
Quantitative Program Logic and Performance in
Probabilistic Distributed Algorithms

Annabelle K. McIver

Programming Research Group, Oxford University, UK.
anabel@comlab.ox.ac.uk,

http://www.comlab.ox.ac.uk/oucl/groups/probs.
The work is supported by the EPSRC.

Abstract. In this paper we show how quantitative program logic [14]
provides a formal framework in which to promote standard techniques
of program analysis to a context where probability and nondeterminism
interact, a situation common to probabilistic distributed algorithms. We
show that overall performance can be formulated directly in the logic and
that it can be derived from local properties of components. We illustrate
the methods with an analysis of performance of the probabilistic dining
philosophers [10].

1 Introduction

Distributed systems consist of a number of independent components whose in-
terleaved behaviour typically generates much nondeterminism; the addition of
probability incurs an extra layer of complexity. Our principal aims here are to
illustrate how, using ‘quantitative program logic’ [14], familiar techniques from
standard programming paradigms easily extend to the probabilistic context, and
that they can be used even to evaluate performance.

Examples of all our program techniques — compositional reasoning, µ-cal-
culus treatments of temporal logic and fairness — can be found in the general
literature [2, 9]; the novel aspects of the present work lie in their smooth ex-
tension via the quantitative logic, and our exploitation of the extended type
(of reals rather than Booleans) in our formulation of performance operators
as explicit µ-calculus expressions in the logic. The advantages are not merely
cosmetic: by making performance and correctness objects of the same kind we
discover that performance can be calculated directly from local properties of
components. Locality has particular significance here since in practice it reduces
system-wide analysis to the analysis of a single component in isolation from the
others, vastly simplifying arguments. And finally, it is worth mentioning that
though our primary theme is proof, our estimated performance of the random
dining philosophers [10] is still lower than some other published analyses [11].

Our presentation is in three sections. In Sec. 2 and Sec. 3 we set out the
programming model, the quantitative program logic and the µ-calculus formu-
lations for probabilistic temporal logic and performance. Some properties of the

J.-P. Katoen (Ed.): ARTS’99, LNCS 1601, pp. 19–33, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

20 Annabelle K. McIver

operators are also explained in those sections. In Sec. 4 we analyse the dining
philosophers.

We uniformly use S for the state space and DS for discrete probability dis-
tributions over S. We also use ‘:=’ for ‘is defined to be’ and ‘.’ for function
application. We lift ordinary arithmetic operators pointwise to operators be-
tween functions: addition (+); multiplication (×); maximum (") and minimum
(#). Other notation is introduced as needed.

2 Program Logic and Estimating Probabilities

Operationally we model probabilistic sequential programs [14, 7] (compare also
[3, 11]) as functions from (initial) state to sets of distributions over (final) states.
Intuitively that describes a computation proceeding in two (indivisible) stages:
a nondeterministic choice, immediately followed by a probabilistic choice, where
the probability refers to the possible final states reachable from a given initial
state. In this view the role of nondeterminism is to allow an arbitrary selection
over some range of probability distributions; however the agent making that se-
lection can only influence the weights of the probabilistic transitions, not their
actual resolution once those weights have been picked. That behaviour is pre-
cisely the kind exhibited by an ‘adversary scheduler’ assumed of many distributed
algorithms [11]. We shall discuss schedulers in more detail in Sec. 4.

Unlike other authors we shall not use the operational model directly for pro-
gram analysis. We introduce it only as an aid to intuition and in practice we
use the quantitative program logic introduced elsewhere [14, 15]: it is equivalent
to the operational view and is analytically more attractive. The idea, first sug-
gested by Kozen [8] for deterministic programs, is to extract information about
probabilistic choices by considering ‘expected values’. Ordinary program logic
[4] identifies preconditions that guarantee post conditions, in contrast, for prob-
abilistic programs, the probability, rather than the certainty of achieving a post
condition is of interest, and Kozen’s insight was to formulate that as the result
of averaging certain real-valued functions of the state over the final distributions
determined by the program. Thus, the quantitative logic we use is an extension
of Kozen’s (since our programs are both nondeterministic and probabilistic) and
is based on expectations (real-valued functions of the state rather than Boolean-
valued predicates). We denote the space of expectations by ES(: = S →),
and we define the semantics of a probabilistic program r as wp.r, an expectation
transformer [14].

