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Abstract. MMX is a new technology to accelerate multimedia appli-
cations on Pentium processors. We report an implementation of IDEA
on a Pentium MMX that is 1.65 times faster than any previously known
implementation on the Pentium. By parallelizing four IDEA’s we reach
an unprecedented 78 Mbits/s throughput per output block on a 166MHz
MMX. In the light of rapidly increasing popularity of multimedia appli-
cations, causing more dedicated hardware to be built, and observing that
most of the current block ciphers do not benefit from MMX, we raise the
problem of designing block ciphers (and encryption modes) fully utilizing
the basic operations of multimedia.
Keywords: block ciphers, fast implementations, IDEA, multimedia ar-
chitectures, Pentium MMX.

1 Introduction

The second main objective besides security in designing cryptographic primi-
tives is speed: even 10% difference in speed (by the same security level) may
bias industry to prefer one cipher to another. Still, it is not an easy task to
compare ciphers by virtue of speed. The reasons are manifold, depending on the
human factor (the best known implementation may not be the best possible im-
plementation) but also on the hardware available: ciphers optimized for 32-bit
processors may not be optimal on 64-bit processors and vice versa. Application
of new microprocessor techniques (DSP — Digital Signal Processing, VLIW –
Very Long Instruction Word, SIMD — Single Instruction Multiple Data) in cur-
rent general-purpose microprocessors will significantly sway our beliefs in the
speed ratio of available ciphers [Cla97].

Because of the quickly increasing importance of multimedia, dedicated hard-
ware will be commonplace tomorrow. Today’s multimedia extensions (to name a
few, Intel’s MMX, Sun’s VIS, HP’s MAX-2, Cyrix’s MMX, AMD’s 3DNow!) are
just the first flowers. New generations of multimedia enhanced processors will
even more change our judgment of what it means to be “software” optimized.

MMX, incorporated in every new Intel processor (e.g., in the Pentium with
MMX and the Pentium II), is a relatively new extension made to accelerate
multimedia applications. Considering the worldwide spread of MMX capable
computers, design and implementation of cryptographic primitives utilizing the
basic operations of multimedia applications should be considered very seriously.
Some work in this area has already been done by designing new hash functions
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and stream ciphers [HK97,Cla97,DC98]. Biham viewed a 64-bit processor as a
SIMD parallel computer, which can compute 64 one-bit operations simultane-
ously, getting significant acceleration of DES [Bih97]. Using the same method
(“bit-slicing”), several papers [SAM97,Kwa98] have later improved Biham’s re-
sults.

There is a wide variety of block ciphers in more or less general use. The
popularity of some of those ciphers is based on the trust in the design of the
cipher, the popularity of some other ciphers is based on the high throughput
in combination with reasonable security. In particular, the block cipher IDEA
[LM90,LMM91] is believed to be very secure due to the proper interaction be-
tween three different group operations. Although, apart from DES, IDEA seems
to be the most studied block cipher, no currently known attack (e.g., [BKR97],
[DGV94] or [Haw98]) against the full IDEA performs better than exhaustive
search. Interaction between three different group operations adds confidence in
IDEA’s security, but the frequent use of multiplication does not allow fast soft-
ware implementations on common microprocessors (Table 1).

Block cipher Block size Cycles Mbits/s

Square 128 244 87.1
Blowfish 64 158 67.2
RC5-32/16 64 199 53.4
CAST5 64 220 48.3
DES 64 340 31.2
SAFER (S)K-128 64 418 25.4
Shark 64 585 18.2
IDEA 64 590 18.0
3DES 64 928 11.4

Table 1. Performance in clock cycles per block of output and Mbits/s of several
block ciphers on a 166MHz Pentium by Antoon Bosselaers [PRB98].

We describe an implementation of IDEA on MMX, that is significantly faster
than the best possible implementation of IDEA on the standard Pentium. One
attempt to optimize IDEA on MMX has already been taken: Masayasu Ku-
magai’s implementation of non-standard IDEA [Kum97] encrypts three IDEA
blocks in parallel, achieving 45.6 Mbits/s per individual encryption on a 200MHz
Pentium MMX. Our implementation includes a fast version of standard IDEA
and a parallel version that is about twice as fast as Kumagai’s.

