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Abstract. At SAC ’97, Itoh, Okamoto and Mambo presented a fast pub-
lic key cryptosystem. After analyzing several attacks including lattice-
reduction attacks, they claimed that its security was high, although the
cryptosystem had some resemblances with the former knapsack cryp-
tosystems, since decryption could be viewed as a multiplicative knapsack
problem. In this paper, we show how to recover the private key from a
fraction of the public key in less than 10 minutes for the suggested choice
of parameters. The attack is based on a systematic use of the notion of
the orthogonal lattice which we introduced as a cryptographic tool at
Crypto ’97. This notion allows us to attack the linearity hidden in the
scheme.

1 Introduction

Two decades after the discovery of public key cryptography, only a few asym-
metric encryption schemes exist, and the most practical public key schemes are
still very slow compared to conventional secret key schemes. Extensive research
has been conducted on public-key cryptography based on the knapsack problem.
Knapsack-like cryptosystems are quite interesting: they are easy to implement,
can attain very high encrypt/decrypt rates, and do not require expensive op-
erations. Unfortunately, all the cryptosystems based on the additive knapsack
problem have been broken, mainly by means of lattice-reduction techniques.
Linearity is probably the biggest weakness of these schemes.

To overcome this problem, multiplicative knapsacks have been proposed as an
alternative. The idea of multiplicative knapsack is roughly 20 years old and was
first proposed in the open literature by Merkle and Hellman [3] in their original
paper. Merkle-Hellman’s knapsack was (partially) cryptanalyzed by Odlyzko [8],
partly because only decryption was actually multiplicative, while encryption was
additive.

Recently, two public-key cryptosystems based on the multiplicative knapsack
problem have been proposed: the Naccache-Stern cryptosystem [4] presented
at Eurocrypt ’97, and the Itoh-Okamoto-Mambo cryptosystem [1] presented
at SAC ’97. In the latter one, both encryption and decryption were relatively
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fast. After analyzing several attacks including lattice-reduction attacks, Itoh,
Okamoto and Mambo claimed that the security of their cryptosystem was high.

We present a very effective attack against this cryptosystem. In practice, one
can recover the private key from the public key in less than 10 minutes for the
suggested choice of parameters. The attack is based on a systematic use of the
notion of the orthogonal lattice which we introduced as a cryptographic tool at
Crypto ’97 [5]. As in [5,7,6], this technique enables us to attack the linearity
hidden in the keys generation process.

2 Description of the Cryptosystem

The message space is ZM , the ring of integers modulo an integer M . Let N be
a product of two large primes P and Q. Let l and n be integers such that l ≤ n.
Select positive integers q1, . . . , qn less than P 1/l and distinct primes q′1, . . . , q′n
such that:

– For all i, q′i divides qi.
– For all i 6= j, q′j does not divide qi/q′i.

Choose an integer t in ZN coprime with P , and integers k1, . . . , kn in ZN satis-
fying the following congruence:

ki ≡ tqi (modP ).

Finally, select random elements e1, . . . , en in ZM .
The public key consists of: the (ei, ki)’s, M , N , n and l.
The secret key consists of: P , Q, t, the qi’s and the q′i’s.

2.1 Encryption

Let s ∈ ZM be the plaintext. Alice chooses l integers i1, . . . , il (not necessarily
distinct) in {1, . . .n}. The ciphertext is (m, r) ∈ ZM × ZN defined by:

m ≡ s+ ei1 + ei2 + · · ·+ eil (mod M)
r ≡ ki1ki2 . . . kil (mod N)

2.2 Decryption

Let (m, r) be the ciphertext. First, Bob computes r′ ≡ (tl)−1r (mod P ), We
have:

r′ ≡ qi1qi2 . . . qil (mod P ).
Since each qli is strictly less than P , we actually have:

r′ = qi1qi2 . . . qil .

Eventually, Bob recovers s as follows:

1. Let i = 1.
2. If q′i divides r′, let m := m− ei (modM) and r′ = r′/qi.
3. If r′ = 1, Bob gets m as a plaintext. Otherwise, increment i and start again

at Step 2.
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2.3 Parameters

In their paper [1], Itoh, Okamoto and Mambo analyzed several possible attacks,
including a lattice-reduction attack. They concluded that their cryptosystem was
secure for the following choice of parameters:

– N = 1024 bits, P = 768 bits and Q = 256 bits.
– n = 180 and l = 17.
– qmax = 245 (6 bytes) and q′max = 232 (4 bytes).

In this example, the public key takes 45 Kbytes and the private key takes 1.8
Kbytes. Compared to RSA-1024 with small exponent, encryption speed is simi-
lar, but decryption is about 50 times faster.

3 The Orthogonal Lattice

We recall a few useful facts about the notion of an orthogonal lattice, which
was introduced in [5] as a cryptographic tool. Let L be a lattice in Zn where
n is any integer. The orthogonal lattice L⊥ is defined as the set of elements
in Zn which are orthogonal to all the lattice points of L, with respect to the
usual dot product. We define the lattice L̄ = (L⊥)⊥ which contains L and whose
determinant divides the one of L. The results of [5] which are of interest to us
are the following two theorems:

Theorem 1. If L is a lattice in Zn, then dim(L) + dim(L⊥) = n and:

det(L⊥) = det(L̄).

Thus, det(L⊥) divides det(L). This implies that if L is a low-dimensional lattice
in Zn, then a reduced basis of L⊥ will consist of very short vectors compared to
a reduced basis of L. In practice, most of the vectors of any reduced basis of L⊥

are quite short, with norm around det(L̄)1/(n−dimL).