Definition 2.1 Let r: S → (DS) be a program taking initial states in S to sets
of final distributions over S. Then the least possible1 pre-expectation at state s
of program r, with respect to post-expectation A in ES, is defined

1 This interpretation is the same as the greatest guaranteed pre-expectation used else-
where [14].

Quantitative Program Logic and Performance 21

wp.r.A.s : = (#F : r.s ·
∫

F
A) ,

where
∫

F A denotes the integral of A with respect to distribution F .2

In the special case that A is a {0, 1}-valued — a characteristic expectation — we
may identify a predicate which is true exactly at those states where A evaluates to
1, and then the above interpretation makes wp.r.A.s the least possible probability
that r terminates in a state satisfying that predicate. To economise on notation
we often pun a characteristic expectation with its associated predicate, saying
that ‘s satisfies A’ when strictly speaking we mean A.s = 1. The context should
dispel confusion, however. Other distinguished functions are the constants 1 and
0 evaluating everywhere to 1 and 0 respectively and thus corresponding to true
and false. We also write A for the negation of A (equivalent to 1 − A).

By taking the minimum over a set of distributions in Def. 2.1, we are adopting
the demonic interpretation for nondeterministic choice, and for many applica-
tions it is the most useful, since it generalises the ‘for all’ modality of transition
semantics [1]. Thus if wp.r.A.s = p say for some real p then all (probabilistic)
transitions in r.s ensure a probability of at least p of achieving A. For our appli-
cation to performance, however, upper bounds have more significance: thus we
define also the dual of wp.r, generalising the ‘exists’ modality [1]. (Compare also
upper and lower probability estimates [3].)

Definition 2.2 Let r: S → (DS) be a program, taking initial states in S to
sets of final distributions over S. Then the greatest possible pre-expectation at
state s of program r, with respect to post-expectation A in ES, is defined3

w̃p.r.A.s : = 1 − wp.r.(1 − A).s .

The semantics for a (restricted) programming language, sufficient for the
applications of later sections, is set out in Fig. 1. It is essentially the same as
for ordinary predicate transformers [4] except for probabilistic choice which is
defined as the weighted average of the pre-expectations of its operands.

To illustrate the logic we consider the program set out in Fig. 2, for which
we calculate the least possible probability that the variable b is set to true after
a single execution. From Def. 2.1 that is given by wp.Chooser.{b = true}, where
{e = v} denotes the predicate (i.e. characteristic expectation) ‘e is equal to v’.
From Fig. 1 we see that in order to evaluate the conditional choice in Chooser,
we need to consider each of the options separately.

We calculate the ‘b = false’ case first. Denoting equivalence of expectations
by ≡, we reason:
2 In fact

F
A is just s:S A.s×F.s because S is finite and and F is discrete [5]. We

use the -notation because it is less cluttered, and to be consistent with the more
general case.

3 This is equivalent to interpreting nondeterministic choice as maximum, and so
wp.r.A.s = ("F : r.s

F
A). It is similar to an angelic interpretation for nonde-

terminism.

22 Annabelle K. McIver

assignment wp.(x := E).A : = A[E/x]
probabilistic choice wp.(r p⊕ r′).A : = p(wp.r.A) + (1−p)(wp.r′.A)
nondeterministic choice wp.(r[]r′).A : = wp.r.A % wp.r′.A
sequential composition wp.(r; r′).A : = wp.r.(wp.r′.A)
conditional choice wp.(r if B else r′).A : = B×wp.r.A + B×wp.r′.A

A is in ES and E is an expression in the program variables. The expression A[E/x]
denotes replacement of variable x by E in A. The real p satisfies 0 ≤ p ≤ 1, and pA
means ‘expectation A scaled by p’. Finally B is Boolean-valued when it appears in a
program statement but is interpreted as a {0, 1}-valued expectation in the semantics.

Fig. 1. Probabilistic wp semantics. Nondeterminism is interpreted demonically.

Chooser := (b := true) if {b = true} else (b := true)[](b := true 1/2⊕ b := false)

If b is false initially then it can be either set to true unconditionally, or only with
probability 1/2: the choice between those two options is resolved nondeterministically.