The MMX architecture was chosen for it being the de facto standard, IDEA
was chosen because no other current “industry-standard” block cipher seems
to benefit from the Pentium MMX and because of its practical importance.
Moreover, in the following we demonstrate that IDEA utilizes only about one
third of the Pentium MMX and is, additionally, easily parallelized without a
significant parallelization overhead. The resulting parallel “4-way IDEA” is faster



250 Helger Lipmaa

than any of the 64-bit block ciphers in Table 1; by doing this we transform a
relative slow (and as generally believed, a very secure) cipher into a very fast
(and still very secure) cipher. Observing that, we raise a question of designing
new, multimedia optimized block ciphers.

Section 2 gives a background to MMX and multimedia extensions. Section 3
outlines the basics of the IDEA algorithm. Section 4 describes our implementa-
tion of IDEA on MMX. Section 5 describes shortly the fast parallel implemen-
tation of IDEA. Section 6 takes a more broad view of multimedia architectures
and Sect. 7 gives a short description of “why can’t most of the block ciphers be
parallelized on the MMX” and raises the problem of designing new, multimedia-
like constituted block ciphers. In Sect. 8 we outline the results and finally, Sect. 9
acknowledges the people who have to be acknowledged.

2 Introduction to MMX

At the time of writing this paper Intel’s Pentium was the most widely used gen-
eral purpose processor. We shall not present a detailed outline of Intel Pentium’s
architecture (an interested reader may turn to [Int97b] or [BGV96]).

MMX (MultiMedia eXtensions) is a relatively new technology to enhance
performance of advanced media and communication applications. The MMX
technology introduces new general-purpose instructions that operate in parallel
on multiple data elements packed into 64-bit quantities (the ‘SWAR’ — SIMD
Within A Register — architecture, [Die97]). These instructions accelerate the
performance of multimedia applications such as motion video, combined graph-
ics with video, image processing, audio synthesis, speech synthesis and com-
pression, telephony, video conferencing, 2D graphics, and 3D graphics. These
applications were broken down to identify the most compute-intensive routines,
which were then analyzed in detail using advanced computer-aided engineering
tools. The results of this extensive analysis showed many common, fundamen-
tal characteristics across these diverse software categories. The key attributes of
these applications were:

– Small integer data types (for example: 8-bit graphics pixels, 16-bit audio
samples).

– Small, highly repetitive loops.
– Frequent multiplies and accumulates.
– Compute-intensive algorithms.
– Highly parallel operations.

The new MMX instructions work on 8 new 64-bit registers called %mm0 . . .
%mm7. Some of the instructions have an 8-way parallel 8-bit, a 4-way parallel 16-
bit, a 2-way parallel 32-bit and a 64-bit version but most of the operations (like
multiplication and addition) have only versions corresponding to some subset of
these possibilities. There are more operations for 8-bit and 16-bit data than for
larger data types (the “small data types” paradigm).
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All microprocessors in the Pentium family have another level of parallelism,
called super-scalar parallelism. In particular, most of the MMX instructions can
be executed in both U and V pipelines (in parallel with any other instruction),
with the following exceptions.

– Multiplication requires three cycles (has latency 3) but can be pipelined,
resulting in one multiplication operation every clock cycle (has throughput
1). Multiplication instructions cannot pair with other multiplication instruc-
tions.

– Shift, pack and unpack instructions cannot pair with each other.
– MMX instructions that access memory or integer registers can only execute

in the U -pipe and cannot be paired with any instructions that are not MMX
instructions.

– After updating an MMX register, one additional clock cycle must pass before
that MMX register can be moved to either memory or to an integer register.

Throughput is 1 for every operation, latency is 1 for every operation but mul-
tiplication. It is important to understand the difference between the SIMD-
parallelism provided by the MMX technology and the super-scalar parallelism.
The first permits to execute the same operation on up to eight different data
entities as one instruction, the second makes it possible to execute two possibly
different instructions during the same machine cycle. Hence, the total level of
parallelism inside a Pentium MMX can be up to 16.

Still, most of the applications do not benefit from MMX. Some of the lim-
itations of MMX (and the Pentium family in general) are outlined below (cf
[Int97b,Int97a] for more information):

Maximum two operands. Pentium/MMX instructions have the maximum
of two operands, causing a high frequency of the move (movq) instructions in
Pentium/MMX programs.

Lack of registers. There are only 8 MMX registers, which is rather insufficient
for most of the compute-intensive applications.

Slow interaction with integer registers and memory. Data in memory
has to be aligned to 64-bit boundaries (misalignment costs three cycles on the
Pentium processor family) and arranged in a way that minimizes the number of
cache misses. Correct data alignment may significantly expand the data struc-
tures (in the worst case, expanded data will not fit into the cache). The delay
for a cache miss is at least eight internal clock cycles. Pairing limitations were
already mentioned.

