
Improved Algorithms for Elliptic Curve
Arithmetic in GF (2n)

Julio López1? and Ricardo Dahab2??

1 Dept. of Computer Science, University of Valle
A. A. 25130 Cali, Colombia
julioher@dcc.unicamp.br

2 Institute of Computing, State University of Campinas
C.P. 6176, 13083-970, Campinas, SP, Brazil

rdahab@dcc.unicamp.br

Abstract. This paper describes three contributions for efficient imple-
mentation of elliptic curve cryptosystems in GF (2n). The first is a new
method for doubling an elliptic curve point, which is simpler to imple-
ment than the fastest known method, due to Schroeppel, and which
favors sparse elliptic curve coefficients. The second is a generalized and
improved version of the Guajardo and Paar’s formulas for computing
repeated doubling points. The third contribution consists of a new kind
of projective coordinates that provides the fastest known arithmetic on
elliptic curves. The algorithms resulting from this new formulation lead
to a running time improvement for computing a scalar multiplication of
about 17% over previous projective coordinate methods.

1 Introduction

Elliptic curves defined over finite fields of characteristic two have been proposed
for Diffie-Hellman type cryptosystems [1]. The calculation of Q = mP , for P
a point on the elliptic curve and m an integer, is the core operation of elliptic
curve public-key cryptosystems. Therefore, reducing the number of field oper-
ations required to perform the scalar multiplication mP is crucial for efficient
implementation of these cryptosystems.

In this paper we discuss efficient methods for implementing elliptic curve
arithmetic. We present better results than those reported in [8,5,2]; our basic
technique is to rewrite the elliptic operations (doubling and addition) with less
costly field operations (inversions and multiplications), and replace general field
multiplications by multiplications by fixed elliptic coefficients.

The first method is a new formula for doubling a point, i.e., for calculating
the sum of equal points. This method is simpler to implement than Schroeppel’s
method [8] since it does not require a quadratic solver. If the elliptic curve
coefficient b is sparse, i.e., with few 1’s in its representation, thus making the

? Research supported by a CAPES-Brazil scholarship
?? Partially supported by a PRONEX-FINEP grant no. 107/97

S. Tavares and H. Meijer (Eds.): SAC’98, LNCS 1556, pp. 201–212, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

202 Julio López and Ricardo Dahab

multiplication by the constant bmore efficient than a general field multiplication,
then our new formula should lead to an improvement of up to 12% compared
to Schroeppel’s method [8]. We also note that our formula can be applied to
composite finite fields as well.

In [2], a new approach is introduced for accelerating the computation of
repeated doubling points. This method can be viewed as computing consecutive
doublings using fractional field arithmetic. We have generalized and improved
the formulas presented in that paper. The new formulas can be used to speed-
up variants of the sliding-window method. For field implementations where the
cost-ratio of inversion to multiplication varies form 2.5 to 4 (typical values of
practical software field implementations), we expect a speed-up of 7% to 22% in
performing a scalar multiplication.

In [7], Schroeppel proposes an algorithm for computing repeated doubling
points removing most of the general field multiplications, and favoring elliptic
curves with sparse coefficients. Using his method, the computation of 2iP, i ≥ 2
requires i field inversions, i multiplications by a fixed constant, one general field
multiplication, and a quadratic solver. Since inversion is the most expensive
field operation, this method is suitable for finite fields where field inversion is
relatively fast. If the cost-ratio of inversion to multiplication is less than 3, this
algorithm may be faster than our repeated doubling algorithm.

When field inversion is costly (e.g., for normal basis representation, the cost-
ratio of inversion to multiplication is at least 7 [2,8]), projective coordinates offer
an alternative method for efficiently implementing the elliptic curve arithmetic.
Based on our doubling formula, we have developed a new kind of projective
coordinates which should lead to an improvement of 38% over the traditional
projective arithmetic coordinates [4] and 17% on the recent projective coordi-
nates presented in [5], for calculating a multiple of a point.

The remainder of the paper is organized as follows. Section 2 presents a
brief summary of elliptic curves defined over finite fields of characteristic two. In
Section 3, we present our doubling point algorithm. Based on this method, we
describe an algorithm for repeated doubling points in Section 4. In Section 5, we
describe the new projective coordinates.An implementation of the doubling and
adding projective algorithms is given in the appendix.