Theorem 2. There exists an algorithm which, given as input a basis of a lattice
L in Zn, outputs an LLL-reduced basis of the orthogonal lattice L⊥, and whose
running time is polynomial with respect to n, d and the size of the basis elements.

In practice, one obtains a simple and very effective algorithm (which consists
of a single lattice reduction, described in [5]) to compute a reduced basis of the
orthogonal lattice, thanks to the celebrated LLL algorithm [2]. This means that,
given a low-dimensionalL in Zn, one can easily compute many short and linearly
independent vectors in L⊥.

4 Attacking the Scheme by Orthogonal Lattices

Let m be an integer less than n. Define the following vectors in Zm:

k = (k1, k2, . . . , km)
q = (q1, q2, . . . , qm)
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Note that an attacker knows k, but not q. By construction of the keys, we have
the following congruence:

k ≡ tq (modP ).

This leads to a simple remark:

Lemma 3. Let u ∈ Zm. If u⊥k then u⊥q or ‖u‖ ≥ P/‖q‖.

Proof. We have: tq.u ≡ 0 (mod P ). Therefore q.u ≡ 0 (mod P ), and the result
follows by Cauchy-Schwarz. ut

This remark is interesting because ‖q‖ is much smaller than P . Indeed, since
each qi < P 1/l, we have:

‖q‖ <
√
mP 1/l.

Therefore, if u ∈ Zm is orthogonal to k then it is also orthogonal to q or satisfies

‖u‖ ≥ P (l−1)/l

√
m

(1)

which implies that u is quite long.
Furthermore, from the previous section, one can expect to find many vectors

orthogonal to k, with norm around

‖k‖1/(m−1) ≤ (P
√
m)1/(m−1).

This quantity is much smaller than the right quantity of (1) when m is large
enough, so that we make the following assumption:

Assumption 4. Let (b1,b2, . . . ,bm−1) be a reduced basis of k⊥. Then the first
m− 2 vectors b1,b2, . . . ,bm−2 are orthogonal to q.

Actually, one can prove that the first vector of an LLL-reduced basis satisfies
the assumption, but this is not enough.

Now assume that the hypothesis holds. Then q belongs to the 2-dimensional
lattice L = (b1, . . . ,bm−2)⊥. One expects the vectors b1, . . . ,bm−2 to have norm
around ‖k‖1/(m−1). Therefore, the determinant of L should be around

‖k‖(m−2)/(m−1) ≈ ‖k‖.

But q belongs to L and its norm is much smaller than ‖k‖1/2. This leads to a
more general assumption which is as follows:

Assumption 5. Let (b1,b2, . . . ,bm−1) be a reduced basis of k⊥. Then q is a
shortest vector of the 2-dimensional lattice (b1,b2, . . . ,bm−2)⊥.

If this hypothesis holds, one can use the Gaussian algorithm for lattice reduc-
tion (which has worst-case polynomial time and average-case constant time) to
recover ±q.
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Next, we easily recover the secret factorization P × Q using the so-called
differential attack described in [1]. More precisely, there exist integers p1, . . . , pn
such that:

ki ≡ piP + tqi (mod N).

Therefore, we have for all i 6= j:

qjki − qikj ≡ (piqj − pjqi)P (mod N).

It is likely that gcd(qjki − qikj, N) is equal to P . And if it is not, we can try
again with a different (i, j).

To sum up, the attack is the following:

1. Select an integer m ≤ n.
2. Compute a reduced basis (b1, . . . ,bm−1) of the lattice k⊥.
3. Compute a reduced basis (a1, a2) of the lattice (b1, . . . ,bm−2)⊥.
4. Compute a shortest vector s of the previous lattice.
5. Select integers i 6= j in {1, . . . , n} and denote the coordinates of s by si.
6. If gcd(sjki − sikj, N) is not a proper factor of N , restart at previous step.

In practice, we perform Steps 3 and 4 by a single LLL-reduction and take a1 as
s. Only Steps 2 and 3 take a little time. Note that we do not need to compute
a complete reduced basis in Step 2 since the last vector is useless.

Once q and the secret factorization of N are found, it is not a problem to
recover the rest of the secret key:

– t modulo P is given by ki ≡ tqi (modP ).
– The q′i’s (or something equivalent) are revealed by the factors of the qi’s.

5 Experiments

We implemented the attack using the NTL package [9] which includes efficient
lattice-reduction algorithms. We used the LLL floating point version with ex-
tended exponent to compute orthogonal lattices, since the entries of k were too
large (about the size of N) for the usual floating point version.

In practice, the attack reveals the secret factorization as soon as m ≥ 4 for
the suggested choice of parameters. When m ≤ 20, the total computation time
is less than 10 minutes on a UltraSparc-I clocked at 167 MHz.

6 Conclusion

We showed that the cryptosystem presented by Itoh, Okamoto and Mambo at
SAC ’97 is not secure. The core of our attack is the notion of the orthogonal
lattice which we introduced at Crypto ’97, in order to cryptanalyze a knapsack-
like cryptosystem proposed by Qu and Vanstone. The attack is very similar
to the attack we devised against the so-called Merkle-Hellman transformations.
This is because the congruence k ≡ tq (modP ), which is used in the keys
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generation process, looks like a Merkle-Hellman transformation: in a Merkle-
Hellman equation, we have an equality instead of a congruence.

We suggest that the design of multiplicative knapsack cryptosystems should
avoid any kind of linearity. But this might be at the expense of efficiency.
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