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Abstract. Ajtai recently found a random class of lattices of integer
points for which he could prove the following worst-case/average-case
equivalence result: If there is a probabilistic polynomial time algorithm
which finds a short vector in a random lattice from the class, then there
is also a probabilistic polynomial time algorithm which solves several
problems related to the shortest lattice vector problem (SVP) in any
n-dimensional lattice. Ajtai and Dwork then designed a public-key cryp-
tosystem which is provably secure unless the worst case of a version of the
SVP can be solved in probabilistic polynomial time. However, their cryp-
tosystem suffers from massive data expansion because it encrypts data
bit-by-bit. Here we present a public-key cryptosystem based on similar
ideas, but with much less data expansion.
Keywords: Public-key cryptosystem, lattice, cryptographic security.

1 Introduction

Since the origin of the idea of public-key cryptography, there have been many
public-key techniques described in the literature. The security of essentially all of
these depends on certain widely believed but unproven mathematical hypothe-
ses. For example, the well-known RSA public-key cryptosystem relies on the
hypothesis that it is difficult to factor a large integer n which is known to be
a product of two large primes. This hypothesis has been extensively studied,
but there is still no proof that for a typical such n, the prime factors cannot
be found in less than k steps, where k is a very large number. From a compu-
tational complexity point of view, we generate a specific instance of a problem
in NP (together with a solution, which is kept secret) and we rely on the belief
that the problem is difficult to solve.

Apart from the lack of proof that any of these problems is really hard, i.e.,
there exists no efficient algorithm that will solve the problem in all cases, there
is another serious issue. The mathematical hypothesis that these problems are
difficult to solve really means difficult to solve in the worst case, but the security
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of the cryptographic algorithms depends more on the difficulty of the average
case. For example, even if one day factoring is proved to be unsolvable in prob-
abilistic polynomial time, to the users of the RSA system, there is no guarantee
that the key they are actually using is hard to factor. To use these protocols, one
must be able to generate specific instances of the problem which should be hard
to solve. But typically there is no way to just generate known hard instances.
One way to do this is to generate random instances of the problem, and hope
that such instances are as hard on the average as in the worst case. However this
property is known to be not true for a number of NP-hard problems.

Recently Ajtai [1] proved that certain lattice problems related to SVP have
essentially the same average case and worst case complexity, and both are con-
jectured to be extremely hard. This development raises the possibility of public-
key cryptosystems which will have a new level of security. Already Ajtai and
Dwork [3] have proposed a public-key cryptosystem which has a provable worst-
case/average-case equivalence. Specifically, the Ajtai-Dwork cryptosystem is se-
cure unless the worst case of a certain lattice problem can be solved in proba-
bilistic polynomial time.

Goldreich, Goldwasser and Halevi [11] have also given a public-key cryptosys-
tem which depends on similar lattice problems related to SVP as in [1]. Unlike
the work of [3], however, their method uses a trapdoor one-way function and
also lacks a proof of worst-case/average-case equivalence.

The cryptosystems of [3] are unfortunately far from being practical. All of
them encrypt messages bit-by-bit and involve massive data expansion: the en-
cryption will be at least a hundred times as long as the message. (Note: In a
private communication, Ajtai has informed us that this data expansion problem
is being addressed by the authors of [3] as well.) In this paper we propose a
public-key cryptosystem, based on the ideas of [1] and [3], which has much less
data expansion. Messages are encrypted in blocks instead of bit-by-bit. We offer
some statistical analysis of our cryptosystem. We also analyze several attacks on
the system and show that the system is secure against these attacks. Whether
there is a provable worst-case/average-case equivalence for this system is open.

2 Lattice problems with worst-case/average-case
equivalence

Here we briefly define the terms for lattice problems, and describe the results of
Ajtai [1] and some improvements.

Notation. R is the field of real numbers, Z is the ring of integers, Rn is the
space of n-dimensional real vectors a = 〈a1, . . . , an〉 with the usual dot product
a · b and Euclidean norm or length ‖a‖ = (a · a)1/2. Zn is the set of vectors in
Rn with integer coordinates, Z+ is the positive integers and Zq is the ring of
integers modulo q.

