ne the discrete language to a kind of
refusal traces� ful�lling the precongruence criterion� Refusal traces of a testable process will
allow us to characterize the preorder wd denotationally� where we also need the following
result� stating that the number of di�erent actions ever performable by a process is �nite�

De�nition ���� semantic sort of a process

For a c�process P � Pc let �c�P � � fa � A�� j 
w � CL� �P �� P � � Pc � P
w
�c P

� a
�cg

be the continuous semantic sort of P � and �d�P � � fa � A�� j 
w � DL� �P �� P � � Pc �
P

w
�d P

� a
�dg � �c�P � be the discrete semantic sort of P � ����
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Proposition ����

Let P � Pc�

�� A�P � � �d�P �

�� For each w � CL��P � there is a v � DL��P � with act�v� � act�w� and no time steps�

�� �c�P � and �d�P � coincide and will both be denoted by ��P � �semantic sort of P ��

�� ��P � is �nite�

Proof�
�� Clear�

�� We construct an adequate v performing induction on jwj and show additionally that
for Pw and Pv reached after w and v resp� we have Pv �� Pw�

By Proposition ������ P �� P � and by Proposition ����� P �� P � hence we are done for
w � �� Thus assume there is an adequate v for a given w and Pv �� Pw�

If w� � wa for a � A�� � then by Proposition ���� � Pw
a
� Pw� and Pv

a
� Pv� for some Pv�

such that Pw� �� Pv� � hence we have va � DL��P �� and there is no time step in va since
there is none in v�

If w� � w� for � � T� then Pw
�
�c Pw� and by Proposition ������b� and � � � � ��

Pv ���� Pw� � hence by Proposition ����� Pv �� Pw� � thus we may choose v� � v�

�� �d � �c by de�nition� and we are done by ��

�� For a general relabelling function � let ib��� � fa � A�� j � �� ����a� �� fagg
�image base of ��
 by de�nition� ib��� is �nite� Furthermore� let
L�P � � fa � A�� j a occurs in P g �

S
� occurs in P ib���

be the syntactic sort of P � where occurrence means being part of the syntatic structure of
P � This de�nition yields L�PfQ�Xg� � L�P ��L�Q�� which will be used in the Rec�case
below� Obviously L�P � is �nite
 we show ��P � � L�P � and are done�

By Proposition ������ P
a
� i� a � A�P �� and by �� and �� it su�ces to show by induction

on the structure of P that A�P � � L�P � and that P
a
� P � implies L�P �� � L�P ��

Clear for � and X � ��
Pref� A�a�P � � fag � fag � L�P � � L�a�P �
 furthermore� a�P

a
� P and L�P � �

fag � L�P � � L�a�P ��
Sum� By ind� A�P� � P�� � A�P�� �A�P�� � L�P�� � L�P�� � L�P� � P��
 furthermore�

P� � P�
a
� P � implies w�l�o�g� P�

a
� P �� hence by ind� L�P �� � L�P�� � L�P�� �

L�P�� � L�P� � P���
Par� Analogously to Sum�
Rel� Let a � A�P ��	� � ��A�P ��
 if a � ib���� then a � L�P ��	�� otherwise ����a� �

fag and a � A�P � � L�P � � L�P ��	� by induction and de�nition� Furthermore�

P ��	
a
� P ���	 implies P

b
� P � for some b � A�� with ��b� � a� hence by ind�

L�P �� � L�P �� thus L�P ���	� � L�P �� � ib��� � L�P � � ib��� � L�P ��	��
Rec� By ind� A��X�P � � A�P � � L�P � � L��X�P ��

Furthermore� �X�P
a
� P �f�X�P�Xg implies P

a
� P �� hence by ind� L�P �� � L�P ��

thus L�P �f�X�P�Xg� � L�P �� � L��X�P � � L�P �� ����
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� Characterization

As a consequence of the last section� from now on we let w denote the �coinciding� preorders
wc and wd� Furthermore� we will merely deal with discrete processes and their discrete
behaviour�

We �rst modify the SOS�rules for wait�time as follows� we only allow unit time steps and
record at each time step a so�called refusal set ! of actions which are not waiting
 i�e� these
actions are not urgent� they do not have to be performed and can be refused at this moment�
Note that additionally and in contrast to passage of wait�time we now prohibit passage of
time if there are urgent � �s� This time semantics is also a relaxation of �discrete� idle time�
when a unit time step occurs� all actions in ! � f�g are treated correctly w�r�t� passage of
idle time�

De�nition ��� SOS�rules for refusal of actions

Via the following SOS�rules� a ternary relation �r� � �P��A� � �P� is de�ned inductively�
where !�!i � A��

Nilr
�

�
�r �

Prefr�
a�P

�
�r a�P

Prefr�
a �� ! � f�g

a�P
�
�r a�P

Parr
�i���� Pi

�i�r P
�
i � ! � �A �

S
i����!i� � ��

T
i����!i� nA�

P�kAP�
�
�r P

�
�kAP

�
�

Sumr

�i���� Pi
�
�r P

�
i

P� � P�
�
�r P

�
� � P �

�

Relr
P

������f�g�nf�g
�r P �

P ��	
�
�r P

���	
Recr

P
�
�r P

�

�X�P
�
�r P

�f�X�P�Xg

For process terms P�P � � �P� we write P
�
�r P

� if �P�!� P �� ��r and call this a time

step� We write P
�
�r� if there exists a P �� � �P such that �P�!� P ��� ��r� ���

By Proposition ����� below� the set of possible refusal sets at a time step is downward closed
w�r�t� set inclusion� and by ��� not activated actions can always be refused� Proposition �����
provides the link between time steps and unit�time�waiting� unit�time�idling resp� Finally�
Proposition ����� is an element needed in the treatment of recursion �Section ��� stating
that guarded subterms of a process term are not a�ected by or involved in time steps or
occurrence of actions�

Proposition ���

Let P�Q�R � �P be process terms� let !�!� � A�� let X � � and let 
 � �A�� � �A� ��

�� If P
�
�r Q and !� � !� then P

��
�r Q�

�� If P
�
�r Q and P

��
�r R� then Q 
 R�

�� If P
�
�r Q and !� � A�P � � �� then P

����
�r Q�
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�� P
�
�r Q if and only if P

�
�c Q and �a���f�g R�a� P � � ��

in particular P
A��r Q if and only if P

�
�d Q�

�� Let X be guarded in P � Then PfQ�Xg
�
�r R if and only if there exists P � � �P

with P
�
�r P

� and R 
 P �fQ�Xg�

Proof�

�� Induction on the inference of P
�
�r using !� � !�

Nil� �
�
�r � and �

��
�r � for all !� � ! � A��

Var� Clear�
Pref�� analogously to Nil�

Pref�� !� � ! � a�P
�
�r a�P � !� � ! � a �� ! � f�g � a �� !� � f�g � a�P

��
�r a�P �

Sum� !� � ! � P� � P�
�
�r Q� � Q� � !� � ! � P�

�
�r Q� � P�

�
�r Q� � P�

��
�r

Q� � P�
��
�r Q� � P� � P�

��
�r Q� �Q��

Par� !� � ! � P�kAP�
�
�r Q�kAQ� � !� � ! � �A �

S
i����!i� � ��

T
i����!i� n A� �

�i���� Pi
�i�r Qi � P�kAP�

��
�r Q�kAQ��

Rel� !� � ! � P ��	
�
�r Q��	 � ����!� � f�g� n f�g � ����! � f�g� n f�g �

P
������f�g�nf�g

�r Q� P
�������f�g�nf�g

�r Q� P ��	
��
�r Q��	�

Rec� !� � ! � �X�P
�
�r Q� 
P � � !� � ! � P

�
�r P

� � Q 
 P �f�X�P�Xg � 
P � �

P
��
�r P

� � Q 
 P �f�X�P�Xg � 
P � � �X�P
��
�r P

�f�X�P�Xg 
 Q�

�� Induction on the inference of P
�
�r Q� P

��
�r R resp�

�� Induction on the inference of P
�
�r Q using !� � A�P � � ��

Nil� �
�
�r � and �

����
�r � for all !� � A��

Var� Clear�
Pref�� analogously to Nil�

Pref�� !� � A�a�P � � � � a�P
�
�r a�P � !� � fag � � � �! � f�g� � fag � � �

��! � !�� � f�g� � fag � � � a�P
����
�r a�P �

Sum� !� � A�P� � P�� � � � P� � P�
�
�r Q� � Q� � !� � A�P�� � � � !� � A�P�� �

� � P�
�
�r Q� � P�

�
�r Q� � P�

����
�r Q� � P�

����
�r Q� � P� �P�

����
�r Q��Q��

Par� P�kAP�
�
�r Q�kAQ� � ! � �A�

S
i����!i����

T
i����!i�nA� � �i���� Pi

�i�r Qi and
from !� � A�P�kAP�� � � we have to conlude !� � �A �

S
i����!i� � ��

T
i����!i� n

A�� By induction� we may assume the !i to be maximal w�r�t� to the considered
property� i�e� we may assume �a�A� a �� A�Pi�� a � !i
 now !� �A�P�kAP�� � �
and a � !��A implies a �� A�P���A�P��� hence a �

S
i����!i� and a � !�nA implies

a �� A�P���A�P��� thus a �
T
i����!i� yielding !� � �A�

S
i����!i����

T
i����!i�nA��

Rel� !� � A�P ��	� � � � P ��	
�
�r Q��	 � P

������f�g�nf�g
�r Q � !� � ��A�P �� �

�� Now !� � ��A�P �� � � � ������ � � � ����!� � ��A�P ��� � ����!�� �
������A�P ��� � ����!���A�P �� ����!���A�P � � � � ����!��nf�g�A�P � �
� and ����!�� n f�g � ����! � f�g� n f�g � �����! � !�� � f�g� n f�g� hence by

induction P
�����������f�g�nf�g

�r Q� thus P ��	
����
�r Q��	�

Rec� !� � A��X�P � � � � �X�P
�
�r Q � 
P � � !� � A�P � � � � P

�
�r P � �



� 

Q 
 P �f�X�P�Xg � 
P � � P
����
�r P � � Q 
 P �f�X�P�Xg � �X�P

����
�r

P �f�X�P�Xg 
 Q�

�� Induction on the structure of P �
Nil� �

�
�r � and �

�
�c � and �a���f�gR�a��� � � for all ! � A��

Var� For all X � � and ! � A�� neither X
�
�r nor X

�
�c�

Pref� a�P
�
�r a�P and a�P

�
�c a�P and �a����f�g R�a�� a�P � � ��

a�P
�
�r a�P i� a �� ! � f�g i� a�P

�
�c a�P � �a����f�g R�a�� a�P � � ��

Sum� P� � P�
�
�r Q� �Q� i� �i���� Pi

�
�r Qi i�

�i���� �Pi
�
�c Qi � �a���f�gR�a� Pi� � �� i�

�i���� Pi
�
�c Qi � �a���f�g mini���� R�a� Pi� � � i�

P� � P�
�
�c Q� �Q� � �a���f�gR�a� P� � P�� � ��

Par� P�kAP�
�
�r Q�kAQ� i�


!��!� � ! � �A �
S
i����!i� � ��

T
i����!i� nA� � �i���� Pi

�i�r Qi i�


!��!� � �i���� �Pi
�
�c Qi � �a��i�f�gR�a� Pi� � �� �

! � �A �
S
i����!i� � ��

T
i����!i� nA� i�

P�kAP�
�
�c Q�kAQ� �


!� � fa � A� jR�a� P�� � �g�!� � fa � A� jR�a� P�� � �g �
�i�����a��i�f�gR�a� Pi� � �
�i�e�� �a�

S
i����

�i�f�g
maxi����R�a� Pi� � � � �a�

T
i����

�i�f�g
mini����R�a� Pi� � �� �

! � �A �
S
i����!i� � ��

T
i����!i� nA� i�

P�kAP�
�
�c Q�kAQ� �

�a����f�g��A maxi����R�a� Pi� � � � �a����f�g�nA mini����R�a� Pi� � � i�

P�kAP�
�
�c Q�kAQ� � �a���f�g R�a� P�kAP�� � ��

Rel� P ��	
�
�r Q��	 i� P

������f�g�nf�g
�r Q i�

P
�
�c Q � a � ����! � f�g�� R�a� P � � � i�

P ��	
�
�c Q��	 � b � ! � f�g � mina�����b�R�a� P � � � i�

P ��	
�
�c Q��	 � �b���f�g R�b� P ��	� � ��

Rec� �X�P
�
�r P

�f�X�P�Xg � P
�
�r P

� i� P
�
�c P

� � �a���f�gR�a� P � � � i� �X�P
�
�c

P �f�X�P�Xg � P
�
�c P

� � �a���f�gR�a� �X�P � � ��

The additional property follows with De�nition ��� of R�P � and A�P � � A�� and De��
nition �����

�� If 
 � a � A�� � we are done by Proposition ������ hence let 
 � ! � A�� Then

PfQ�Xg
�
�r R i� PfQ�Xg

�
�c R and �a���f�gR�a� PfQ�Xg� � � by �� i� P

�
�c P

�

for some P � such that R 
 P �fQ�Xg and �a���f�gR�a� P � � � by Lemma �� �� and

Proposition ����� i� P
�
�r P

� and R 
 P �fQ�Xg by �� again� ���

Combining time steps and occurrence of actions� we now de�ne refusal traces of processes�
which re�ne the discrete language due to Proposition ����� �part ��� as stated in Theorem ����



��

De�nition ��� refusal traces of processes

Let P�P � � P be processes� We write P
�
�r P

�� if either 
 � a � A�� and P
a
� P �� or


 � ! � A� and P
�
�r P

�� For sequences w� we de�ne P
w
�r P

� and P
w
�r P

� analogously
to De�nition �����

For a process P � P� let RT� �P � � fw jP
w
�rg be the � �refusal traces of P � and the set

RT�P � � fw jP
w
�rg be the refusal traces of P �

act�w� and ��w� are extended to elements from RT��P � and RT�P �� i�e� ��w� is the
number of time steps �sets� in w� ���

Theorem ���

Let P�Q � P be processes
 then RT�P � � RT�Q� implies DL�P � � DL�Q��

Proof�

By Proposition ������ P
�
�d P � i� P

A��r P �� hence DL�P � can be gained from those
w � RT�P � where ! � A� for all refusal sets ! in w� replacing A� by �� ���

From now on we denote refusal�trace�inclusion and �equivalence of processes by �r� �r resp�
and lift this relation to process terms as usual via closed substitutions�

De�nition ���

Let P�Q � �P be process terms� We write P �r Q if for all closed substitutions S � � 	� P

where �P 	S� �Q	S � P we have RT��P 	S� � RT��Q	S�� We write P �r Q if P �r Q and
Q �r P � ���

As for discrete traces� we note that the set of processes is closed under performance of refusal
traces� i�e� P � P and P

w
�r P

� for some w � RT� �P � implies P � � P again� The information
on temporal and nondeterministic behaviour of a process provided by refusal traces is very
similar to the one e�g� contained in the �barbs� of TPL �see �HR��	�� But astonishingly� we
will be able to observe this with asynchronous 
 i�e� weak 
 test processes�

For technical reasons� in the following we do not only consider the RT�semantics but also
the RT� �semantics� it will play an important r"ole when deriving the precongruence property
of RT� and RT� �inclusion w�r�t� the recursion operator in Section �� Note that RT��P � does
not only treat � �s like visible actions� additionally� by De�nition ���� all refusal sets ! in a
w � RT��P � implicitly contain � � i�e� in w after a time step an activated � must either occur
or be disabled before the next time step !�

The following developments are concerned with �pre�congruence properties of refusal�trace�
equivalence ��inclusion�� As indicated in Section �� DL�inclusion is not a precongruence for
parallel composition� it does not record runs of a component in which actions are delayed
beyond idle time� which in general is necessary in a parallel composition when waiting for a
communication partner� We �rst show that �� �� refusal traces serve this purpose�

De�nition ��� shu�e of refusal traces w�r�t A

Let u� v � �A�� � �A� �� and A � A
 then ukAv is the set of all w � �A�� � �A� �� such
that for some n u � u� � � � un� v � v� � � � vn� w � w� � � � wn and for all k � �� � � � � n one of
the following cases applies�



��

�� uk � vk � wk � a � A

�� uk � wk � a � A� nA and vk � �

�� vk � wk � a � A� nA and uk � �

�� uk � !u � A�� vk � !v � A�� wk � ! � A� and ! � �A��!u�!v�����!u�!v�nA�

For sets R�� R� � �A�� � �A� ��� we de�ne R�kAR� �
S
fukAv ju � R�� v � R�g� ���

Observe that if �vkAu� �� �� then by �� for all a � A the number of a�s is equal in u� v and
all w� and by �� the number of time steps is equal in u� v and all w�

Theorem ��	

For processes P�� P� � P� we have RT�P�kAP�� � RT�P��kART�P�� and RT� �P�kAP�� �
RT� �P��kART��P��� In particular� both RT�inclusion and RT� �inclusion are precongru�
ences for parallel composition�

Proof�
It su�ces to show the claim for RT�semantics
 the same technique then applies for RT� �
semantics� where � �s are treated like visible actions� Let P 
 P�kAP��

����
Let v � RT�P �� Then there is a w � RT� �P � such that v � w�� � We perform induction
on the length of w and show that if P

w
�r P

�� then there are w� � RT��P�� and w� �
RT� �P�� such that w�� � ��w��� �kA�w��� �� � �RT�P��kART�P���� and 
 furthermore 

if P�

w��r P
�
� and P�

w��r P
�
�� then P � 
 P �

�kAP
�
��

For w � � we choose w� � w� � � such that w�� � � � ��w��� �kA�w��� �� � f�g and
P 
 P � 
 P�kAP� 
 P �

�kAP
�
��

So let w� � w
 and P
w
�r P

� �
�r P

��� Then one of the following cases applies�
�� 
 � a � A � A�� By ind� P � 
 P �

�kAP
�
�� and P �

�kAP
�
�

a
�r P �� i� by rule Para��

P �� 
 P ��
� kAP

��
� � P

�
�

a
� P ��

� and P �
�

a
� P ��

� for some P ��
� � P

��
� � Hence P�

w��r P �
�

a
�r P ��

�

and P�
w��r P

�
�

a
�r P

��
� � thus by ind� and De�nition ����� for w�

� � w�a and w�
� � w�a�

w��� � �wa��� � �w�� �a � ���w��� �a�kA��w��� �a�� � ��w�a��� �kA��w�a��� �� �
��w�

��� �kA�w
�
��� ���

�� 
 � a � A�� nA� By ind� P � 
 P �
�kAP

�
�� and P �

�kAP
�
�

a
�r P

�� i� �w�l�o�g�� by rule Para��
P �� 
 P ��

� kAP
�
� and P �

�
a
� P ��

� for some P ��
� � Hence P�

w��r P
�
�

a
�r P

��
� and P�

w��r P
�
�� thus

we choose w�
� � w�a and w�

� � w�� If a � � � then w��� � w�� and w�
��� � w��� � and

by ind� w�� � ��w��� �kA�w��� ��� If a �� � we observe w�
� � w��
 then by ind� and