2 Elliptic Curves over GF (2n)

A non-supersingular elliptic curve E over GF (2n) is defined to be the set of
solutions (x, y) ∈ GF (2n)×GF (2n) to the equation,

y2 + xy = x3 + ax2 + b ,

where a and b ∈ GF (2n), b 6= 0, together with the point at infinity denoted by
O.

It is well known that E forms a commutative finite group, with O as the
group identity, under the addition operation known as the “tangent and chord

Improved Algorithms for Elliptic Curve Arithmetic in GF (2n) 203

method”. Explicit rational formulas for the addition rule involve several arith-
metic operations (adding, squaring, multiplication and inversion) in the under-
lying finite field. In what follows, we will only be concerned with formulas for
doubling a point P in affine coordinates; formulas for adding two different points
in affine or projective coordinates can be found in [4,5].

Let P = (x1, y1) be a point of E. The doubling point formula [4] to compute
2P = (x2, y2) is given byx2 = x2

1 + b
x2

1

,

y2 = x2
1 + (x1 + y1

x1
) · x2 + x2 .

(1)

Note that the x-coordinate of doubling point formula 2P depends only on the
x-coordinate of P and the coefficient b, but doubling a point requires two general
field multiplications, one multiplication by the constant b and one field inversion.

Schroeppel [6] improved the doubling point formula saving the multiplication
by the constant b. His improved doubling point formula is :

x2 = M2 +M + a ,
y2 = x2

1 +M · x2 + x2 ,
M = x1 + x1

y1
.

(2)

Observe that the x-coordinates of the previous doubling point formula lead to
the quadratic equation for M :

M2 +M + a = x2
1 +

b

x2
1

. (3)

If we assume that the cost of multiplying by a sparse fixed constant is comparable
in speed to field addition, and that solving the previous quadratic equation is
faster, then we obtain another method for doubling a point with an effective
cost of one general multiplication and one field inversion. A description of this
method, developed by Schroeppel, can be found in [8, pp. 370-371] and [5].

In the next section, we introduce a new doubling point formula which requires
also a general field multiplication, one field inversion, but does not depend on a
quadratic solver.

3 A New Doubling Point Formula

Given an elliptic curve point P = (x1, y1), the coordinates of the doubling point
2P = (x2, y2) can be calculated by the following new doubling point formula:

x2 = x2
1 + b

x2
1

,

y2 = b
x2

1
+ ax2 + (y2

1 + b) · (1 + b
x4

1

) .
(4)

204 Julio López and Ricardo Dahab

To derive the above formula we transform the y-coordinate of the doubling point
formula (2):

y2 = x2
1 + (x1 +

y1

x1
) · x2 + x2 =

b

x2
1

+ (
y2

1 + b+ ax2
1

x2
1

) · x2

=
b

x2
1

+ ax2 +
y2

1 + b

x2
1

· (x
4
1 + b

x2
1

) =
b

x2
1

+ ax2 + (y2
1 + b) · (1 +

b

x4
1

) .

3.1 Performance Analysis

We begin with the observation that our doubling formula eliminates the need
for computing the field element M from formula (2), which requires either one
general multiplication or a quadratic solver. The calculation of 2P requires one
general field multiplication, two field multiplications by the fixed constant b,
and one field multiplication by the constant a. This last multiplication can be
avoided by choosing the coefficient a to be 0 or 1.1 Thus, our formula favors
elliptic curves with sparse coefficients, i.e., those having relatively few 1’s in
their representation.

In order to compare the running time of our formula with Schroeppel’s
method [8] for computing a scalar multiplication, we made the following as-
sumptions:

– Adding and squaring field elements is fast.
– Multiplying a field element by a sparse constant is comparable to adding.
– The cost of solving the quadratic equation (3) and determining the right

solution is about half of that of a field multiplication (this is true for the
finite field implementation given in [6], but no efficient method is known for
tower fields [7]).

The fastest methods for computing a scalar multiplication [6,3] perform five point
doublings for every point-addition, on average. Table 1 compares our formula,
in performing a scalar multiplication, for different values of the cost-ratio r of
inversion to multiplication.