Fig. 2. Randomised Chooser with a Boolean-valued variable b.

wp.((b := true)[](b := true 1/2⊕ b := false)).{b = true}
nondeterministic choice

≡ wp.(b := true).{b = true} # wp.(b := true 1/2⊕ b := false).{b = true}
assignment

≡ {true = true} # wp.(b := true 1/2⊕ b := false).{b = true}
see below

≡ 1 # (wp.(b := true 1/2⊕ b := false).{b = true})
probabilistic choice

≡ 1 # (1/2(wp.(b := true).{b = true}) + 1/2(wp.(b := false).{b = true}))
assignment

≡ 1 # ({true = true}/2 + {false = true}/2)
see below

≡ 1 # (1/2×1 + 1/2×0)

≡ 1/2 . arithmetic

For the deferred justifications, we use the equivalences {true = true} ≡ 1 and
{false = true} ≡ 0.

A similar (though easier) calculation follows for the ‘b = true’ case, resulting
in wp.(b := true).{b = true} ≡ 1, and putting the two together with the rule for
conditional choice we find

wp.Chooser.{b = true} ≡ {b = true} + {b = false}/2 , (1)

Quantitative Program Logic and Performance 23

implying that there is a probability of at least 1/2 of achieving {b = true} if
execution of Chooser begins at {b = false} and of (at least) 1 if execution begins
at {b = true}.

In contrast, we can calculate the greatest possible probability of reaching
{b = false} using Def. 2.2:

w̃p.Chooser.{b = false}
≡ 1 − wp.Chooser.(1 − {b = false}) Def. 2.2
≡ 1 − wp.Chooser.{b = true} b is Boolean-valued

≡ 1 − ({b = true} + {b = false}/2) (1)

≡ {b = false}/2 ,

(2)

yielding a probability of at most 1/2 if execution begins at {b = false} and 0 if
it begins at {b = true} — there is no execution from {b = true} to {b = false}.

In this section we have considered maximum and minimum probabilities using
wp and w̃p for a single execution of a program. In the next section we extend
the ideas to temporal-style semantics.

3 Computation Trees and Fixed Points

In this section we consider arbitrarily many executions of a fixed program de-
noted ©. Later we shall interpret it as wp.prog for some program prog, but for
the moment we adopt an abstract view. (We shall also use ©̃ to be interpreted
as w̃p.prog.) Ordinary program semantics of such systems are computation trees
[1], with each arc of the tree representing a transition determined by ©. A path
in the tree represents the effect of some number of executions of ©, and is defined
by a sequence whose entries are (labelled by) the states connecting contiguous
arcs. When © contains probabilistic choices, the probabilistic transitions in ©
generate (sets of) probability distributions over paths of the computation tree:
probabilities over finite paths may be calculated directly, and they determine
a well defined probability distribution over all paths.4 Our aim for this section
is, as for the state-to-state transition model, to extract probabilistic informa-
tion about the paths by interpreting ‘path operators’ (defined with expectation
transformers) over the computation trees, again avoiding direct reference to the
underlying path-distributions.

Standard treatments of tree-based semantics often use µ-calculus expressions
in the program logic [9], and it turns out [16] that such formulations for the tem-
poral properties ‘eventually’ and ‘always’ have straightforward generalisations in
the quantitative logic by replacing ∨ and ∧ in those expressions by " and # re-
spectively. The resulting operators, and (set out in Fig. 3), when applied to
a characteristic expectation A return the probability (rather than the certainty)
that eventually or always A holds of the paths in the computation tree.
4 It is usually called the Borel measure over cones [5].

24 Annabelle K. McIver

But in the more general setting we can do more: for the reals support a wider
range of operators (than do Booleans), promising greater expressivity; indeed as
well as correctness we can also express performance directly within the logic.
Our first performance measure denoted ∆A, (also set out in Fig. 3) expresses
the expected length of the path in the computation tree until predicate A holds.
In the context of program analysis it corresponds to the expected number of
(repeated) executions of © required until A holds.

least possible eventually A: = (µX A "©X)

greatest possible eventually
∼

A:= (µX A "©X)

least possible always A: = (νX A %©X)

greatest possible always
∼

A: = (νX A %©X)

least possible time to A ∆A: = (µX 0 if A else (1 + ©X))

greatest possible time to A)A: = (µX 0 if A else (1 + ©X))

A is {0, 1}-valued.

Fig. 3. Expectation operators with respect to a distribution over the computa-
tion tree generated by ©.