Definition. If A = {a1, . . . , an} is a set of linearly independent vectors in Rn,
then we say that the set of vectors

{
∑n
i=1 kiai : k1, . . . , kn ∈ Z}
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is a lattice in Rn. We will denote the lattice by L(A) or L(a1, . . . , an). We call
A a basis of the lattice. We say that a set in Rn is an n-dimensional lattice
if there is a basis V of n linearly independent vectors such that L = L(V ). If
A = {a1, . . . , an} is a set of vectors in a lattice L, then we define the length of
the set A by maxni=1 ‖ai‖. λ1(L) = min0 6=v∈L ||v||.

A fundamental theorem of Minkowski is the following:

Theorem 1 (Minkowski). There is a universal constant γ, such that for any
lattice L of dimension n, ∃v ∈ L, v 6= 0, such that

||v|| ≤ γ
√

n det(L)1/n.

The determinant det(L) of a lattice is the volume of the n-dimensional fun-
damental parallelepiped, and the absolute constant γ is known as Hermite’s
constant.

Minkowski’s theorem is a pure existence type theorem; it offers no clue as to
how to find a short or shortest non-zero vector in a high dimensional lattice. To
find the shortest non-zero vector in an n-dimensional lattice, given in terms of
a basis, is known as the Shortest Vector Problem (SVP). There are no known
efficient algorithms for finding the shortest non-zero vector in the lattice. Nor are
there efficient algorithms to find an approximate short non-zero vector, or just
to approximate its length, within any fixed polynomial factor in its dimension
n. This is still true even if the shortest non-zero vector v is unique in the sense
that any other vector in the lattice whose length is at most nc‖v‖ is parallel to
v, where c is an absolute constant. In this case we say that v is unique up to a
polynomial factor.

The best algorithm to date for finding a short vector in an arbitrary lattice in
Rn is the L3 algorithm of A.K. Lenstra, H.W. Lenstra and L. Lovász [14]. This
algorithm finds in deterministic polynomial time a vector which differs from the
shortest one by at most a factor 2(n−1)/2. C.P. Schnorr [16] proved that the factor
can be replaced by (1+ ε)n for any fixed ε > 0. However Schnorr’s algorithm has
a running time with 1/ε in the exponent.

Regarding computational complexity, Ajtai [2] proved that it is NP-hard to
find the shortest lattice vector in Euclidean norm, as well as approximating the
shortest vector length up to a factor of 1 + 1

2nk
. In a forthcoming paper [6],

Cai and Nerurkar improve the NP-hardness result of Ajtai [2] to show that the
problem of approximating the shortest vector length up to a factor of 1 + 1

nε ,
for any ε > 0, is also NP-hard. This improvement also works for all lp-norms,
for 1 ≤ p < ∞. Prior to that, it was known that the shortest lattice vector
problem is NP-hard for the l∞-norm, and the nearest lattice vector problem
is NP-hard under all lp-norms, p ≥ 1 [12,17]. Even finding an approximate
solution to within any constant factor for the nearest vector problem for any
lp-norm is NP-hard [4]. On the other hand, Lagarias, Lenstra and Schnorr [13]
showed that the approximation problem (in l2-norm) within a factor of O(n)
cannot be NP-hard, unless NP = coNP. Goldreich and Goldwasser showed that
approximating the shortest lattice vector within a factor of O(

√
n/ logn) is

not NP-hard assuming the polynomial time hierarchy does not collapse [9]. Cai
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showed that finding an n1/4-unique shortest lattice vector is not NP-hard unless
the polynomial time hierarchy collapses [7].

What is most striking is a recent result of Ajtai [1] establishing the first
explicit connection between the worst-case and the average-case complexity of
the problem of finding the shortest lattice vector or approximating its length.
The connection factor in the Ajtai connection has been improved in [5]. Ajtai
defined a class of lattices in Zm so that if there is a probabilistic polynomial time
algorithm which finds a short vector in a random lattice from the class with a
probability of at least 1/nO(1), then there is also a probabilistic polynomial time
algorithm which solves the following three lattice problems in every lattice in Zn

with a probability exponentially close to 1:

(P1) Find the length of a shortest non-zero vector in an n-dimensional lattice,
up to a polynomial factor.

(P2) Find the shortest non-zero vector in an n-dimensional lattice where the
shortest vector is unique up to a polynomial factor.

(P3) Find a basis in an n-dimensional lattice whose length is the smallest pos-
sible, up to a polynomial factor.