Therefore, for practical field implementations as those given in [6,9,2], our
formula should lead to a running time improvement of up to 12% in computing
a scalar multiplication. However, for elliptic curves selected at random (where
the coefficient b is not necessarily sparse), both our and Schroeppel’s method
may not give a computational advantage. A better algorithm for computing 25P
is presented in the next section.

4 Repeated Doubling Algorithm

We present a method for computing repeated doublings, 2iP, i ≥ 2, which is
based on fractional field arithmetic and the doubling formula. The idea is to
1 E is isomorphic to E1: y

2 + xy = x3 + αx2 + b, where Tr(α) = Tr(a), α = 0 or γ
and Tr(γ) = 1 (if n is odd, we can take γ = 1), see [4, p. 39].

Improved Algorithms for Elliptic Curve Arithmetic in GF (2n) 205

Table 1. The number of field multiplications for computing 25P +Q.

Cost-Ratio New Formula Schroeppel [8] Improv.
#Mult. #Mult. %

r = 2 19 21.5 12

r = 2.5 22 24.5 10

r = 3 25 27.5 9

r = 4 31 33.5 7

successively compute the elliptic points 2jP = (xj , yj), j = 1, 2, . . . , i, as triples
(νj, ωj, δj) of field elements, where xi = νi

δi
and yi = ωi

δ2
i

. The exact formulation

is given in

Theorem 1. Let P = (x, y) be a point on the elliptic curve E. Then the coor-
dinates of the point 2iP = (xi, yi), i ≥ 2, are given by

xi =
νi
δi

, (5)

yi =
ωi
δ2
i

. (6)

where

νk+1 = ν4
k + bδ4

k , ν0 = x

δk+1 = (δk · νk)2 , δ0 = 1
ωk+1 = bδ4

k · δk+1 + νk+1 · (aδk+1 + ω2
k + bδ4

k) , ω0 = y, 0 ≤ k < i.

Proof. We will prove by induction on i that xi = νi
δi

and yi = ωi
δ2
i

. This is easily

true for i = 1. Now assume that the statement is true for i = n; we prove it for
i = n+ 1:

xn+1 =
b

x2
n

+ x2
n =

bδ2
n

ν2
n

+
ν2
n

δ2
n

=
bδ4
n + ν4

n

ν2
n · δ2

n

=
νn+1

δn+1
;

similarly, for yn+1 we obtain:

yn+1 =
b

x2
n

+ axn+1 + (y2
n + b) · (1 +

b

x4
n

)

=
bδ2
n

ν2
n

+ a
νn+1

δn+1
+ (

ω2
n

δ4
n

+ b) · (1 +
bδ4
n

ν4
n

)

=
bδ4
n

δn+1
+ a

νn+1

δn+1
+

(ω2
n + bδ4

n) · νn+1

δ2
n+1

=
ωn+1

δ2
n+1

.

206 Julio López and Ricardo Dahab

The following algorithm, based on Theorem 1, implements repeated dou-
blings in terms of the affine coordinates of P = (x, y).

Fig. 1. Algorithm 1: Repeated doubling points.

Input: P = (x, y) ∈ E i ≥ 2.
Output: Q = 2iP.

Set V ← x2, D ← V, W ← y, T ← b.
for k = 1 to i− 1 do

Set V ← V 2 + T.
Set W ← D · T + V · (aD +W 2 + T).
if k 6= i− 1 then

V ← V 2, D ← D2, T ← bD2, D← D · V .
fi

od
Set D ← D · V .
Set M ← D−1 · (V 2 +W).
Set x← D−1 · V 2.
Set xi ←M2 +M + a, yi ← x2 +M · xi + xi.
return(Q= (xi, yi)).

Note that the correctness of this algorithm follows directly from the proof of
Theorem 1 and formula (2).

Corollary 1 Assume that P is an elliptic point of order larger than 2i. Then
Algorithm 1 performs 3i−1 general field multiplications, i−1 multiplications by
the fixed constant b, and 5i− 4 field squarings.

4.1 Complexity Comparison

Since Algorithm 1 cuts down the number of field inversions at the expense of
more field multiplications, the computational advantage of Algorithm 1 over re-
peated doubling (using the standard point doubling formula (2)) depends on r,
the cost-ratio of inversion to multiplication. Assuming that adding and squaring
is fast, we conclude, from Corollary 1, that Algorithm 1 outperforms the com-
putation of five consecutive doublings when r > 2. Table 2 shows the number of
field multiplications needed for computing 25P +Q for several methods and for
different values of r. Note that the standard algorithm and Guajardo and Paar’s
formulas do not use the elliptic coefficient b, whereas Algorithm 1 does.