To make the link between the fixed-point expression for ∆A in Fig. 3 and
expected length of the computation path to reach A we unfold the fixed point
once: if A holds it returns 0 — no more steps are required to achieve A along the
path; otherwise we obtain a ‘1+’ — at least one more step is required to reach
A5. A formal justification is given elsewhere [13].

In general the µ-calculus expressions correspond to the ‘for all’ or ‘exists’
fragments of temporal logic [1] according to whether they are defined with © or
©̃. For example

∼
A defined with ©̃ returns the maximum possible probability

that a path satisfies eventually A. Also ,̃A gives an upper bound on the number
of steps required to reach A.

The introduction of fixed points requires a notion of partial order on ES, and
here we use one induced by probabilistic implication (defined next with its
variants) extending ordinary Boolean implication:

‘everywhere no more than’
≡ ‘everywhere equal to’

‘everywhere no less than’ .

5 An equivalent formulation for)A is (µX A × (1 + ©X)). We shall use this more
succinct form in our calculations rather than that set out in Fig. 3, which is helpful
only in that it is close to the informal explanation.

Quantitative Program Logic and Performance 25

In fact we define fixed points within certain subsets of ES because the ex-
istence of the fixed points are assured in spaces that have a least or greatest
element and the whole of ES has neither.6 We are careful however to choose
subsets that suit our interpretation. Thus for least fixed points (µ) we take the
non-negative expectations: the least element is 0, and our applications — av-
erage times and probabilities of events — are all the result of averaging over
non-negative expectations. For greatest fixed points (ν) we restrict to expecta-
tions bounded above by 1: the greatest element is 1 and we use greatest fixed
points only to express probabilities which involve averaging over characteris-
tic expectations, themselves bounded above by 1. We set out the full technical
details elsewhere [16].

feasibility
∼

A 1

duality If A 1 then
∼

A ≡ 1− (1−A)

invariants If I ©I and I A then I A

A is {0, 1}-valued and I are in ES.

Fig. 4. Some properties of the path operators

The first property of Fig. 4 are general to expectation operators whereas the
latter two apply only to fixed points. In particular the invariant law extends the
notion of ordinary program invariants: an expectation I in ES is said to be an
invariant of © provided ©I I. When I takes arbitrary values, the invariant
law says that the probability that A always holds along the paths with initial
state s is at least I.s. This property is fundamental to our treatment of ‘rounds’
in the next section.

We end this section with a small example illustrating ,̃. We use the program
Chooser set out in Fig. 2 above, (hence ©̃ is interpreted as w̃p.Chooser), and
we wish to calculate ,̃{b = true} an upper bound on the expected number of
times Chooser must be executed until b is set to true. In a simple case where
there is a probability of success on each execution (specifically here if Chooser
sets b to true) elementary probability theory implies that the expected time to
success is the result of summing over a geometric distribution; in contrast the
calculation below shows how to find that time using our program logic. (In fact
since Chooser is nondeterministic, probability theory is not applicable, and the
analysis requires a more general framework such as this one.) We note first that
,̃{b = true} evaluated at ‘b = true’ is 0 (for b is already set to true). Thus we

6 We also assume continuity of the operators concerned [14].

26 Annabelle K. McIver

know that ,̃{b = true} ≡ q{b = false}, for some non-negative real, q which we
must determine (where recall that we use qA to mean ‘A scaled by q’). With
that in mind, we reason

,̃{b = true}
definition); Fig. 3 and footnote 5

≡ {b = true}×(1 + w̃p.Chooser.(,̃{b = true}))
){b = true} ≡ q{b = false}

≡ {b = false}×(1 + w̃p.Chooser.(q{b = false}))
see below

≡ {b = false}×(1 + q(w̃p.Chooser.{b = false}))
from (2)

≡ {b = false}×(1 + q{b = false}/2) .

For the deferred justification we are using the scaling property of w̃p.Chooser
which allows us to distribute the scalar q. 7

Now evaluating at ‘b = false’ we deduce from the above equality that

q = 1 + q/2 ,

giving q = 2, and (unsurprisingly) an upper bound of 2 on the number of execu-
tions of Chooser required to achieve success.