The lattices in the random class are defined modulo q (q is an integer depend-
ing only on n, as described below), that is, if two integer vectors are congruent
modulo q then either both of them or neither of them belong to the lattice. More
precisely, if ν = {u1, . . . , um} is a given set of vectors in Znq then the lattice Λ(ν)
is the set of all integer vectors 〈h1, . . . , hm〉 so that∑m

i=1 hiui ≡ 0 (mod q).

For a fixed n, m and q, the probability distribution over the random class is
defined by uniformly choosing a sequence of integer vectors 〈u1, . . . , um〉.

For a given n, the parameters m and q are defined by m = [c1n] and q = [nc2],
where c1 and c2 are suitable constants.

The problem of finding a short vector in a lattice from the random class
is a Diophantine problem. Questions of this type date back to Dirichlet’s 1842
theorem on simultaneous Diophantine approximation. From this point of view
the problem can be stated in the following way, which does not involve any
explicit mention of lattices, as pointed out in [10].
(A1) Given n, m = [c1n], q = [nc2 ] and an n by m matrix M with entries in Zq ,
find a non-zero vector x so that Mx ≡ 0 (mod q) and ‖x‖ < n.

Minkowski’s theorem guarantees the existence of such short vectors x. Of
course if the condition on ‖x‖ is removed, then the linear system Mx ≡ 0
(mod q) can be solved in polynomial time.

The theorem in [1] reduces the worst-case complexity of each of the problems
(P1), (P2), (P3) to the average case complexity of (A1). Currently the best
bounds that can be achieved are stated below [5], [8]:

Theorem 2. [5] For any constant ε > 0, if there exists a probabilistic poly-
nomial time algorithm A such that, for a given random lattice Λ(ν), where
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ν = (u1, . . . , um) ∈ Zn×mq is uniformly chosen, q = Θ(n3) and m = Θ(n),
A will find a vector of the lattice Λ(ν) of length ≤ n with probability 1

nO(1) , then,
there also exists a probabilistic polynomial time algorithm B which for any given
lattice L = L(a1, . . . , an) by a basis a1, . . . , an ∈ Zn, outputs another basis for
L, b1, . . . , bn, so that,

n
max
i=1
‖bi‖ ≤ Θ(n3.5+ε) min

all bases b′1,... ,b′n for L

n
max
i=1
‖b′i‖.

Theorem 3. [8] Under the same hypothesis, there exists a probabilistic polyno-
mial time algorithm C which for any given lattice L = L(a1, . . . , an) by a basis
will

– compute an estimate of λ1 = λ1(L) up to a factor n4+ε, i.e., compute a
numerical estimate λ̃1, such that

λ1

n4+ε
≤ λ̃1 ≤ λ1;

– find the unique shortest vector if it is an n4+ε-unique shortest vector.

3 A new cryptosystem

Here we present the design of a new cryptosystem, which is based on the difficulty
of finding or approximating SVP, even though no specific lattices are defined.
The secret key in the new system is a vector u chosen with uniform distribution
from the unit sphere Sn−1 = {x | ||x|| = 1}, and a random permutation σ on
m+1 letters. By allowing an exponentially small round-off error, we may assume
that the coordinates of u are rational numbers whose denominators are bounded
by some very large integer, exponential in n. Let m = [cn] for a suitable absolute
constant c < 1. For definiteness set c = 1/2. Let Hi = {v : v · u = i} denote the
hyperplanes perpendicular to u. The public key in the new system is a parameter
b > 0 and a set {vσ(0), . . . , vσ(m)} of rational vectors, where each vj is in one of
the hyperplanes Hi for some i ∈ Z+, say vj ·u = Nj ∈ Z+. We choose a sequence
of numbers Nj so that it is superincreasing, that is

N0 > b and Ni >
∑i−1
j=0 Ni + b for each i = 1, 2, . . . , m.

Binary plaintext is encrypted in blocks of m + 1 bits. If P = (δ0, . . . , δm) is
a plaintext block (δi = 0 or 1), then P is encrypted as a random perturbation of∑m
i=0 δivσ(i). More precisely, the sender picks a uniformly chosen random vector

r with ||r|| ≤ b/2. Then the ciphertext is

m∑
i=0

δivσ(i) + r.
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Decryption is accomplished by using the secret key u to compute the following
inner product

S = u ·
(

m∑
i=0

δivσ(i) + r

)

=
m∑
i=0

δi(u · vσ(i)) + u · r

=
m∑
i=0

δiNσ(i) + u · r

=
m∑
i=0

δσ−1(i)Ni + u · r.