De�nition ����� �or �� resp��� w��� � �wa��� � �w�� �a � ���w��� �a�kA��w��� ���� �
���w�a��� �kA��w����� �� � ��w�

��� �kA�w
�
��� ���

�� 
 � ! � A�� By ind� P � 
 P �
�kAP

�
�� and P �

�kAP
�
�

�
�r P �� i� by rule Parr� P �� 


P ��
� kAP

��
� � P

�
�

���r P
��
� and P �

�
�
�r P

��
� for some P ��

� � P
��
� � such that ! � �A � �!� � !��� �

��!� � !�� n A�� hence by ind� and De�nition ������ w��� � �w!��� � �w�� �! �
���w��� �!��kA��w��� �!��� � ��w�!����kA��w�!���� �� � ��w�

��� �kA�w
�
��� ���

����
Let v � �RT�P��kART�P���� Then there are w� � RT�P�� and w� � RT�P�� such that
v � ��w��� �kA�w��� ��� P�

w��r P
�
� and P�

w��r P
�
�� We show for all these w� and w� that



��

there is a w � RT� �P � with w�� � v � RT�P �� and 
 furthermore 
 if P
w
�r P

� for this
w� then P � 
 P �

�kAP
�
�� We perform induction on jw�j� jw�j� For jw�j� jw�j � � we choose

w � � and get P 
 P � 
 P�kAP� 
 P �
�kAP

�
�� We now distinguish several cases�

�� w� � w�
�� � Then w��� � w�

��� � hence v � ��w��� �kA�w��� �� � ��w�
��� �kA�w��� ��� and

by ind� there is a w� with w��� � v� P
w�

�r P
� 
 P �

�kAP
�
�� P�

w�

��r P
�
� and P�

w��r P
�
��

Now by rule Para�� P � �
�r P

�� 
 P ��
� kAP

�
� since P �

�
�
�r P

��
� for some P ��

� � and we may
choose w � w�� since w�� � �w�� ��� � w��� � v�

�� w� � w�
�� � Analogously to ��

�� Neither �� nor �� but w� � w�
�a with a � A � A�� Then v � v�a and w� � w�

�a for
some v�� w�

� by De�nition ������ such that v� � ��w�
��� �kA�w

�
��� ��� Now by ind� there is

a w� with w��� � v� and P
w�

�r P
� 
 P �

�kAP
�
�� where P�

w�

��r P
�
� and P�

w�

��r P
�
�� By rule

Para� and assumption� P � a
�r P

�� 
 P ��
� kAP

��
� where P �

�
a
� P ��

� � P
�
�

a
� P ��

� � and we may
choose w � w�a since w�� � �w�a��� � �w��� �a � v�a � v�

�� Neither �� nor �� but w� � w�
�a with a � A � A�� Analogously to ��

�� Neither �� nor �� but w� � w�
�a with a � A� n A� Then by De�nition ������ v � v�a

for some v� with v� � ��w�
��� �kA�w��� ��� and by ind� there is a w� with w��� � v� and

P
w�

�r P
� 
 P �

�kAP
�
�� where P�

w�

��r P
�
� and P�

w��r P
�
�� By rule Para� and assumption�

P � a
�r P

�� 
 P ��
� kAP

�
� for some P ��

� � and we may choose w � w�a since w�� � �w�a��� �
�w��� �a � v�a � v�

�� Neither �� nor �� but w� � w�
�a with a � A� nA� Analogously to ��

 � Neither �� nor �� but w� � w�
�!� with !� � A�� Then by De�nition ������ v � v�!

and w� � w�
�!� for some v�� w�

� and !�!� such that ! � �A � �!� � !��� � ��!� �
!�� n A� and v� � ��w�

��� �kA�w
�
��� ��� Now by ind� there is a w� with w��� � v� and

P
w�

�r P
� 
 P �

�kAP
�
�� where P�

w�

��r P
�
� and P�

w�

��r P
�
�� By rule Parr and assumption�

P � �
�r P

�� 
 P ��
� kAP

��
� where P �

�
���r P

��
� � P

�
�

���r P
��
� � and we may choose w � w�! since

w�� � �w�!��� � �w��� �! � v�! � v�
�� Neither �� nor �� but w� � w�

�!� with !� � A�� Analogously to  �

The additional property follows since kA is monotonic� consider any R�R�� R� � �A�� �
�A� �� with R� � R�
 then by De�nition ���� RkAR� �

S
fukAv ju � R� v � R�g �S

fukAv ju � R� v � R�g �
S
fukAv ju � R� v � R� n R�g �

S
fukAv ju � R� v � R�g �

RkAR�� �� 

We now show that �� ��refusal�trace�inclusion is also a precongruence for pre�x�

De�nition ��
 pre�x of refusal traces

For R � �A�� � �A� �� and a � A� we de�ne

�� a�R to be the set of all pre�xes of
f!� � � �!na jn � N�� !� � A�� !�� � � � �!n � A� n fagg �R�

�� a�R to be the set of all pre�xes of
f!� � � �!na jn � N�� !�� � � � �!n � A� n fagg �R�

�� ��R � f!� � j! � A�g �R�

�� ��R � R� ���



��

Theorem ���

Let P � P� be an initial process and a � A�� � Then RT�a�P � � a�RT�P � and RT�a�P � �
a�RT�P �� Furthermore� if a �� � � then RT� �a�P � � a�RT��P � and RT��a�P � � a�RT� �P ��
Finally RT� ���P � is the set of all pre�xes of f��!� j! � A�g � RT��P � and RT� �� �P � is
the set of all pre�xes of f�g�RT��P �� In particular� both RT�inclusion and RT� �inclusion
are precongruences for pre�xing of �initial� processes�

Proof�
Using De�nition ���� De�nition ��� and De�nition ��� for a � A�� �

A�a�P � � fag� a�P
a
�r P � a�P

�
�r a�P for all ! � A�� a�P

��
�r a�P if � �� a �� !� � A�

and a�P
a
�r P �

For the additional property consider any R�R�� R� � �A�� � �A� �� with R� � R�
 then
obviously for any w � �A�� � �A� ��� w � R �R� � w � R �R�� and also for all of their
pre�xes� ���

It is worth noting that due to De�nition ����� and Theorem ��� we are not able do �nd a
metric in the domain of sets of refusal traces� for which pre�xing is a contractive function
 this
will rule out application of Banach�s �xpoint theorem when treating recursion in Section ��
We allow � �s as guards for recursion� and they actually gain some visibility in refusal traces
due to time steps� but� however� this is not enough for making �xpoints unique modulo
RT�equivalence� consider P 
 �X���X and Q 
 �X����X � a���
 we have ��XfP�Xg �r P
and ��XfQ�Xg �r Q� but P ��r Q�

For the characterization we will also use the precongruence property of �� ��refusal�trace�
inclusion w�r�t� hiding and relabelling�

De�nition ���� relabelling of refusal traces

Let � be a general relabelling function� a � A�� � ! � A� and de�ne a��	��
� � ����a�

and !��	��
� � f����! � f�g� n f�gg
 we extend ��	��

� to sequences w � �A�� � �A� ��

via concatenation �� We de�ne ��	�� identically� but additionally ���	�� � ����� � n f�g�
��� is again extended to sequences� ����

Theorem ����

For a process P � P and a general relabelling function � we have

�� RT�P ��	� � fw � �A� � �A� �� jw��	�� � RT�P � �� �g
�� RT� �P ��	� � fw � �A�� � �A� �� jw��	��

� � RT� �P � �� �g

Furthermore� both RT�inclusion and RT� �inclusion are precongruences for general rela�
belling P ��	 of processes� in particular for relabelling P �f 	 and hiding P�A�

Proof�
By De�nition ���� De�nition ��� and De�nition ����� For the additional property consider
any R�� R� � �A�� � �A� �� with R� � R�
 then fw � �A�� � �A� �� jw��	��

� � R� �� �g �
fw � �A�� � �A� �� jw��	��

� � R� �� �g and the same holds for ��	��� ����



��

Another property needed for the above mentioned test construction is that � is a zero element
for both choice and parallel composition without synchronisation�

Proposition ����

Let P � �P be a process term
 then P k� � �r P and P � � �r P �

Proof�
Let S � � 	� P be a suitable substitution�

First� �P k� �	S 
 �P 	S k� � and RT��P 	S k� �� � RT��P 	S� k� RT��� by Theorem �� � Now
since by De�nition ��� and De�nition ���� RT��� � f!� � � �!n jn � N� !�� � � � �!n � A�g�
Proposition ����� and De�nition ��� �where only cases � and � apply� since A � �� yield
RT��P 	S� k� RT��� � RT��P 	S��

Second� we show for some v � �A�� � �A� �� by induction on jvj� �P � �	S
v
�r Q if and

only if �P 	S
v
�r Q or �P 	S

v
�r R for some R� such that Q 
 R��� In the base case v � �

we have �P � �	S 
 �P 	S � �


�r �P 	S � � 
 Q and �P 	S



�r �P 	S 
 R� thus Q 
 R � ��

Hence assume the claim to hold for some v and consider v
 with 
 � �A�� � �A� �� Then
�P � �	S

v
�r Q

�
�r Q

� i� by induction either �P 	S
v
�r Q

�
�r Q

� or �P 	S
v
�r R for some

R� such that Q 
 R � �
�
�r Q

�� In the �rst case� we obviously have �P 	S
v�
�r Q

� again�
In the second case� �rst let 
 � a � A�� 
 then R � �

a
�r Q

� i� R
a
�r Q

� by rule Suma�

hence �P 	S
v�
�r Q� again� Now let 
 � ! � A�
 then R � �

�
�r Q� i� by rules Sumr

and Nilr� R
�
�r R

� for some R�� thus �P 	S
v�
�r R

�� such that Q� 
 R� � �� We conclude
RT� ��P � �	S� � RT� ��P 	S�� hence RT��P � �	S� � RT��P 	S� by De�nition ���� ����

Finally� we state that refusal traces can always be extended by a time step �after performing
all urgent internal activity� and that time steps can be omitted�

Proposition ����

Let P�P �� P �� � P be processes� w�w� � �A� � �A� �� and ! � A��

�� w � RT�P � if and only if w� � RT�P ��

�� w!w� � RT�P � implies ww� � RT�P ��

�� If P
w
�r P

�� �r P
� w�

�r� then ww� � RT�P ��

Proof�
�� �if�� clear by De�nition ����
�only�if�� assume P

w
�r P

� for some P � � P
 then by Proposition ����� there is a t � f�g�

such that P � t
�r P

�� for some P �� � P with R��� P ��� � �
 now P �� �
�r by Proposition �����

and Lemma �� �� since P �� is closed� hence guarded� and �nally P
w�
�r by De�nition ����

�� w!w� � RT�P � implies w!w� � �u!v��� for some u!v � RT��P �� Now it su�ces to
show by induction on jvj that u!v � RT� �P � implies uv � RT��P �� where we additionally
show that for P� reached after uv and P� reached after u!v we have P� �� P��

The base case is v � �� hence P
u
�r P� and P� �� P� by Proposition ����� and ��� Then

by Proposition ����� and Proposition ����� and ��b�� P�
�
�r P� implies P� �� P�� Now

assume the property to hold for v�



��

If v� � va for a � A�� � then P�
a
� P �

� for some P �
�� and since P� �� P� by assumption�

Proposition ���� implies P�
a
� P �

� for some P �
�� such that P �

� �� P
�
� again�

If v� � v!� for !� � A�� then P�
��
�r P

�
� for some P �

� i� P�
�
�c P

�
� and for all a � !� � f�g

we have R�a� P�� � � by Proposition ������ Hence� by assumption of P� �� P� and

Proposition ����� and ��c�� P�
�
�c P

�
� for some P �

�� such that P �
� �� P

�
� again
 furthermore

by Proposition ������ for all a � !��f�g we have R�a� P�� � R�a� P���� � R�a� P�� � ��

thus �nally P�
��
�r P

�
� by Proposition ������

�� Clear by De�nition ���� ����

We now have gathered all elements for characterising the e�ciency preorder via refusal�
trace�inclusion� which is our second main result�

Theorem ���� characterization of the testing preorder

Let P�� P� be testable processes� Then P� w P� if and only if P� �r P��

Proof�
By De�nition ��� and De�nition ��� we may assume P�� P� � P��

�if��
Let �O�D� be a timed test� Then RT�P�� � RT�P�� implies DL���P�kAO� � DL���P�kAO�
by Theorem ���� Theorem �� and Theorem ���� Thus� if P� fails the test due to some
w� � DL���P�kAO�� then so does P��

�only if��
We assume P� w P� and take some w� � RT�P��� By De�nition ���� Proposition ����� and
De�nition ����� all actions in w� are in ��P�� � ��P��� Furthermore� by Proposition �����
and ��� we may assume that for all refusal sets ! in w� we have ! � ��P��� ��P��� which
is �nite due to Proposition �������

Now let w � w� if w� � � and w � w�� otherwise
 by Proposition ������� w � RT�P���
too� Furthermore !w � RT���P�� for each ! � ��P�� � ��P�� by Theorem ��� and
De�nition �����
 for technical reasons� we will only consider the case where ! � ��

We will construct a timed test �O�w� ��w�� that is failed by a testable process P � P�

if and only if !w � RT���P �� Hence� P� fails �O�w� ��w��� thus by assumption P� fails
�O�w� ��w��� too� and we conclude !w � RT���P��� But then !w� � RT���P�� by Propo�
sition ������ and w� � RT�P�� or !w� � RT�P�� by Theorem ��� and De�nition ������ i�e�
w� � RT�P�� by Proposition ������� and we are done�

The proof is structured as follows� We �rst give the construction of O�w ���� then we
show that P fails the test �O�w� ��w�� if ��P performs !w ���� and �nally we show that
P fails the test �O�w� ��w�� only if ��P is able to perform !w ���� All three parts are
inductive w�r�t� the structure of w�

���
To make induction work� we de�ne O�w for sequences !w that end with � but may start
with an arbitrary ! � ��P�� � ��P��� Furthermore� all actions of !w are in ��P�� � ��P��
and all refusal sets are subsets of ��P�� � ��P���



��

O�w will consist of several components that communicate via synchronized actions which
must not occur in the sort of P� or P�� Hence� let H � fb�� c�� b�� c�� � � �g � A be an
in�nite set such that H � ���P�� � ��P��� � �
 H exists since ��P�� and ��P�� are �nite
and A is in�nite�

The components Q�w� R�w� S�w and X�w of O�w are de�ned inductively as follows�

The base case is !w � ��

Q� 
 ���
S� 
 �
X� 
 �

Now let the general case be !w � !a� � � � an!�w�� where !�w� ends with �� We de�ne�

Q�w 
 �b	�w��Q��w�� k� �c	�w���� ����
S�w 
 b	�w��a� � � � an�c	�w��S��w�

X�w 
 �b	�w��X��w�� k� �c	�w������
P

x��� x���

In both cases let
R�w 
 �X�w k� c	�w����

and �nally O�w 
 T�w�H where

T�w 
 Q�w kH S�w kH R�w

Before detailed formal reasoning� the function and the interplay of the parts are shortly
and informally described in the following�

The part !a� � � � an of !w � !a� � � � an!�w� is called the ��w��th round of !w� started by
occurrence of !� whereas occurrence of !� marks the begin of the ���w� � ���th round�

Q�w is the �clock��part of the test� which for each round i of !w enables an � that is
urgent after the time step starting round i and can only be deactivated by performing
the auxiliary action ci �completion of round i� before the next time step�

The �action�sequence��part S�w will ensure that ci can only occur after performance of
the action sequence a� � � � an� which itself must be preceded by the auxiliary action bi
�begin of round i�� Furthermore� occurence of bi triggers the activation of the � for the
next round by enabling Q��w� � This must not happen too early� i�e� bi and hence ci will
be performed after the time step starting round i and before the next one�

At the beginning of the present round� the �refusal�set��part X�w enables all actions x
from the refusal set !� of the following round in con�ict with the auxiliary action ci��

which has to occur only at completion of the following round� After the time�step of
the present round� all x from !� have become urgent� but may not occur 
 i�e� must be
refusable by the tested process at the time�step starting the following round�

Finally� X�w is augmented to R�w for proof�technical reasons� T�w puts all three parts
via synchronisation together� and O�w hides the auxiliary actions away� Otherwise� they
would have to synchronise with the tested process� which is of course impossible by the
de�nition of H�



��

���
By De�nition ���� P fails the test �O�w� ��w�� if and only if there is a u � DL���PkAO�w�
without � and with ��u� 
 ��w�� By Proposition ������ this is case if and only if there
is a v � RT���PkAO�w� without � and with ��v� 
 ��w� and all refusal sets in v are
A�� By Theorem �� � Proposition ����� and De�nition ���� such a v exists if and only
if v � �v�kAv�� for some v� � RT���P � and v� � RT�O�w� satisfying the following�
��v�� � ��v�� 
 ��w�� both v� and v� are without �� all refusal sets in both v� and v�
contain �� and match�v�� � v�� where match is de�ned inductively as follows �

�� match��� � ��

�� match�av�� � amatch�v�� for a � A��

�� match�!v�� � !match�v�� for ! � A�� where ! denotes f�g �A n !�

For any testable process P we have � �� ��P �� hence by Proposition ������ and Proposi�
tion ����� and �� we have !w � RT���P � if and only if v� � RT���P �� where v� is !w with
each refusal set augmented by �
 also� match�!w� � match�v��� Hence� in order show
that P fails the test �O�w� ��w�� if !w � RT���P �� by the above it su�ces to show that
match�!w� � match�v�� � RT�O�w��

In order to apply inductive reasoning� we consider an intermediate state that is reached
when O�w performs match�!w�� Let

R�
�w 
 X�w k� �c	�w����

X
x��

x���

and let O�
�w 
 T�

�w�H where

T�
�w 
 Q�w kH S�w kH R�

�w

We �rst observe that the properties

����� O�
A��r

����� O�
�

A��r

hold� since ����� O� is initial and �����
P

x�� x�� 
 � � P� by De�nition ���� Q�� S� � P��
and c� is the only urgent action in R�

� � but has no synchronization partner in Q� and S��
thus R�O�

� � � �� and we are done by Proposition ������

Now let !w � !a� � � � an!�w�� We show the following properties�

����� O�w
�a����an�r O�

�w �r O�
��w�

����� O�
�w

�a����an�r O��

�w �r O�
��w�

I�e� from both O�w and O�
�w by performing a sequence matching the ��w��th round of w�

we reach a process that is RT�equivalent to O�
��w� � For the proof of ����� consider �using

Corollary �����

Q�w
A��r b	�w��Q��w� k� �c	�w���� ����

b��w�c��w�
�r Q��w� k� � �r Q��w�

S�w
A��r b	�w��a� � � � an�c	�w��S��w�

b��w�a����anc��w�
�r S��w�

and
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R�w 
 X�w k� c	�w���
A��r

�b	�w��X��w� k� �c	�w������
P

x��� x���� k� c	�w���
b��w�c��w�
�r

�X��w� k� �c	�w������
P

x��� x���� k� � �r

�X��w� k� �c	�w������
P

x��� x���� 
 R�
��w�

Hence with synchronisation over H by De�nition ��� and Theorem �� we get

T�w
A�b��w�a����anc��w�

�r T �
�w �r �Q��w� kH S��w�� kH R�

��w� 
 T�
��w�

and hiding H by De�nition ���� and Theorem ���� and �nally applying Proposition ������

O�w
�a����an�r O�

�w �r O
�
��w�

For ������ analogous arguments apply for the components Q�w and S�w of O�
�w� For R

�
�w

consider �using Corollary ���� again��

R�
�w 
 X�w k� �c	�w����

P
x�� x���

�nfc��w�g
�r

�b	�w��X��w� k� �c	�w������
P

x��� x���� k� �c	�w����
P

x�� x���
b��w�c��w�
�r

�X��w� k� �c	�w������
P

x��� x���� k� � �r

�X��w� k� �c	�w������
P

x��� x���� 
 R�
��w�

Hence� analogously to the above�

O�
�w

�a����an�r O��

�w �r O
�
��w�

Using these properties� we now perform induction on the length of !w to show that
match�!w� � RT�O�

�w��

For !w � �� by ����� we have A� � RT�O�
�w� and A� � match���� For !w �

!a� � � � an!�w� by ����� and Proposition ������ we have !a� � � � anmatch�!�w�� � RT�O�
�w�

by induction�

It remains to show match�!w� � RT�O�w�� for !w � � we are done by �����
 for !w �

!a� � � � an!�w�� we have O�w
�a����an�r O�

�w �r O
�
��w� by ����� and match�!�w�� � RT�O�

��w��
by the above� hence we are done by Proposition �������

���
We now show that P fails the test �O�w� ��w�� only if ��P is able to perform !w�

We say that a refusal trace v � RT�O�w� refuses � if � does not occur in v but in all
refusal sets of v� Now by Theorem �� � De�nition ��� and analogous arguments as in the
beginning of part ���� P can fail the test �O�w� ��w�� only if there is a v � RT�O�w� that
refuses � with ��v� 
 ��w� and match�v� � RT���P �� We will show that this implies
!w � RT���P � and are done�

By V �O�w� we denote the set of all v � RT�O�w� that refuse � and satisfy ��v� 
 ��w��
and similarly for Q�w etc� We will determine V �O�w� by induction on the length of !w�
where we �rst state the following properties�

The base case is w � � and ! � ��
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����� �Q� kH S��
v
�r for a v refusing � with ��v� 
 ��w� � � if and only if

v � !v for some !v � A� with � � !v� hence ��v� � ��w� � � � ��
����� There is no v refusing � with ��v� 
 � such that

��Q� k� �c���� ����� kH �a�� � � � a
�
m�c��S���

v
�r�

Now let !w � !a� � � � an!
�w�� where !�w� ends with ��

����� �Q�w kH S�w�
v
�r for a v refusing � with ��v� 
 ��w� if and only if

v � !vb	�w�a� � � � anc	�w�v
� for some !v � A� with � � !v and v� refuses � and

��v� � ��w� � �� such that

�Q�w kH S�w�
�vb��w�a����anc��w�

�r Q�
��w� �r �Q��w� kH S��w��

v�
�r�

����� There is no v refusing � with ��v� 
 ��w� � � such that
�Q�w k� �c	�w������ ����� kH �a�� � � � a

�
m�c	�w����S�w�

v
�r�

Whereas ����� and ����� can be checked directly� we show ����� and ����� by induction
using Corollary ����� Theorem �� and Proposition �������

����� The if�case is clear� �Q�w kH S�w� can perform b	�w�� � or a time step !v�
Performance of b	�w� yields �Q��w� k� �c	�w��� � ����� kH �a� � � � an�c	�w��S��w��� and
since ��w�� � ��w� � �� by ind� and ����� or ������ no v refusing � with ��v� 

��w� � ��w�� � � is possible any more�
Hence� v starts with some !v � A� with � � !v
 afterwards� only b	�w�a� � � � anc	�w�
is possible� since � is urgent� hence no time step may occur before its deacti�
vation by c	�w�
 now a process RT�equivalent to �Q��w� kH S��w�� is reached� and
v � !vb	�w�a� � � � anc	�w�v

�� By ind� or ������ ��v�� � ��w����� hence ��v� � ��w����

����� There are two possibilities for an appropriate v�
i� v starts a�� � � � a

�
mc	�w���� reaching a unique process� which is RT�equivalent to

�Q�w kH S�w�
 but then ����� yields ��v� � ��w� � � only�
ii� v starts a�� � � � a

�
i!va

�
i�� � � � a

�
mc	�w��� with � � i � m and !v � A� with � � !v�

yielding a unique process RT�equivalent to ��b	�w��Q��w�� k� �c	�w���� ����� kH S�w

now due to the urgent �� from here only b	�w�a� � � � anc	�w� is possible� reaching a
unique process that is RT�equivalent to �Q��w� kH S��w��
 but then ����� or �����
yields only ��v� � � � ��w�� � � � ��w� � � again�

We are now able to determine the set V �Q�w kH S�w�� by ������ we have V �Q� kH S�� �
f!v � A� j� � !vg� and by ����� and induction� for !w � !a� � � � an!�w� we get

V �Q�w kHS�w� � f!v � A� j� � !vg � fb	�w�a� � � � anc	�w�g � V �Q��w� kH S��w��

For the following let l � ��w� and !w be of the form

!w � !l al� � � � a
l
nl

!l�� � � � !�

Hence v� � V �Q�w kH S�w� is of the form

v� � #l bl a
l
� � � � a

l
nl
cl #

l�� bl�� � � � c� #
��



��

where � � #i � A� for all i � �� � � � � l� Now by Theorem �� � v� � V �T�w� implies
v� � �v� kH v��� where v� � V �Q�w kH S�w� and v� � RT�R�w�� By the above and
De�nition ���� �v� kH v�� �� � only if v� is of the form

v� � ul�$
l ul� bl u

l
� cl u

l��
� $l�� ul��

� bl�� � � � u�� c� u
�
�$

� u�� u
�
��

where � � $i � A� for all i � �� � � � � l and uij � �AnH�� for i � �� � � � � l and j � �� � � � � ��
If uij � au for some i � �� � � � � l and j � �� � � � � � and a � A� then a must stem from
some sum�part of X�w� hence the respective ck could not occur any more
 observe that
the sum�part for c� is empty� We conclude uij � � for all i � �� � � � � l and all j � �� � � � � ��

Furthermore� R�w
v��r R

� if and only if R�w
v��r R

�� since � �� ��R�w�� and the derivations

of ��� show that R�w
v��r if and only if $i � !

i
n fcig for all i � �� � � � � l � �� As said in

the very beginning of this proof� we will only consider the case where ! � � in !w� hence
since � � A�� by De�nition ��� and the above� we determine v� � V �T�w� to be of the
form�

v� � #l bl a
l
� � � � a

l
nl
cl #

l�� bl�� � � � c� #
��

where #i � !
i
for all i � �� � � � � l� Finally� with Theorem ���� and De�nition ���� we

calculate for the form of a v � V �O�w��

v � #l al� � � � a
l
nl

#l�� � � � #��

where #i � !
l
for all i � �� � � � � l� hence

match�v� � #
l
al� � � � a

l
nl

#
l��

� � �#
�
�

such that #
i
� !i for i � �� � � � � l� thus by Proposition ������ match�v� � RT���P � implies

!w � RT���P �� and we are done� ����

� Full Abstractness

Refusal�trace�inclusion not only characterizes the e�ciency preorder� but also makes just
the necessary re�nements to discrete behaviour of �initial� processes in order to gain a
precongruence for parallel composition and pre�x�

Corollary ���

The RT�semantics is fully abstract w�r�t� DL and parallel composition and pre�xing of
initial processes� i�e� it gives the coarsest congruence for initial processes and these op�
erators that respects DL�equivalence� For process terms� �r is a precongruence for these
operators� and also for hiding and relabelling�

Proof�
Theorem �� � Theorem ���� Theorem ���� and Theorem ��� show that RT�equivalence
is a congruence and RT�inclusion is a precongruence for parallel composition� pre�xing�
hiding and relabelling of processes that respects DL�equivalence� �inclusion resp� By
De�nition ���� the result for RT�inclusion carries over to process terms related by �r�
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If for initial processes P�� P� we have RT�P�� �� RT�P��� then the proof of Theorem ����
exhibits a test process O such that DL���P�kAO� �� DL���P�kAO�� �If P� or P� contains the
special action �� then its r"ole in O must be played by some other action a �� ��P�����P��

consider DL���Pi kA��fagO� in this case��� Hence� RT�equivalence is the coarsest congru�
ence that re�nes DL�equivalence to a congruence for parallel composition and pre�xing
of initial processes� ���

As usual� the testing preorder alone is not a precongruence for choice� e�g� we have � �r ���
and ��� �r �� but for a �� � � we have neither �� a�� �r ���� a�� �since e�g� ��a � RT���
a���nRT�����a����� nor ����a�� �r ��a�� �since e�g� fagfag � RT�����a���nRT���a�����
As a consequence� we also have to take into account the �initial� stability of processes� where
the example indicates that although we consider a preorder this additional condition is not
an implication but an equivalence�

De�nition ��� stable processes

A process P � P is stable� if no internal action is enabled� i�e� � �� A�P ��

For process terms P�Q � �P we write P � Q if for all closed substitutions S � � 	� P

where �P 	S� �Q	S � P we have� RT��P 	S� � RT��Q	S� �hence P �r Q� and additionally
�P 	S stable i� �Q	S stable� We write P � Q if P � Q and Q � P �

For all n � N we write P �n
� Q if for all closed substitutions S � � 	� P where �P 	S� �Q	S �

P we have� v � RT� ��P 	S� and jvj 	 n implies v � RT� ��Q	S�� We write P �n
� Q if P �n

� Q
and Q �n

� P � We write P �� Q �P �� Q� if P �n
� Q �P �n

� Q� for all n � N� ���

The additional de�nition of a class of RT� �inclusions ��n
� � will support an approximation

technique when treating recursion later on� The following results yield that we have de�ned
� adequately in order to gain the coarsest precongrence w�r�t� choice that respects RT�
inclusion� hence the e�ciency preorder�

Theorem ���

Let P�Q � �P be process terms� Then P �� Q implies P � Q� and P � Q implies
P �r Q� but none of the reverse implications holds�

Proof�
It su�ces to prove the claims for P�Q � P� where the second claim holds directly by
De�nition ����

Let P �� Q� i�e� RT��P � � RT� �Q�� hence RT�P � � RT�Q�� If P is not stable� then
� � RT��P �� hence � � RT� �Q� by assumption and Q is not stable� If P is stable� then

� �� A�P �� hence R��� P � � � by Proposition ������ thus P
�
�r P

� for some P � by Proposi�
tion ����� and Lemma �� �� since P is guarded� Furthermore� � �� A�P �� by Lemma �� ��

and R��� P �� � � by Proposition ����� again� hence P � �
�r again� Now by assumption

also Q
�
�r Q

� �
�r for some Q�� hence R���Q� � R���Q�� � � by Proposition ������ thus

� �� A�Q� by Proposition ����� and Lemma ����� We conclude Q stable and are done�

For the reverse implications consider P 
 a��� Q 
 a���� and R 
 ��a��� we have
P � Q �r R� but neither P �� Q� nor Q � R� ���



��

Theorem ��� refusal traces of a sum

Let either Pi � P� for all i � I� or Pi � P� for all i � I� hence
P

i�I Pi � P�

Let RTn�
P

i�I Pi� � f!� � � �!nw �
S
i�I RT�Pi� j!� � � �!n �

T
i�I RT�Pi�� !i � A�� w

does not start with a setg for each n � N�� and let RTn
� �
P

i�I Pi� be de�ned analogously�
with RT� instead of RT�

Now let P 

P

i�I Pi and let I � S %�S such that Pi is stable if and only if i � S�

�� RT� �P � �
S
n�N�

RT
n
� �
P

i�I Pi�

�� If S � I� then RT�P � �
S
n�N�

RT
n�
P

i�I Pi��

�� If S �� I and P � P�� then RT�P � �
S
i�S RT�Pi� � RT

��
P

i�I Pi��

�� If S �� I and P � P�� then RT�P � �
S
i�S RT�Pi� � RT

��
P

i�I Pi� � RT
��
P

i�I Pi��

Proof�
�� Let v � �A�� � �A� ��
 then v � !� � � �!nw for some n � N� where !i � A� for

all i � �� � � � � n and w � �A�� � �A� �� does not start with a set� Now P
������n�r P � if

and only if Pi
������n�r P �

i for all i � I� such that P � 

P

i�I P
�
i by rule Sumr� and P � w

�r

if and only if P �
j

w
�r for some j � I by rule Suma� hence v � RT��P � if and only if

!� � � �!n �
T
i�I RT�Pi� and !� � � �!nw �

S
i�I RT�Pi��

�� Similar to ��� where we observe that v � !� � � �!nw and w does not start with a set
implies that the underlying � �refusal�trace does not contain a � up to �if exists� the �rst
a � A� in w� since all Pi are stable�

�� For a w � �A� � �A� �� and P 

P

i�I Pi � P� with S a strict subset of I� we show
that w � RT�P � if and only if w �

S
i�S RT�Pi��RT

��
P

i�I Pi�� The case w � � is obvious

hence consider 
w with 
 � �A� � �A� ��

If 
 � a � A�� then aw � RT�P � i� Pj
�
�r P �

j
aw
�r for some j � S by rule Suma� or

Pj
a
�r P

�
j

w
�r for some j � I� hence i� aw �

S
i�S RT�Pi�� or aw � RT

��
P

i�I Pi��

If 
 � ! � A�� then !w � RT�P � i� Pj
�
�r P �

j
�w
�r for some j � S by rule Suma�

hence i� !w �
S
i�S RT�Pi�� We show that P

�
�r P

� w
�r is impossible� Since P � P��

by Proposition ����� there must be a Q � P�� such that Q
�
�d P � hence also Q�

�
�c P

by De�nition ����
 now since S �� �� we have � � A�Q� � A�P � by Lemma �� ��� hence

R��� P � � � by Lemma ����� thus P
�
�r P

� is impossible by Proposition ������

�� For a w � �A� � �A� �� and P 

P

i�I Pi � P� with S a strict subset of I� we show
that w � RT�P � if and only if w �

S
i�S RT�Pi� � RT

��
P

i�I Pi� � RT
��
P

i�I Pi�� The case
w � � is obvious and the case aw for a � A� is analogously to the according case in the
proof of ��� where we found that aw � RT�P � i� aw �

S
i�S RT�Pi��RT

��
P

i�I Pi�
 hence�
we only need to consider !w with ! � A��

First let !w � RT�P �� Then either Pj
�
�r P �

j
�w
�r for some j � S by rule Suma �i�e�

!w �
S
i�S RT�Pi��� or Pi

�
�r P

�
i for all i � I by rule Sumr� such that P 


P
i�I Pi

�
�rP

i�I P
�
i 
 P � w

�r� In the second case� P � P� and P
�
�r P

� w
�r implies P

�
�c P

� w
�r by

Proposition ����� and Proposition ������ such that P � � P� by Proposition ����� and P �
i



��

is stable i� Pi is stable by Lemma �� �� for all i � I� Now we have P
�
�r

P
i�I P

�
i 
 P �

and w �
S
i�S RT�P

�
i � � RT

��
P

i�I P
�
i � by ��� hence !w �

S
i�S RT�Pi� � RT

��
P

i�I Pi��

Now let !w �
S
i�S RT�Pi�� Then for some j � S either Pj

�
�r P

�
j

�w
�r� hence by rule

Suma also P
�w
�r and !w � RT�P �� or Pj

�
�r P �

j
w
�r� In the second case� P � P�

implies by Proposition ����� and Proposition ����� Pi
�
�r P �

i for all i � I� such that

P
�
�r

P
i�I P

�
i 
 P �� Hence� if w � �� we have !w � RT�P � and are done� thus let w �� ��

Now � � A�P �
j� by j � S and Lemma �� ��� hence R��� P �

j� � � by Lemma ����� thus

P �
j

w
�r implies P �

j
av
�r for some v such that w � �av��� � where a � A�� � since P �

j
��
�r is

impossible by R��� P �
j� � � and Proposition ������ But then also P � av

�r by rule Suma�

hence P � w
�r� thus !w � RT�P ��

Now let !w � RT
��
P

i�I Pi� n
S
i�S RT�Pi�� Then Pj

�w
�r for some j � S� hence Pj

�
�r

P �
j

w
�r by the stability of Pj � As above� P � P� implies Pi

�
�r P

�
i for all i � I� such that

P
�
�r

P
i�I P

�
i 
 P �� and if w � �� we have !w � RT�P � and are done� thus let w �� ��

Now !w � RT
��
P

i�I Pi� implies w � aw� for some a � A�� and since P �
j is stable again

by Proposition ����� and Lemma �� ��� we have P �
j
aw�

�r only if P �
j

a
�r P

��
j

w
�r� hence also

P � a
�r P

��
j

w
�r by rule Suma� thus !w � RT�P ��

We �nally see that !w � RT��
P

i�I Pi� is impossible� and are done� ���

Theorem ���

Both �� and � are precongruences for parallel composition� pre�xing� hiding and rela�
belling of process terms� and also for choice�

Proof�
By Theorem �� � Theorem ��� and Theorem ���� and De�nition ���� �� is a precongru�
ence for parallel composition� pre�xing� hiding and relabelling of processes� which carries
over to process terms� since substitutions distribute over these operations� By the same
theorems� for � it su�ces to show that these operators preserve the condition on stability�

In the following let P�� P
�
�� P�� P

�
� � P with P� � P �

� and P� � P �
�� let A � A�� a � A��

and let � be a general relabelling function�
Par� P�kAP� stable i� both P� stable and P� stable i� both P �

� stable and P �
� stable i�

P �
�kAP

�
� stable� hence P�kAP� � P �

�kAP
�
��

Pref� Let P�� P
�
� � P�� Then a�P� stable i� a �� � i� a�P �

� stable� hence a�P� � a�P �
��

Rel� If P� not stable then P���	 not stable� since ��� � � � � hence neither P �
� stable nor

P �
���	 stable� thus P���	 � P �

���	�
Now assume P� stable� hence P �

� stable
 we show A�P�� � A�P �
��� hence A�P�� �

����� � � A�P �
�������� �� thus P���	 stable i� P �

���	 stable� yielding P���	 � P �
���	�

If � �� a � A�P��� then a � RT�P�� � RT�P �
��� and since P �

� is stable� P �
�

a
�r implies

P �
�

a
�r� hence a � A�P �

���

If � �� a �� A�P��� then R�a� P�� � R��� P�� � � by Proposition ������ hence P�
fag
�r

Q for some Q � P by Proposition �����
 now �� a �� A�Q� � A�P�� by Lemma �� ���

hence once again Q
fag
�r by Proposition ������ thus fagfag � RT�P�� � RT�P �

��




��

since P �
� is stable� P �

�

fagfag
�r implies P �

�

fag
�r R

fag
�r for some R� hence R�a�R� � � by

Lemma ������ thus a �� A�R� � A�P �
�� by Lemma ���� and Lemma �� ���

We now show that � is a precongruence for choice� Let I be an indexing set and let for
all i � I be Pi� P