4 Fair Adversary Schedulers and Counting Rounds

We now illustrate our operators above by considering Rabin and Lehmann’s
randomised solution [10] to the well-known problem of the dining philosophers.
The problem is usually presented as a number of philosophers P1, .., PN seated
around a table, who variously think (T) or eat (E). In order to eat they must
pick up two forks, each shared between neighbouring philosophers, where the i’th
philosopher has left, right neighbours respectively Pi−1 and Pi+1 (with subscripts
numbered modulo N). The problem is to find a distributed protocol guaranteeing
that some philosopher will eventually eat (in the case that some philosopher
is continuously hungry). Randomisation is used here to obtain a symmetrical
solution in the sense that philosophers execute identical code — any non-random
solution cannot both guarantee eating and be symmetrical [10].

The aim for this section is to calculate upper bounds on the expected time
until some philosopher eats, and since we are only interested in the time to
eat we have excluded the details following that event. The algorithm set out in
Fig. 5 represents the behaviour of the i’th philosopher, where each atomic step is
numbered. A philosopher is only able to execute a step provided he is scheduled
and when he is, he executes exactly one of the steps, without interference from
7 Scaling is a standard property of expectation operators from probability theory [20]

which also holds here. Others are monotonicity and continuity. In fact only distri-
bution of addition fails: nondeterminism forces a weakening of that axiom; compare
suplinearity of Fig. 7.

Quantitative Program Logic and Performance 27

the other philosophers. Fig. 5 then describes a philosopher as follows: initially he
decides randomly which fork to pick up first; next he persists with his decision
until he finally picks it up, only putting it down later if he finds that his other
fork is already taken by his neighbour. We have omitted the details relating to
the shared fork variables, and for ease of presentation we use labels T, E, l, r
etc. to denote a philospher’s state, rather than the explicit variable assignments
they imply. Thus, for example, if Pi is in state Li or Pi−1 is in state Ri−1, it
means the variable representing the shared fork (between Pi and Pi−1) has been
set to a value that means ‘taken’. The distributed system can now be defined as
repeated executions of the program []1≤i≤NPi, together with a fairness condition,
discussed next.

1. if Ti → li 1/2⊕ ri

2. [] (li ∨ ri) → if (li ∧ ¬Ri−1) → Li

[] (li ∧ Ri−1) → li
[] (ri ∧ ¬Li+1) → Ri

[] (ri ∧ Li+1) → ri

fi

3. [] (Li ∨ Ri) → if (Li ∧ ¬Ri−1) → Ei

[] (Li ∧ Ri−1) → i

[] (Ri ∧ ¬Li+1) → Ei

[] (Ri ∧ Li+1) → i

fi

4. [] (i ∨ i) → Ti

fi

The state Ti represents thinking, li (ri) that a philosopher will attempt to pick up the
left (right) fork next time he is scheduled, Li (Ri) that he is holding only the left (right)
fork, i (i) that he will put down the left (right) fork next time he is scheduled and
Ei that he eats. The use of state as a Boolean means ‘is in that state’; as a statement
it means ‘is set to that state’.

Fig. 5. The i’th philosopher’s algorithm [10].

A fundamental assumption of distributed systems is that of a scheduler.
Roughly speaking it is the mechanism that manages the nondeterminism in
[]1≤i≤NPi, and its only constraint here is fairness: if a philosopher is continuously
hungry (or ‘enabled’) then he must eventually be scheduled (and for simplicity
we assume that philosophers are either enabled or eating). That assumption, of
course, means that counting atomic steps is pointless — any particular philoso-
pher may be ignored for an arbitrary long interval whilst other philosophers are

28 Annabelle K. McIver

scheduled. Instead we count rounds, an interval in which each philosopher has
been scheduled at least once — and fairness guarantees that rounds exist.

However there is a problem: recall that the tree semantics for a distributed
system is composed of paths (denoted by t) in which arcs represent the effect
of atomic steps, therefore interpreting the performance measure ,̃ directly over
that tree would not estimate rounds. We must do something else: we construct
a new tree, one in which ©̃ is associated with the effect of a round rather than
an atomic step, and we interpret ,̃ over that. We map each path t (a sequence
of states with successors determined by atomic steps) to t′ (a sequence of states
with successors determined by rounds) as follows: first t is divided into contiguous
subsequences, each one containing a round (we have omitted the precise details of
how this can be done); t′ is the projection of t onto the states at the delimiters.8

Now interpreting ,̃ over the resulting tree will correctly provide an estimate of
numbers of rounds rather than atomic steps; however we require more, namely
a bound that dominates all possible such interpretations.