Since the Ni are superincreasing, we can use the greedy algorithm to ef-
ficiently recover the δσ−1(i) from S, and then use the secret σ to recover δi.
More precisely, if δσ−1(m) = 1, then S ≥ Nm − b/2, and if δσ−1(m) = 0, then
S ≤ N0+N1+. . .+Nm−1+b/2. Since Nm >

∑m−1
i=0 Ni+b, with the secret key one

can discover whether δσ−1(m) = 0 or 1. Substituting S by S′ = S − δσ−1(m)Nm,
this process can be continued until all δσ−1(i) are recovered. Then using the
secret permutation σ, one recovers δ0, δ1, . . . , δm.

Thus decryption using u and σ involves an easy instance of a knapsack prob-
lem. As summarized in the article of Odlyzko [15], essentially all suggestions for
cryptosystems based on knapsack problems have been broken. Here, however,
the easy knapsack problem appears to have no bearing on the security of the
system, since it appears that one must first search for the direction u.

The new cryptosystem has similarities with the third version of the Ajtai-
Dwork cryptosystem (see [3]), but in the new system m + 1 = O(n) bits of
plaintext are encrypted to an n-dimensional ciphertext vector, instead of just
one bit of plaintext.

We have not specified the distribution of the vi, aside from its inner product
with u being superincreasing. The following distribution has a strong statistical
indistinguishability from m + 1 independent uniform samples of the sphere. Let
M be a large integer, say, M � 2n. Choose any b′ > b. For analysis purposes we
will normalize by denoting vi/M as vi. For each i, 0 ≤ i ≤ m, let vi = 2ib′

M u +√
1− 22ib′2

M2 ρi, where the ρi’s are independently and uniformly distributed on
the (n − 2)-dimensional unit sphere orthogonal to u. Note that each ||vi|| = 1,
after normalization. We denote this distribution by D. We note that

u · vi − u ·

i−1∑
j=0

vj

 =
2ib′

M
>

i−1∑
j=0

2jb′

M
=

b′

M
>

b

M
.

How secure is this new cryptosystem? We do not have a proof of worst-
case/average-case equivalence. We can discuss several ideas for attacks that do
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not seem to work. The following discussion will also explain some of the choices
made in the design of the cryptosystem.

We will first show that if we did not employ the random permutation σ, rather
we publish as public key the unpermuted vectors v0, . . . , vm, then there is an
attack based on linear programming that will break the system in polynomial
time.

The attack works as follows: From the given vectors v0, . . . , vm we are assured
that the following set of inequalities defines a non-empty convex body containing
the secret vector u.

v0 · x > b

v1 · x > v0 · x + b

v2 · x > (v0 + v1) · x + b

...
...

...
vm · x > (v0 + v1 + · · ·+ vm−1) · x + b

Using linear programming to find a feasible solution to this convex body, we
can compute in polynomial time a vector ũ satisfying all the inequalities. Even
though ũ may not be equal to u, as along as ũ satisfies the above set of inequal-
ities, it is as good as u itself to decrypt the message

∑m
i=0 δivi + r. Hence, the

permutation σ is essential to the security of the protocol.
Next, let’s consider the addition of the random perturbation r. This is to

guard against an attack based on linear algebra, which works as follows.
Assume the message w =

∑m
i=0 δivσ(i) were sent without the perturbation

vector r. Then this vector is in the linear span of {vσ(0), vσ(1), . . . , vσ(m)}, which
is most likely to be linearly independent, by the way these vi’s are chosen. Then
one can solve for the m + 1 < n coefficients xi in w =

∑m
i=0 xivσ(i). These

coefficients are unique by linear independence, thus xi = δi, and we recover the
plaintext.

The addition of the random perturbation r renders this attack ineffective,
since with probability very near one, w =

∑m
i=0 δivσ(i) + r is not in the linear

span of {vσ(0), vσ(1), . . . , vσ(m)}, which is of dimension at most m + 1. (If r
were truly uniformly random from the ball ||x|| ≤ b/2, then the probability
that w belongs to the lower dimensional linear span is zero; if r is chosen with
rational coordinates with exponentially large denominator, then this probability
is exponentially small.) When the vector w is not in the linear span, to recover
the coefficients δi appears to be no easier than the well known nearest lattice
vector problem, which is believed to be intractable.