Improved Algorithms for Elliptic Curve Arithmetic in GF (2n) 207

Table 2. Comparison of Algorithm 1 with other algorithms.

Ratio Algorithm1 Schroeppel [7] G.P. [2] Standard (2)
r b sparse b random b sparse b random b random b random

2.5 21 25 18.5 22.5 27 27

3 22 26 21.5 25.5 28 30

3.5 23 27 24.5 28.5 29 33

4 24 28 27.5 31.5 30 36

Algorithm 1 obtains its best performance for field implementations when r
is at least three. If the elliptic curve is selected at random, then we expect Algo-
rithm 1 to be up to 22% faster than the standard algorithm. For field implemen-
tations where r < 3, (for example [6,9]), Schroeppel’s method [7] outperforms
Algorithm 1.

5 A New Kind of Projective Coordinates

When field inversion in GF (2n) is relatively expensive, then it may be of com-
putational advantage to use fractional field arithmetic to perform elliptic curve
additions, as well as, doublings. This is done with the use of projective coordi-
nates.

5.1 Basic Facts

A projective plane P 2 is defined to be the set of equivalence classes of triples
(X, Y, Z), not all zero, where (X1, Y1, Z1) and (X2, Y2, Z2) are said to be equiv-
alent if there exists λ ∈ GF (2n), λ 6= 0 such that X1 = λX2, Y1 = λ2Y2 and
Z1 = λZ2. Each equivalence class is called a projective point. Note that if a
projective point P = (X, Y, Z) has nonzero Z, then P can be represented by
the projective point (x, y, 1), where x = X/Z and y = Y/Z2. Therefore, the
projective plane can be identified with all points (x, y) of the ordinary (affine)
plane plus the points for which Z = 0.

Any equation f(x, y) = 0 of a curve in the affine plane corresponds to an
equation F (X, Y, Z) = 0, where F is obtained by replacing x = X/Z, y = Y/Z2,
and multiplying by a power of Z to clear the denominators. In particular, the
projective equation of the affine equation y2 + xy = x3 + ax2 + b is given by

Y 2 +XY Z = X3Z + aX2Z2 + bZ4 .

If Z = 0 in this equation, then Y 2 = 0, i.e., Y = 0. Therefore, (1, 0, 0) is the
only projective point that satisfies the equation for which Z = 0. This point is
called the point at infinity (denoted O).

The resulting projective elliptic equation is

E = {(x, y, z) ∈ P 2, y2 + xyz = x3z + ax2z2 + bz4} .

208 Julio López and Ricardo Dahab

To convert an affine point (x, y) to a projective point, one sets X = x, Y =
y, Z = 1. Similarly, to convert a projective point (X, Y, Z) to an affine point,
we compute x = X/Z, y = Y/Z2. The projective coordinates of the point
−P (X, Y, Z) are given by − P (X, Y, Z) = (X,XZ + Y, Z). The algorithms for
adding two projective points are given below.

5.2 Projective Elliptic Arithmetic

In this section we present new formulas for adding elliptic curve points in pro-
jective coordinates.

Projective Elliptic Doubling

The projective form of the doubling formula is

2(X1, Y1, Z1) = (X2, Y2, Z2) ,

where

Z2 = Z2
1 ·X2

1 ,

X2 = X4
1 + b · Z4

1 ,

Y2 = bZ4
1 ·Z2 +X2 · (aZ2 + Y 2

1 + bZ4
1) .

Projective Elliptic Addition

The projective form of the adding formula is

(X0, Y0, Z0) + (X1, Y1, Z1) = (X2, Y2, Z2) ,

where

A0 = Y1 ·Z2
0 , D = B0 +B1 , H = C · F ,

A1 = Y0 ·Z2
1 , E = Z0 · Z1 , X2 = C2 +H +G ,

B0 = X1 · Z0 , F = D · E , I = D2 ·B0 ·E +X2 ,
B1 = X0 · Z1 , Z2 = F 2 , J = D2 · A0 +X2 ,
C = A0 +A1 , G = D2 · (F + aE2) , Y2 = H · I + Z2 · J .