We assume some program Round which represents the overall effect of a
round — it is the sequential composition, in some order, of some number of
atomic steps (where each step is determined by some Pi in this case). To abstract
from that order and how rounds are delimited, we assume no more about Round’s
behaviour except the following: we require Round to terminate and that each
Pi appears somewhere in the sequential composition. The trick now is to specify
those requirements (i.e. to define ‘round’) in a way that allows promotion of
atomic-step properties to round properties: we use the technique of invariants.

local invariants If I is in ES and wp.([]1≤i≤NPi).I I then
wp.Round.I I .

fair progress If I, I ′ in ES are both local invariants and
there is some i such that wp.Pi.I I ′ then
wp.Round.I I ′ ,

(3)

where an invariant I is said to be local if wp.Pi.I I for all i, equivalently
if wp.([]1≤i≤NPi).I I. This technique is very powerful, for although local
invariants may be difficult to find, they are easy to check.

The fair progress property is specific to computations in the context of fair
execution. It states that if an invariant I ′ holds initially, and if from within that
invariant some (helpful) Pi establishes a second invariant I, then I must hold
at the end of the round — fairness must guarantee that Pi executes at some
stage in the round, and no matter how the round begins if I ′ holds initially,
invariance ensures that it holds at that stage; after which the now established
invariant I continues to hold, no matter how the round is completed. The local
invariant property is a special case of that, and in fact implies termination of
Round. Termination is specified by the property wp.Round.1 1 which follows
from the local invariant rule with I taken to be 1.

8 This is effectively sequentially composing the atomic steps.

Quantitative Program Logic and Performance 29

The problem of counting rounds now becomes one of interpreting ©̃ as
w̃p.Round in the definition of ,̃, but then only using properties (3) to deduce
properties of wp.Round (hence of w̃p.Round, Def. 2.2). With those conventions
we can specify the expected time to the first eating event as ,̃(∃i · Ei), and our
next task is to consider how in general to estimate upper bounds on ,̃A, for
some A, using only local invariants.

We introduce a second performance operator set out in Fig. 6 which counts
steps in a different way. Informally #̃A counts the expected number of times
that A holds ever along paths in the computation tree. If A holds in the current
state on a path, it is deemed to be one more visit to A; similarly unfolding the
fixed point once reveals a corresponding ‘1+’ in that case 9.The new performance
operator is related to ,̃A by observing that for characteristic A the number of
times A holds on the path is at least as great as the length of the path until A
holds. Other properties of # are set out in Fig. 7. (Note that with this notation
we have returned briefly to the abstract notions of Sec. 3.)

The connection between performance and local invariants is to be found in
the visit-eventually rule. It generalises a result from Markov processes [5] which
says that the expected number of visits to A is the probability that A is ever
reached (

∼
A) conditioned on the event that it is never revisited (probability

1−p). Its relevance here is that an upper bound on
∼

A/(1−p) (and hence on
#̃A) may be calculated from upper bounds on both

∼
A and ©̃∼

A, both of
which are implied by lower bounds on local invariants, and the next theorem
sets out how to do that.

least possible visits to A #A: = (µX (©X) if A else A + ©X)

greatest possible visits to A #A: = (µX (©X) if A else A + ©X)

A is {0, 1}-valued.

Fig. 6. The expected number of visits.

Theorem 4.1 Consider a distributed system defined by processes P1, ..., PN

arbitrated by a fair scheduler. Given an expectation A and local invariants I, I ′

such that A 1−I and I ′ wp.Pi.I for some i, then #̃A, the maximal possible
number of times that A holds (after executions of Round) is given by

#̃A 1/(1−q) ,

9 A more succinct form for #A is given by (µX A + ©X).

30 Annabelle K. McIver

suplinearity #(A + B) #A + #B

visit-reach)A #A
with equality if A ©A

visit-eventually #A
∼

A/(1−p) ,

where p: = ("s: A ©(
∼

A).s).

A is {0, 1}-valued. We write ("s:A f.s) for the maximum value of f.s when s ranges
over the (predicate) A. In the visit-eventually rule, p is the greatest possible probability
that A is ever revisited; if p = 1 that upper bound is formally infinite.

Fig. 7. Some properties of expected visits

where q: = 1 − (#s : A · I ′.s) and ©̃ is defined to be w̃p.Round in the definition
of #̃.
Proof: Using the notation of the visit-eventually property of Fig. 7 we see
that an upper bound on #̃A is given by upper bounds on both

∼
A and p.