Finally if the lengths of the vectors vi are not kept essentially the same, there
can be statistical leakage of information (see Section 4). However, suppose the
vi are all roughly the same length, then the number of message bits m = cn
should be less than n. If m were equal to cn, for a constant c > 1, then there is
the following cryptanalytic attack.
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Suppose ‖vi‖ ≈ V for each i and define numbers Qi by

Qi =
|u · vi|
‖u‖‖vi‖

≈ Ni

‖u‖V .

Since the integers Ni are superincreasing, we can show that for all i < m−3 logn,
Qi < Qm/n3. In fact, let m′ = m − 3 logn, then we can inductively prove
that Qm′+j > 2jQm′−1 ≥ 2jQi for all i < m′. Thus for each i < m′ we have
Qi < Qm/n3. We will say that these Qi are “unusually small” (compared to
maxQj). Of course one cannot compute the Qi’s since one is given only the
permuted ordering by σ and u is secret.

The attack begins with the selection of a random subset of n− 1 vectors vi.
If we get all n−1 vectors having an unusually small dot product with the secret
vector u, then the normal vector perpendicular to all these n− 1 vectors will be
a good approximation to u. From this one can break the system. We show next
that with non-trivial probability 1/nO(1), all n − 1 vectors have an unusually
small dot product with the secret vector u. This is at least(

cn−3 logn
n−1

)(
cn
n−1

) ≥
(

1− 3 logn

cn− n

)n
≈ n−

3
c−1 .

Thus one can try for a polynomial number of times, and with high probability
one will find such a set of n− 1 vectors and break the system. This attack will
not work if m = n/2.

4 Statistical analysis

It is clear from the discussion that the secret permutation σ as well as the random
perturbation r are both necessary. With a secret permutation σ, however, an
adversary may still attempt to find or approximate the secret vector u. In this
section, the random perturbation r does not play an essential role in the analysis;
it is easier to discard r in the following analysis, which is essentially the same
with r, although a little less clean. Thus we will carry out the following analysis
with b = 0 and r = 0.

A natural attack is to gather statistical information by computing some val-
ues associated with the vectors vσ(0), . . . , vσ(m) which are invariant under the
permutations. It is conceivable, for example, that

∑m
i=0 vi =

∑m
i=0 vσ(i) might

have a non-trivial correlation with the secret direction u since each vi has a
positive component in the u direction. We will show that if we did not choose
our distribution for the vi’s carefully, then indeed this attack may succeed; but
the distribution D appears to be secure against this attack.

Consider again the structural requirement that v0 · u > 0, and vi · u >
(v0 + · · · + vi−1) · u. A natural distribution for the vi’s is to choose increment
vectors wi so that vi = (v0 + · · · + vi−1) + wi, where wi are independently
and uniformly distributed on the (n− 1)-dimensional hemisphere Sn−1

+ = {x ∈
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Rn | ||x|| = 1, x · u > 0}, which consists of all the unit vectors in Rn in the u
direction. We will call this distribution F .

Let si = v0 + · · · + vi, 0 ≤ i ≤ m. Then v0 = w0, vi = si−1 + wi, and
si = 2iw0 + · · ·20wi by an easy induction. We need some preliminaries. Let βn
denote the n-dimensional volume of the unit n-ball, let δn−1 denote the (n− 1)-
dimensional volume of the unit (n − 1)-sphere, then

βn =
∫ 1

0

δn−1r
n−1dr =

δn−1

n
, n ≥ 2.

And

βn =
∫ 1

−1

βn−1(
√

1− h2)n−1dh = 2βn−1In,

where the integral In =
∫ π

2
0 sinn θdθ = n−1

n In−2 = . . . =
√
π

2

Γ(n+1
2 )

Γ(n+2
2 ) . In ≈

√
π
2n

asymptotically for large n. Also

βn =
∫ 2π

0

∫ 1

0

βn−2(
√

1− h2)n−2rdrdθ = βn−2
2π

n
=

πn/2

Γ
(
n+2

2

) .
We will use the uniform distribution U on sets such as the hemisphere Sn−1

+ ,
namely the Lebesgue measure on Sn−1

+ , and we will denote a random variable
X uniformly distributed on such a set S by X ∈U S. The following analysis
is carried out using the exact Lebesgue measure. In the actual cryptographic
protocols, this must be replaced by an exponentially close approximation on the
set of rational points with exponentially large (polynomially bounded in binary
length) denominators. The errors are exponentially small and thus insignificant.
For clarity of presentation, we will state all results in terms of the exact Lebesgue
measure.