These formulas can be improved for the special case Z1 = 1:

(X0, Y0, Z0) + (X1, Y1, 1) = (X2, Y2, Z2),

where

A = Y1 · Z2
0 + Y0 , E = A · C ,

B = X1 · Z0 +X0 , X2 = A2 +D +E ,
C = Z0 ·B , F = X2 +X1 · Z2 ,
D = B2 · (C + aZ2

0) , G = X2 + Y1 · Z2 ,
Z2 = C2 , Y2 = E · F + Z2 ·G .

Improved Algorithms for Elliptic Curve Arithmetic in GF (2n) 209

5.3 Performance Analysis

The new projective doubling algorithm requires three general field multiplica-
tions, two multiplications by a fixed constant, and five squarings. Since doubling
a point takes one general field multiplication less than the previous projective
doubling algorithm given in [5], we obtain an improvement of about 20% for dou-
bling a point, in general. For sparse coefficients b, we may obtain an improvement
of up to a 25%.

The new projective adding algorithm requires 13 general multiplications,
one multiplication by a fixed constant and six squarings. If a = 0 (or a = 1)
and Z1 = 1, then only nine general field multiplications and four squarings
are required. Thus, we obtain one field multiplication less than the previous
projective addition algorithm presented in [5]. The number of field operations
required to perform an elliptic addition for various kinds of projective coordinates
is listed in Table 3.

Now we can estimate the improvement of a scalar multiplication using the
new projective coordinates. We will consider only the case a = 0 (or a = 1) and
Z1 = 1, since for this situation we obtain the best improvement. The number of
field operations for computing 25P + Q is given in Table 3. Using these values
we can conclude that the computation of a scalar multiplication, based on the
new projective coordinates, is on average 17% and 38% faster than the previous
projective coordinates [4,5].

Table 3. The number of field operations for 25P +Q (a = 0 or 1, Z1 = 1)

Projective Doubling Adding Cost of 25P +Q
coordinates #Mult. #Sqr. #Mult. #Sqr. #Mult. #Sqr.

(x/z, y/z2) 4 5 9 4 29 29

(x/z2, x/z3) 5 5 10 4 35 29

(x/z, y/z) 7 5 12 1 47 26

210 Julio López and Ricardo Dahab

6 Conclusions

We have presented improved methods for faster implementation of the arithmetic
of an elliptic curve defined over GF (2n). Our methods are easy to implement
and can be applied to all elliptic curves defined over fields of characteristic two,
independently of the specific field representation. They favor sparse elliptic co-
efficients but also perform well for elliptic curves selected at random. In general,
they should lead to an improvement of up to 20% in the computation of scalar
multiplication.

7 Acknowledgments

We thank the referees for their helpful comments.

References

1. W. Diffie and M. Hellman, “New Directions in Cryptography,” IEEE Transactions
in Informations Theory, IT-22:644-654, November 1976.

2. J. Guajardo and C. Paar, “Efficient Algorithms for Elliptic Curve Cryptosystems”,
Advances in Cryptology, Proc. Crypto’97, LNCS 1294, B. Kaliski, Ed., Springer-
Verlag,1997,pp. 342-356.

3. K Koyama and Y. Tsuruoka, “Speeding up elliptic cryptosystems by using a signed
binary window method,” Advances in Cryptology, Proc. Crypto’92, LNCS 740, E.
Brickell, Ed., Springer-Verlag, 1993, pp. 345-357.

4. A. Menezes, Elliptic curve public key cryptosystems, Kluwer Academic Publishers,
1993.

5. IEEE P1363: Editorial Contribution to Standard for Public Key Cryptography,
February 9, 1998.

6. R. Schroeppel, H. Orman, S. O’Malley and O. Spatscheck, “Fast key exchange with
elliptic curve systems,” Advances in Cryptology, Proc. Crypto’95, LNCS 963, D.
Coppersmith, Ed., Springer-Verlag, 1995, pp. 43-56.

7. R. Schroeppel, “Faster Elliptic Calculations in GF (2n),” preprint, March 6, 1998.
8. J. Solinas, “An improved algorithm for arithmetic on a family of elliptic curves,”

Advances in Cryptology, Proc. Crypto’97, LNCS 1294, B. Kaliski, Ed., Spring-
Verlag, 1997, pp. 357-371.