�
i � P� � P�� such that P 


P
i�I Pi and P � 


P
i�I P

�
i are processes

and Pi � P �
i for all i � I� Then Pi stable i� P �

i stable� hence
P

i�I Pi stable i� all Pi are
stable i� all P �

i are stable i�
P

i�I P
�
i stable� Furthermore� Pi � P �

i for all i � I implies
RT�Pi� � RT�P �

i � for all i � I� Now let S � I� such that i � S i� Pi �and P �
i � stable�

If S � I or P�P � � P� or P�P � � P�� then RT�P � and RT�P �� can be calculated in the
same way Theorem ���� hence P � P �
 also the case S �� I� P � P� and P � � P� is no
problem� Thus we consider the case S �� I� P � P� and P � � P�� We are done once we
have shown that RT��

P
i�I Pi� �

S
i�S RT�Pi��

First take some !w � RT�Pj� with j � S
 the as in the Rel�case above� we have A�Pj� �
A�P �

j�� Assume a � A�Pj�� where a �� � since j � S� Now Pj
a
�r by Proposition �����

since Pj � P�� but not P �
j

a
�r� since by P �

j � P� there is a Q � P� with Q
�
�d P

�
j and

a � A�Q� � A�P �
j� by Proposition ����� and Proposition ������� such that R�a� P �

j� � �

by Lemma ����
 hence also not P �
j

a
�r since P �

j is stable� and this a contradiction to
Pj � P �

j � We conclude A�Pj� � A�P �
j� � � and w � ��A� ���

Now consider !w � RT
��
P

i�I Pi�� which is by de�nition in some RT�Pj� for j � I� If
j � S we are done� so take j � S� By the above� we have w � � and ! � RT�Pi� for each
i � S by the de�nition of RT��

We �nally see that RT� �inclusion is a precongruence for sum by Theorem ������ ���

Theorem ���

For initial processes� � is fully abstract w�r�t� choice and �r�

Proof�
By Theorem ��� and Theorem ���� we have to show that for any processes P�� P� � P�

we have P� � P� whenever �P � P� � P� � P �r P� � P �

For given P�� P� assume to the contrary� i�e� �P � P� � P� � P �r P� � P � but P� �� P�

choosing P 
 �� we have P� � � �r P� and P� � � �r P� by Proposition ����� hence
P� �r P� by Theorem ���� thus the condition on the stability of P� and P� must be
violated� i�e� P� stable and P� not stable or vice versa� In the following let P 
 x�� with
x � A� n ���P�� � ��P����

First assume P� stable and P� not stable
 then we have ��x � RT�P� � P � n RT�P� � P ��
because �� � RT�P � � RT�P�� for stable P and P� by Theorem ����� since ��x � RT�P ��
but by Theorem ������ ��x �� RT�P�� � P � since ��x �� RT�P�� by x �� ��P�� and ��x ��
RT

��P��P ��RT��P��P � since j��j 
 �� Now RT�P��P � �� RT�P��P � is a contradiction
to P� � P �r P� � P �

Now assume P� not stable and P� stable
 then �fxg � RT�P��P � nRT�P� �P �� because
P� not stable and �fxg � RT�P�� �observe Proposition ������� but P and P� stable and
�fxg �� RT�P �� ���



��

We �nally aim to show that � is also a precongruence for �guarded� recursion� Following
�Hen��	� we consider �initial� process terms as functions in the domain of �� ��refusal�traces
and will exploit their monotonicity w�r�t� � and �� � which essentially results from Theo�
rem ����

De�nition ��	

For closed substitutions S�S � � � 	� P we write S � S � if S�X� � S ��X� for all X � ��
and S �� S � if S�X� �� S ��X� for all X � ��

An initial process term P � �P� is monotonic� if �P 	S � �P 	S� whenever S � S � for any
closed inital substitutions S�S � � � 	� P�� � �monotonicity is de�ned analogously with ��

instead of ��

For each n � N� X � � and initial process term P � �P� let P n
X denote the initial process

term de�ned inductively by P �
X 
 P and P n��

X 
 PfP n
X�Xg 
 P n

XfP�Xg� �� 

Now RT���X�P � is a �xpoint of the RT� �function de�ned by the initial process term P 

furthermore� � �monotonicity of this function carries over to its iterated applications� where
the guardedness of X allows us to ignore up to a certain degree from the relation of the
arguments�

Lemma ��


Let P � �P� be a � �monotonic initial process term and let X � � be guarded in P �
Furthermore� let S��S� � � 	� P� be closed inital substitutions with S��Y � �� S��Y � for
all Y �
 X� Then for all n � N�

�� �X�P �� P
n
Xf�X�P�Xg�

�� �P n
X	S� �

n
� �P n

X 	S��

Proof�
In this proof let 
 � �A�� � �A�� � and v � �A�� � �A�� ��� Furthermore� for an initial

closed substitution S� variable X � � and initial process Q � P let S
X
� Q be the initial

closed substitution that coincides with S in all variables except X� where it denotes Q�
Similarly� let S �X coincide with S except for X� where it is X�

�� Let S be a closed substitution such that ��X�P 	S � P
 then S�Y � � P� if Y �
free��X�P � and �X�PfS�Y ��Y g 
 �X�P if Y �� free��X�P �� hence w�l�o�g� we may
assume S to be an initial closed substitution S � � 	� P��

We perform induction on n � N� where in the base case we have by rule Reca or rule Recr�
��X�P 	S 
 �X��P 	S�X

�
�r R

v
�r i� �P 	S�X

�
�r Q such that R 
 Qf�X��P 	S�X�Xg

v
�r

i� �Pf�X�P�Xg	S 
 �P 	S�Xf�X��P 	S�X�Xg
�
�r Qf�X��P 	S�X�Xg

v
�r by Proposi�

tion ����� since X guarded in P � hence in �P 	S�X �

Now let the claim hold for some n � N and let Sn
P denote S

X
� �P n

Xf�X�P�Xg	S � and

let SP denote S
X
� ��X�P 	S � Then SP �� Sn

P by induction� hence �P n��
X f�X�P�Xg	S 


�P 	S�Xf�P n
Xf�X�P�Xg	S�Xg 
 �P 	Sn

P
�� �P 	SP by � �monotonicity of P � and �nally

�P 	SP 
 �Pf�X�P�Xg	S �� ��X�P 	S is the base case again�



��

�� We �rst show for all n � N� that jvj 	 n implies for any initial closed substitution
S � � 	� P� and any initial process terms Q�R � �P�� �P n

X	S�XfQ�Xg
v
�r R if and only

if �P n
X 	S�X

v
�r P

� for some P � � �P with guarded X� such that R 
 P �fQ�Xg�

In order to improve the readability� we �rst de�ne P n 
 �P n
X 	S�X for given P � S and n �

N� and show P n�� 
 P nfP ��Xg for all n � N by induction� where in the base case n � �
we have P � 
 �P �

X	S�X 
 �P �
XfP

�
X�Xg	S�X 
 �P �

X	S�Xf�P
�
X 	S�X�Xg 
 P �fP ��Xg�

hence let the claim hold for some n � N
 then P n�� 
 �P n��
X 	S�X 
 �P n

XfP
�
X�Xg	S�X 


�P n
X 	S�Xf�P

�
X 	S�X�Xg 
 P nfP ��Xg by induction�

Using this� we now show the above property by induction on n � N� where for n � �

we have jvj 	 n i� v � � and P �fQ�Xg


�r P

�fQ�Xg 
 R and P � 

�r P

� 
 P � with
X guarded in P � by assumption and R 
 P �fQ�Xg� Hence let the claim hold for some
n � N and let jvj 	 n�

First let P n��fQ�Xg 
 P nf�P �fQ�Xg��Xg
v
�r R�

�
�r R�� Then by induction P n v

�r

P �
� such that R� 
 P �

�f�P
�fQ�Xg��Xg

�
�r R� for some P �

� with guarded X� and
from this again by induction also P n�� 
 P nfP ��Xg

v
�r P �

�fP
��Xg� Now Propo�

sition ����� yields R� 
 P �
�f�P

�fQ�Xg��Xg
�
�r R� only if P �

�
�
�r P �

� for some P �
��

such that R� 
 P �
�f�P

�fQ�Xg��Xg 
 �P �
�fP

��Xg�fQ�Xg� and again by Proposi�
tion ������ also P �

�fP
��Xg

�
�r P

�
�fP

��Xg� Altogether� P n�� v�
�r P

�
�fP

��Xg� such that
R� 
 �P �

�fP
��Xg�fQ�Xg� and since X is guarded in P � it is also guarded in P �

�fP
��Xg�

Now let P n�� 
 P nfP ��Xg
v
�r P

�
�

�
�r P

�
�� Then by ind� P n v

�r P
��
� for some P ��

� with
guarded X� such that P �

� 
 P ��
� fP

��Xg
�
�r P

�
�� hence by induction also P n��fQ�Xg 


P nf�P �fQ�Xg��Xg
v
�r P

��
� f�P

�fQ�Xg��Xg� Now by Proposition ����� we have P �
� 


P ��
� fP

��Xg
�
�r P

�
� only if P ��

�
�
�r P

��
� for some P ��

� � such that P �
� 
 P ��

� fP
��Xg� and then

again by Proposition ������ P ��
� f�P

�fQ�Xg��Xg
�
�r P ��

� f�P
�fQ�Xg��Xg� too� Thus�

P n��fQ�Xg
v�
�r P ��

� f�P
�fQ�Xg��Xg 
 �P ��

� fP
��Xg�fQ�Xg 
 P �

�fQ�Xg� and we are
done showing the above property�

Now let S denote S�
X
� S��X� and let jvj 	 n� Then by the above property �P n

X 	S� 

�P n

X 	S��XfS��X��Xg
v
�r R only if �P n

X	S��X
v
�r P � such that R 
 P �fS��X��Xg for

some P � with guarded X� hence also �P n
X 	S��XfS��X��Xg 
 �P n

X 	S
v
�r P

�fS��X��Xg�
and it su�ces to show �P n

X 	S �� �P n
X 	S�� We note that S �� S� and perform induction on

n � N� where in the base case n � � we have �P 	S �� �P 	S� by the � �monotonicity of P �
hence let the claim hold for some n � N�

Let S � denote S
X
� �P n

X	S and let S �
� denote S�

X
� �P n

X 	S�� Now by induction S � �� S �
��

thus �P n��
X 	S 
 �Pf�P n

X	S�Xg	S 
 �P 	S� �� �P 	S�� 
 �P n��
X 	S� by the � �monotonicity of P �

���

We now can derive the precongruence property for � �monotonic and monotonic initial process
terms� where we use the fact that for all refusal traces w � RT��X�P � there is an underlying
� �refusal trace v � RT���X�P �� such that w � v�� and jvj 	 n for some n � N�

Proposition ���

Let P�Q � �P� be inital process terms that are both monotonic and � �monotonic� and let
X � � be guarded in both P and Q�



��

�� P �� Q implies �X�P �� �X�Q�

�� P � Q implies �X�P � �X�Q�

Proof�
If S is a closed substitution such that ��X�P 	S � ��X�Q	S � P� then 
 as in the previous
proof 
 we may w�l�o�g� assume S to be an initial closed substitution S � � 	� P��

�� Let S� denote S
X
� ��X�P 	S and let S� denote S

X
� ��X�Q	S� Now Lemma ����� yields

��X�P 	S �� �P n
Xf�X�P�Xg	S 
 �P n

X 	S� and �Qn
X	S� 
 �Qn

Xf�X�Q�Xg	S �� ��X�Q	S for
all n � N� hence it su�ces to show �P n

X 	S� �
n
� �Qn

X	S� for all n � N� Now �P n
X 	S� �

n
� �P n

X	S�
by Lemma ������ since S��Y � �� S��Y � for all Y �
 X� hence it su�ces to show �P n

X	S� ��

�Qn
X	S� for all n � N�

We perform induction on n � N� where for n � � we have �P 	S� �� �Q	S� by P �� Q�
hence assume the claim to hold for some n � N� Then �P n��

X 	S� 
 �Pf�P n
X 	S��Xg	S� ��

�Pf�Qn
X	S��Xg	S� by induction and � �monotonicity of P � and �nally �Pf�Qn

X	S��Xg	S� ��

�Qf�Qn
X	S��Xg	S� 
 �Qn��

X 	S� by P �� Q again�

�� We �rst show �P n
X	S � �Qn

X	S for all n � N and any initial closed substitution S�

Let Sn
P denote S

X
� �P n

X 	S and let Sn
Q denote S

X
� �Qn

X	S� Now it su�ces to show
Sn
P � Sn

Q for all n � N� where in turn it is enough to show Sn
P �X� � Sn

Q�X�� since
Sn
P �Y � 
 S�Y � 
 Sn

Q�Y � for all Y �
 X�

We perform induction on n � N� where in the base case n � � we have S�
P �X� 
 �P 	S �

�Q	S 
 S�
Q�X� since P � Q by assumption� hence let Sn

P � Sn
Q for some n � N�

Then Sn��
P �X� 
 �P n��

X 	S 
 �Pf�P n
X	S�Xg	S 
 �P 	Sn

P
� �P 	Sn

Q
by induction and mono�

tonicity of P � and �P 	Sn
Q
� �Q	Sn

Q

 Sn��

Q �X� by P � Q again� We conclude �P n
X 	S � �Qn

X	S
for all n � N�

Now take some w � RT���X�P 	S�� Then w � v�� for some v � RT����X�P 	S� �

RT� ��P
jvj��
X f�X�P�Xg	S� by Lemma ������ and also v � RT� ��P

jvj��
X f�X�Q�Xg	S � by

Lemma ������ hence w � RT��P jvj��
X f�X�Q�Xg	S � � RT��Qjvj��

X f�X�Q�Xg	S�� because

�P jvj��
X f��X�Q	S�Xg	S � �Qjvj��

X f��X�Q	S�Xg	S by the above� Finally� by Lemma �����

again� we have w � RT��Qjvj��
X f�X�Q�Xg	S � � RT���X�Q	S�� since RT� �equivalence im�

plies RT�equivalence� Note that the � �monotonicity of both P and Q was necessary for
the application of Lemma ����

Finally� A���X�P 	S� � A��P 	S� and A���X�Q	S� � A��Q	S� by Proposition ����� since
X guarded in P and Q� hence � � A���X�P 	S� i� � � A��P 	S� i� � � A��Q	S�� because
P � Q i� � � A���X�Q	S�� Thus ��X�P 	S stable i� ��X�Q	S stable� ���

By showing the � �monotonicity and monotonicity of all initial process terms by induction
on the term structure using Lemma ��� and Theorem ���� we end up with the desired result�

Theorem ����

Both �� and � are precongruences for recursion�

Proof�
By Proposition ��� it su�ces to show that all P � �P� are both monotonic and � �
monotonic� We perform induction on the structure of P � where all cases except recursion



��

are covered by Theorem ���� hence assume P � �P� to be monotonic and � �monotonic
by induction� X � � be guarded in P and consider �X�P � Let S��S� be inital closed
substitutions� let S �

� denote S�
X
� ��X�P 	S�� and let S �

� denote S�
X
� ��X�P 	S� �

We �rst show the � �monotonicity of �X�P and assume S� �� S� in this case� Then
S �
��Y � �� S �

��Y � for all Y �
 X� hence ��X�P 	S� �� �P n
X 	S�� �

n
� �P n

X 	S�� �� ��X�P 	S� for all
n � N by Lemma ������ �� and �� again� hence we are done�

We now show the monotonicity of �X�P and assume S� � S� in this case� Furthermore�
let S ��

� denote S �
�

X
� S �

��X�
 then S �
��Y � �� S ��

� �Y � for all Y �
 X� and S ��
� � S �

��

Now take some w � RT���X�P 	S��� Then w � v�� for some v � RT� ���X�P 	S�� �

RT� ��P
jvj��
X f�X�P�Xg	S�� � RT� ��P

jvj��
X 	S��� by Lemma ������ and by the above and

Lemma ����� we also have v � RT���P
jvj��
X 	S��� �� hence w � RT��P

jvj��
X 	S��� �� Now we have

RT��P
jvj��
X 	S��� � RT��P

jvj��
X f�X�P�Xg	S�� � RT���X�P 	S�� by Lemma ����� and since

RT� �equivalence implies RT�equivalence� hence it remains to show �P n
X	S��� � �P n

X	S�� for all
n � N�

We perform induction on n � N� where in the base case n � � we have �P 	S��� � �P 	S��
by S ��

� � S �
� and the monotonicity of P � hence assume �P n

X 	S��� � �P n
X 	S�� for some n � N�

then �P n��
X 	S��� 
 �Pf�P n

X 	S��� �Xg	S��� � �Pf�P n
X 	S���Xg	S�� 
 �P n��

X 	S�� by induction and
monotonicity of P again�

Finally� A���X�P 	S�� � A��P 	S�� and A���X�P 	S�� � A��P 	S�� by Proposition ����� since
X guarded in P � hence � � A���X�P 	S�� i� � � A��P 	S�� i� � � A��P 	S�� since �P 	S� �
�P 	S� i� � � A���X�P 	S�� Thus ��X�P 	S� stable i� ��X�P 	S� stable� ����

� Related Work

In the literature� several approaches to e�ciency preorders have been proposed� from which
only representative samples can be considered here�

For untimed CCS�like terms� e�ciency preorders based on testing have been investigated
in �CZ��	 and �NC��a	� and bisimulation�based ones in �AKH��	 and �AKN��	
 in all these
approaches� e�ciency is measured by counting internal actions� where runs of a parallel
composition are seen to be the interleaved runs of the components
 consequently� in all
cases� ��akfag��a is as e�cient as ����a� whereas in our setting ��akfag��a is strictly faster
than ����a�

TPL is a CCS�based discretely timed process algebra developed in �HR��	� where systems are
also related via a must�testing approach� In �NC��b	� the resulting preorder is interpreted as
to relate systems w�r�t� their temporal and functional �predictability� rather than e�ciency�
Systems in TPL can be considered as synchronous� since maximal progress is forced in test
application� This gives the test environment more direct control over the temporal behaviour
than in our setting
 as a consequence� no time bounds are needed for tests� By this� TPL
can also be seen as a discrete part of the continuously timed process algebra TimedCSP �cf�
�Sch��	�� where e�g� the discrete time unit � is replaced by WAIT � constructs�



� 

In the discretely timed algebra �TCCS of �MT��	� components may have arbitrary relative
speeds� but there is no progress assumption at all and the e�ciency preorder is based on
a sort of bisimulation
 an interpretation in terms of worst�case behaviour is not obvious�
�CGR��	 gives a di�erent bisimulation based approach� where component speeds are �xed
with respect to local clocks �modulo patience for communication in �Cor��	�� Here� the
operational semantics realizes local passage of time� hence this idea is hard to compare to
our approach or any other�

�Bur��	 discusses how �the more realistic� continuously timed behaviour can be approximated
with discretely timed behaviour
 the aim is to ensure that each implementation in the discrete
view is indeed an implementation in the continuous view �but not necessarily vice versa��
There is no result showing that discrete time gives complete information as in our setting�
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