Lemma 1. Let w, w′ ∈U Sn−1
+ be independently and uniformly distributed on

the unit (northern) hemisphere. Let u be the north pole. Then the expectation of
the inner product

E[w · u] =
1

(n − 1)In−2
=

2
(n− 1)

√
π

Γ
(
n
2

)
Γ
(
n−1

2

) ≈√ 2
πn

.

Also,

E[(w · u)2] =
1
n

.

E[(w · u)(w′ · u)] = (E[w · u])2 ≈ 2
πn

.
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Proof For w ∈U Sn−1
+ , the density function for the value of the inner product

h = w · u is

pn−1(h) = (
√

1− h2)n−3/In−2.

Hence

E[w · u] =
∫ 1

0

hpn−1(h)dh =
1

(n − 1)In−2
=

2
(n− 1)

√
π

Γ
(
n
2

)
Γ
(
n−1

2

) ≈√ 2
πn

.

Similarly

E[(w · u)2] =
∫ 1

0

h2pn−1(h)dh =
1
n

.

We note in passing that ESn−1 [(w · u)2] over the whole unit sphere Sn−1 is 1/n
as well, by symmetry h→ −h.

The last equality follows from independence of w and w′,

E[(w · u)(w′ · u)] = E[hh′] = E[h]E[h′] = (E[h])2 ≈ 2
πn

.

2

Lemma 2. Let w, w′, w′′ ∈U Sn−1
+ be independently and uniformly distributed on

the unit hemisphere. Then

E[w · w′] = (E[w · u])2 ≈ 2
πn

.

E[(w · w′)2] =
1
n

.

E[(w · w′)(w ·w′′)] = (E[w · u])2E[(w · u)2] ≈ 2
πn2

.

Proof Let w, w′, w′′ ∈U Sn−1
+ . Choose a coordinate system so that u is the

nth-coordinate. Then w ·w′ =
∑n
i=1 xi(w)yi(w′). By linearity and independence

E[w · w′] =
∑n
i=1 E[xi]E[yi]. For i < n, the symmetry xi → −xi implies that

E[xi] = 0. For i = n, xn(w) = w · u, and similarly for yn(w′). Then it follows
that E[xn] = E[yn] = E[h], and

E[w · w′] = (E[h])2 ≈ 2
πn

.

For E[(w ·w′)2], expand (
∑n
i=1 xiyi)2 =

∑n
i=1 x2

i y
2
i +
∑

1≤i 6=j≤n xiyixjyj . For
i 6= j, at least one of i or j is not n, and by independence and the symmetry
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xi → −xi, we have E[xiyixjyj ] = E[xixj ]E[yiyj ] = 0. Thus the expectation of
the second term is 0. By linearity and independence

E[(w · w′)2] =
n∑
i=1

E[x2
i ]E[y2

i ].

For i = n, it is (E[h2])2 = 1/n2. For i < n, by the symmetry xn → −xn, it can
be seen that E[x2

i ] is the same if we were to evaluate this expectation on the
uniform distribution on the whole unit sphere. But on the whole sphere this is
the same as ESn−1 [x2

n] = ESn−1 [h2]. This, however, by the symmetry h → −h,
is the same again if we were to evaluate it back on the hemisphere Sn−1

+ . Hence
ultimately E[x2

i ] = E[h2] = 1/n, and E[x2
i ]E[y2

i ] = 1/n2. It follows that

E[(w · w′)2] = 1/n.

Finally for E[(w ·w′)(w ·w′′)], we expand the product (
∑n
i=1 xiyi)(

∑n
j=1 xjzj)

=
∑n
i=1 x2

i yizi +
∑

1≤i 6=j≤n xiyixjzj . For i 6= j, at least one of them is not n, so
that either E[yi] = 0 or E[zj] = 0, thus

∑
1≤i 6=j≤nE[x2

i ]E[yi]E[zj] = 0. Then

E[(w · w′)(w · w′′)] =
n∑
i=1

E[x2
i ]E[yi]E[zi].