9. E. De Win, A. Bosselaers, S. Vanderberghe, P. De Gersem and J. Vandewalle,
“A fast software implementation for arithmetic operations in GF (2n),” Advances
in Cryptology, Proc. Asiacrypt’96, LNCS 1163, K. Kim and T. Matsumoto, Eds.,
Springer-Verlag, 1996, pp. 65-76.

Improved Algorithms for Elliptic Curve Arithmetic in GF (2n) 211

8 Appendix

Algorithm 2: Projective Elliptic Doubling Algorithm

Input: the finite field GF (2m); the field elements a and c = b2
m−1

(c2 = b)
defining a curve E over GF (2m); projective coordinates (X1, Y1, Z1) for a point
P1 on E.
Output: projective coordinates (X2, Y2, Z2) for the point P2 = 2P1.

1. T1 ← X1

2. T2 ← Y1

3. T3 ← Z1

4. T4 ← c
5. if T1 = 0 or T3 = 0 then

output (1, 0, 0) and stop.
6. T3 ← T2

3

7. T4 ← T3 × T4

8. T4 ← T2
4

9. T1 ← T2
1

10. T3 ← T1 × T3 = Z2

11. T1 ← T2
1

12. T1 ← T4 + T1 = X2

13. T2 ← T2
2

14. if a 6= 0 then
T5 ← a
T5 ← T3 × T5

T2 ← T5 + T2

15. T2 ← T4 + T2

16. T2 ← T1 × T2

17. T4 ← T3 × T4

18. T2 ← T4 + T2 = Y2

19. X2 ← T1

20. Y2 ← T2

21. Z2 ← T3

This algorithm requires 3 general field multiplications, 5 field squarings and 5
temporary variables. If also a = 0, then only 4 temporary variables are required.

212 Julio López and Ricardo Dahab

Algorithm 3: Projective Elliptic Adding Algorithm

Input: the finite field GF (2m); the field elements a and b defining a curve E
over GF (2m); projective coordinates (X0, Y0, Z0) and (X1, Y1, 1) for points P0

and P1 on E.
Output: projective coordinates (X2, Y2, Z2) for the point P2 = P0 + P1, unless
P0 = P1. In this case, the triple (0, 0, 0) is returned. (The triple (0,0,0) is not
a valid projective point on the curve, but rather a marker indicating that the
Doubling Algorithm should be used, see [5].)

1. T1 ← X0

2. T2 ← Y0

3. T3 ← Z0

4. T4 ← X1

5. T5 ← Y1

6. T6 ← T4 × T3

7. T1 ← T6 + T1 = B
8. T6 ← T2

3

9. if a 6= 0 the
T7 ← a
T7 ← T6 × T7

10. T6 ← T5 × T6

11. T2 ← T6 + T2 = A
12. if T1 = 0 then

if T2 = 0 then output (0, 0, 0) and stop.
else output (1,0,0) and stop.

13. T6 ← T1 × T3 = C
14. T1 ← T2

1

15. if a 6= 0 then
T7 ← T6 + T7

T1 ← T7 × T1 = D
else T1 ← T6 × T1 = D

16. T3 ← T2
6 = Z2

17. T6 ← T2 × T6 = E
18. T1 ← T6 + T1

19. T2 ← T2
2

20. T1 ← T2 + T1 = X2

21. T4 ← T3 × T4

22. T5 ← T3 × T5

23. T4 ← T1 + T4 = F
24. T5 ← T1 + T5 = G
25. T4 ← T6 × T4

26. T5 ← T3 × T5

27. T2 ← T4 + T5 = Y2

28. X2 ← T1

29. Y2 ← T2

30. Z2 ← T3

This algorithm requires 9 general field multiplications, 4 field squarings and 7
temporary variables. If also a = 0, then only 6 temporary variables are required.

	Introduction
	Elliptic Curves over $GF(2^n)$
	 A New Doubling Point Formula
	Performance Analysis

	 Repeated Doubling Algorithm
	Complexity Comparison

	 A New Kind of Projective Coordinates
	Basic Facts
	 Projective Elliptic Arithmetic
	Performance Analysis

	Conclusions
	Acknowledgments
	Appendix