By appealing to feasibility (Fig. 4) and arithmetic we deduce immediately that
#̃A 1/(1−q) for any q ≥ p. All that remains is to calculate the condition on
q. We begin by estimating an upper bound for w̃p.Round.(

∼
A).

w̃p.Round.(
∼

A) Fig. 7
monotonicity, footnote 7; A 1 − I

w̃p.Round.(
∼

(1 − I))
≡ w̃p.Round.(1 − (1 − (1 − I))) duality, Fig. 4

≡ w̃p.Round.(1 − I) arithmetic

w̃p.Round.(1 − I) I I ; invariants, Fig. 4
≡ 1 − wp.Round.I Def. 2.2

1 − I ′ , fair progress, (3)

(4)

where in the last step we are using our assumption that there is some philosopher
such that wp.Pi.I I ′ for local invariant I ′. Next we bound q:

q ≥ p

if q ≥ ("s: A · w̃p.Round(
∼

A).s) definition p, Fig. 7
if q ≥ ("s: A · (1 − I ′).s) (4)

if q ≥ 1 − (#s: A · I ′.s) , arithmetic

as required.

Finally we are in a position to tackle the dining philosophers: our principal
tools will be Thm. 4.1 and suplinearity of Fig. 7 — the latter property allows

Quantitative Program Logic and Performance 31

the problem to be decomposed, making application of Thm. 4.1 easier (since it
is then applied to fragments of the state space rather than to the whole state
space). Deciding how to choose an appropriate decomposition often depends on
the probabilistic invariant properties, and we discuss them next.

Ordinary program invariants are predicates that are maintained; probabilistic
invariants, on the other hand, describe predicates that are maintained only with
some probability, and we end this section by illustrating one such for the dining
philosophers.

Consider first the case first when two philosophers (Pi and Pi+1) are in the
configuration (li∨Li)∧(ri+1∨Ri+1). Informally we reason that the configuration
is maintained unless one of Pi or Pi+1 eats: other philosophers cannot disturb
it, and inspection of Pi shows that li can only evolve to Li, and that Li can
only evolve to Ei (since Pi+1 is in state ri+1 ∨ Ri+1). More generally we reason
that A: = (∃i · (li ∨ Li) ∧ (ri+1 ∨ Ri+1) ∨ Ei) is always maintained, if it is ever
established.

Next, to factor in probability, we look for a property that is only maintained
with some probability. Again we consider the neighbours Pi and Pi+1 but this
time for the the configuration (li ∨ Li) ∧ Ti+1. As before the configuration can
only evolve to eating, unless Pi+1 is scheduled, and when it is the state ri+1 (and
thus A) is established with probability 1/2; hence defining A′ to be

(∃i · (li ∨ Li) ∧ Ti+1) ∧ A ,

we argue that if A∨A′ ever holds, then it must continue to hold with probability
at least 1/2. Expressed in the logic, we say that that A+A′/2 is a local invariant.
Checking formally that wp.Pi.(A+A′/2) A+A′/2 confirms that fact. (Notice
that the invariants are expressions over the whole state space, however we only
need check invariance with respect to a single philosopher.)

Finally if we define I: = A and I ′: = A + A′/2 the remarks above imply that
Thm. 4.1 provides an upper bound of 2 on #̃A′. Intuition tells us that the bound
must be finite since from probability theory [5] A′ cannot be visited infinitely
often if there is always a probability of 1/2 of reaching an ordinary invariant A,
disjoint from A′.

Calculations such as the above are required to find individual upper bounds
on the return visits to a collection of predicates whose union implies the whole
space. The particular invariant properties of the algorithm provide the best guide
for choosing a decomposition. For example, if I is a (standard) local invariant
and J is a predicate disjoint from I, and if ©.I.s = p for all s in J , where
0 < p < 1 then I + pJ is also a (probabilistic) invariant. Thus I and J might
form part of a suitable decomposition. (We would put I ′: = I + pJ to deduce
a maximum of 1/(1−p) visits to J .) But whatever the decomposition, the most
important feature of this method is that once invariants are discovered, verifying
that they satisfy the properties of Thm. 4.1 is straightforward in the logic.