For i < n, E[yi] = 0 by symmetry as before. For i = n, it is E[h2](E[h])2 ≈ 2
πn2 .

2

For the distribution F , we will show that the secret information u is not safe.
In fact we claim that sm can be used to approximate the direction u. Consider
sm · u = 2m(w0 · u) + · · ·+ 20(wm · u).

EF [sm · u] = (2m + · · ·+ 20)E[w · u] ≈ 2m+1

√
2

πn
.

Next we compute the variance VarF [sm · u]. First (sm · u)2 = 22m(w0 · u)2 +
· · ·+ 20(wm · u)2 +

∑
0≤i 6=j≤m 2m−i2m−j(wi · u)(wj · u). So

EF [(sm · u)2] = (22m + · · ·+ 20)E[(w · u)2] +
∑

0≤i 6=j≤m
2i+jE[(w · u)(w′ · u)]

=
4m+1 − 1

3n
+

 ∑
0≤i,j≤m

2i+j −
∑

0≤i≤m
22i

 (E[w · u])2

≈ 4m+1

3n
+

4m+2

3πn
=

4m+1

3πn
(4 + π).

It follows that

VarF [sm · u] ≈ 4m+1

3πn
(π − 2).
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We note that the normalized ratio

EF [sm · u]√
VarF [sm · u]

≈
√

6
π − 2

≈ 2.2925564.

This indicates that sm has a significant correlation with the hidden direction u,
and hence u can not be considered secure under this distribution F .

More directly it can be shown that

EF [sm · (vm − vm−1)]
EF [||sm||]EF [||vm − vm−1||]

≥ 1

asymptotically. Thus one can expect sm to be used to distinguish vm from the
others.

We now return to our chosen distribution D, and show that in this dis-
tribution there is no easy statistical leakage. In this distribution, vi = 2i

M u +√
1− 22i

M2 ρi, and ρi are independently and uniformly distributed on the (n− 2)-
dimensional unit sphere orthogonal to u. Recall ||vi|| = 1. Let s′i = v0 + . . .+ vi.
We consider ||s′m||2 and s′m · u. Clearly ||s′i||2 = (m + 1) +

∑
0≤i 6=j≤m(vi · vj).

Lemma 3. For 0 ≤ i 6= j ≤ m,

ED [vi · vj ] =
2i+j

M2
, and VarD[vi · vj] =

1
n− 1

(
1− 22i

M2

)(
1− 22j

M2

)
.

Proof We have vi · vj = 2i+j

M2 +
√

1− 22i

M2

√
1− 22j

M2 (ρi · ρj). By symmetry,

ESn−2 [ρi · ρj ] = 0, so that ED[vi · vj ] = 2i+j

M2 . Thus,

VarD[vi · vj ] =
(

1− 22i

M2

)(
1− 22j

M2

)
VarD [ρi · ρj ].

We have VarD[ρi·ρj ] = ED[(ρi ·ρj)2] =
∫ 1

−1 h2(pn−2(h)/2)dh = 1
n−1 . The lemma

follows. 2

Now

ED [||s′m||2] = (m + 1) +
∑

0≤i 6=j≤m

2i+j

M2
,

and
∑

0≤i 6=j≤m 2i+j =
∑

0≤i,j≤m 2i+j−
∑m
i=0 22i ≈ 8

3
(2m/M)2. Hence ED[||s′m||2]

≈ (m+1)+ 22m+3

3
. Ignoring the exponentially small term 22m/M2, ED [||s′m||2] ≈

m + 1.
One should compare this with the uniform distribution U for which all vi’s

are independently and uniformly distributed on Sn−1. In this case EU [vi ·vj] = 0,
for i 6= j, and EU [||s′m||2] = m + 1.
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We next evaluate the variance VarD [||s′m||2].

VarD[||s′m||2] = ED


 ∑

0≤i 6=j≤m
(vi · vj −ED[vi · vj ])


2


= 4ED


 ∑

0≤i<j≤m

√
1− 22i

M2

√
1− 22j

M2
(ρi · ρj)


2


= 4ED

∑
(i<j)

(
1− 22i

M2

)(
1− 22j

M2

)
(ρi · ρj)2


+ 4ED

 ∑
(i<j)6=(i′<j′)

c(ij)c(i′j′)(ρi · ρj)(ρi′ · ρj′)

 .

For (i < j) 6= (i′ < j′), there are two cases. If (i, j, i′, j′) are all distinct indices,
then clearly ρi · ρj and ρi′ · ρj′ are independent. Thus ED [(ρi · ρj)(ρi′ · ρj′)] =
ED[ρi · ρj ]ED[ρi′ · ρj′ ] = 0. If there are only 3 distinct indices among (i, j, i′, j′),
say i = i′, then by fixing ρi, the conditional distribution of ρi ·ρj and ρi ·ρj′ over
ρj and ρj′ are independent, and ED[(ρi · ρj)|ρi] = ED[(ρi · ρj′)|ρi] = 0. Thus in
any case ED[(ρi · ρj)(ρi′ · ρj′)] = 0, for (i < j) 6= (i′ < j′), and

VarD[||s′m||2] = 4
∑

0≤i<j≤m

(
1− 22i

M2

)(
1− 22j

M2

)
ED

[
(ρi · ρj)2

]
.

We have ED

[
(ρi · ρj)2

]
= ESn−2 [h2] = 1/(n − 1). Ignoring exponentially small

terms such as 2m/M , we get

VarD[||s′m||2] ≈
4

n− 1

(
m + 1

2

)
.

This is to be compared to the uniform distribution U . Again ||s′i||2 = (m +
1) +

∑
0≤i 6=j≤m(vi · vj). But for the uniform distribution U , EU [vi · vj] = 0, for

i 6= j, and so

VarU [||s′m||2] = EU


 ∑

0≤i 6=j≤m
(vi · vj)


2


= 4EU

 ∑
0≤i<j≤m

(vi · vj)2 +
∑

(i<j)6=(i′<j′)

(vi · vj)(vi′ · vj′)

 .

By the same argument, EU [(vi · vj)(vi′ · vj′)] = 0, for all (i < j) 6= (i′ < j′).
Hence VarU [||s′m||2] = 4

∑
0≤i<j≤mEU [(vi · vj)2], where EU [(vi · vj)2] is E[h2]
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over (n − 1)-dimensional unit sphere, and thus equal to 1/n (see the proof of
Lemma 1). It follows that

VarU [||s′m||2] =
4
n

(
m + 1

2

)
.

We conclude that at least in terms of the length of the sum ||sm|| = ||v0 + . . .+
vm||, our distribution D behaves very much like the uniform distribution U .

We return to the correlation between s′m and u. It is easy to see that with
distribution D

s′m · u =
m∑
i=0

2i

M
≈ 2m+1

M
,

which is exponentially small. Also since it is a constant VarD[s′m · u] = 0. For
the uniform distribution U ,

s′m · u =
m∑
i=0

vi · u,

and EU [s′m · u] = 0. For the variance

VarU [s′m · u] = EU [(s′m · u)2]

= EU

( m∑
i=0

(vi · u)

)2


= EU

 m∑
i=0

(vi · u)2 +
∑

0≤i 6=j≤m
(vi · u)(vj · u)

 .

By independence EU [(vi · u)(vj · u)] = EU [vi · u]EU [vj · u] = 0 for i 6= j. Also
EU [(vi · u)2] = 1/n. Hence VarU [s′m · u] = m/n. Therefore statistically one can
not deduce much from s′m · u in the distribution D, since it is exponentially
small, and well within the range in which this value would have been under the
uniform distribution, where EU [s′m · u] = 0 and VarU [s′m · u] = Ω(1).

In fact, suppose u′ ∈ Sn−1 is any unit vector, u′ 6= ±u. The estimates of
EU [s′m · u′] = 0 and VarU [s′m · u′] = m/n = Ω(1) are still valid. Let Π be
the 2-dimensional plane spanned by u and u′. Let u′ = (cos θ)u + (sin θ)u⊥,
where the unit vector u⊥ ⊥ u. Then we can choose a coordinate system such
that u⊥ is the (n − 1)st coordinate for ρi, and ED[ρi · u⊥] = ESn−2 [h] = 0.
Therefore ED [s′m · u′] = (cos θ)ED [s′m · u]. Thus |ED[s′m · u′]| ≤ 2m+1/M , which
is exponentially small. This implies that s′m has correlation with no particular
direction, the same as under the uniform distribution U .
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