The precise decomposition used for the analysis of the dining philosophers
follows that of the correctness proof (appearing elsewhere [17]), and it gives a

32 Annabelle K. McIver

total expected time to first eating of no more than 33 (compare 63 of [11]). The
details of those calculations are set out elsewhere [12].

5 Conclusion

In this paper we have shown how ordinary correctness techniques of distributed
algorithms can be applied to probabilistic programs by using quantitative pro-
gram logic, and that the methods apply even in the evaluation of performance.
This treatment differs from other approaches to performance analysis of proba-
bilistic algorithms [11, 3, 6] in that we do not refer explicitly to the distribution
over computation paths; neither do we factor out the nondeterminism as a first
step nor do we analyse the behaviour of the composed system: instead we use
compositionality of local properties thus simplifying our formal reasoning. Other
approaches using expectations [19, 8] do not treat nondeterminism and thus are
not applicable to distributed algorithms like this at all.

Acknowledgements

This paper reports work carried out at Oxford within a project supported by the
EPSRC — Carroll Morgan and Jeff Sanders are also members of that project.

References

[1] M. Ben-Ari, A. Pnueli, and Z. Manna. The temporal logic of branching time.
Acta Informatica, 20:207–226, 1983.

[2] K. M. Chandy and J. Misra. Parallel Program Design: A Foundation. Addison-
Wesley, Reading, Mass., 1988.

[3] L. de Alfaro. Temporal logics for the specification of performance and reliability.
Proceedings of STACS ’97, LNCS volume 1200, 1997.

[4] E.W. Dijkstra. A Discipline of Programming. Prentice Hall International, Engle-
wood Cliffs, N.J., 1976.

[5] W. Feller. An Introduction to Probability Theory and its Applications, volume 1.
Wiley, second edition, 1971.

[6] H. Hansson and B. Jonsson. A logic for reasoning about time and probability.
Formal Aspects of Computing, 6(5):512–535, 1994.

[7] Jifeng He, K.Seidel, and A. K. McIver. Probabilistic models for the guarded
command language. Science of Computer Programming, 28(2,3):171–192, January
1997.

[8] D. Kozen. A probabilistic PDL. In Proceedings of the 15th ACM Symposium on
Theory of Computing, New York, 1983. ACM.

[9] D. Kozen. Results on the propositional µ-calculus. Theoretical Computer Science,
27:333–354, 1983.

[10] D. Lehmann and M. O. Rabin. On the advantages of free choice: a symmetric and
fully-distributed solution to the Dining Philosophers Problem. In Proceedings of
the 8th Annual ACM Symposium on Principles of Programming Languages, pages
133–138, New York, 1981. ACM.

Quantitative Program Logic and Performance 33

[11] N. Lynch, I. Saias, and R. Segala. Proving time bounds for randomized distributed
algorithms. Proceedings of 13th Annual Symposium on Principles of Distributed
Algorithms, pages 314–323, 1994.

[12] A.K. McIver. Quantitative program logic and efficiency in probabilistic distributed
algorithms. Technical report. See QLE98 at http [18].

[13] A.K. McIver. Reasoning about efficiency within a probabilistic mu-calculus. 1998.
Submitted to pre-LICS98 workshop on Probabilistic Methods in Verification.

[14] C. C. Morgan, A. K. McIver, and K. Seidel. Probabilistic predicate transformers.
ACM Transactions on Programming Languages and Systems, 18(3):325–353, May
1996.

[15] Carroll Morgan. The generalised substitution language extended to probabilistic
programs. In Proceedings of B’98: the Second International B Conference. See
B98 at http [18], number 1397 in LNCS. Springer Verlag, April 1998.

[16] Carroll Morgan and Annabelle McIver. A probabilistic temporal calculus based on
expectations. In Lindsay Groves and Steve Reeves, editors, Proc. Formal Methods
Pacific ’97. Springer Verlag Singapore, July 1997. Available at [18].

[17] C.C. Morgan and A.K. McIver. Correctness proof for the randomised dining
philosophers. See RDP96 at http [18].

[18] PSG. Probabilistic Systems Group: Collected reports.
http://www.comlab.ox.ac.uk/oucl/groups/probs/bibliography.html.

[19] M. Sharir, A. Pnueli, and S. Hart. Verification of probabilistic programs. SIAM
Journal on Computing, 13(2):292–314, May 1984.

[20] P. Whittle. Probability via expectations. Wiley, second edition, 1980.