Limited number of instructions. MMX has only a limited set of specific
operations. Because of the slow interaction between integer and MMX register
sets, small programs using intensively both integer and MMX instructions will
generally not benefit from MMX.
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No flags register. The MMX command set does not change the flags regis-
ter and therefore the wide variety of branch instructions available on the Pen-
tium is not useable. The only two comparison operators on MMX (pcmpgt* and
pcmpeq*; greater than, equal to) act on signed data and change the correspond-
ing bits of the destination register to 1 (true) or 0 (false). Emulating different
— especially unsigned — comparisons takes additional time.

No commands with immediate operands. Immediate operands have to be
loaded from memory or generated by other means (e.g., by xoring or comparing
a register to itself).

Only 16-bit signed multiplication. Applications intensively using the un-
signed multiplication may become significantly slower. IDEA multiplication �
(Section 3), which is expensive to emulate using unsigned multiplication is even
more expensive to emulate using only the signed multiplication (see Section 4).
Emulation of � using the available MMX instructions needs two multiplications:
one to calculate the higher 16 bits of the result (pmulhw) and another to calculate
the lower 16 bits (pmullw).

Standard reference for MMX optimization is [Int97a].

Definition 1. Let the subscript s (resp. u) under a binary operator denote
signedness (resp. unsignedness) of the corresponding operation. Let ∗s and ∗u
be respectively the signed and unsigned multiplication operations from ZZ2

216 to
ZZ232 (∗u is the standard multiplication, expandable to ZZ2

232). Let True(φ) be
216−1 if φ is true and 0 otherwise. Next we define several basic operators corre-
sponding one-to-one to the instructions of MMX. Actually the correspondence is
4-way, i.e., the MMX instructions execute four such operations in parallel. Let

Cmpeq(a, b) := True(a = b)
Cmpgt(a, b) := True(a >s b)

a ⊕ b := a bitwise “xor” in ZZ216

a & b := a bitwise “and” in ZZ216

a � b := a− b mod 216

a � b := a+ b mod 216

Subus(a, b) := (a� b) & True(a >u b)

Mull(a, b) := (a ∗s b) & (216 − 1)

Mulh(a, b) := b(a ∗s b)/216c .

3 Introduction to IDEA

IDEA is — like most of the advanced block ciphers — an iterated cipher. IDEA
consists of 8 identical rounds that map the 4-tuple of 16-bit round input, (Xr

i )
4
i=1,

and the 6-tuple of 16-bit round subkeys (Zri )
6
i=1 (expanded from the 128-bit key
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using the key expansion algorithm) into the (Xr+1
i )4

i=1. After eight rounds the
output transformation will be executed. A round consists of several applications
of three group operations, whole IDEA can be presented as a directed labeled
graph with labels from the set {⊕,�,�} (Figure 1).

Technically, let d : ZZ216 → ZZ∗216+1, d(x) = 216 if x = 0 and d(x) = x
otherwise. The group operations used in IDEA are a⊕ b, a� b and a� b, where

a � b := d−1(d(a) · d(b) mod 216 + 1).

In particular, these operations were chosen for no two of them to be distributive
or associative to each other [LMM91]. This fact guarantees that all operations
in the IDEA schematics must be executed in an order not contrary to the data
dependencies. Operations not dependent on each other’s output can be executed
in parallel: Mr

1 in parallel with Mr
2 , Ar1 and Ar2; Er1 with Er2; Er3 with Er4 . On a

SIMD architecture where only similar operations can be executed simultaneously,
Mr

1 and Mr
2 cannot be performed in the same instruction as Ar1 and Ar2.

IDEA satisfies most of the key attributes of multimedia applications used by
designing MMX, therefore being an almost ideal candidate cipher to get benefit
from MMX:

– IDEA has small integer data types (all the operations work on 16-bit data).
Having only small data values enables to pack several of them into one
register and thereafter process multiple plaintext blocks in parallel (one of
the main factors in effective parallelization).

– IDEA processes the same data over and over without requiring random mem-
ory accesses, therefore needing less interaction with the slow memory. Addi-
tionally, IDEA lacks operations necessitating expensive, non-parallelizable,
table lookups (another main factor in effective parallelization).

– IDEA is based on two 16-bit operations that are common in multimedia
applications (16-bit multiplication and addition) and on exclusive or that
is a primitive instruction in almost every microprocessor. Although IDEA’s
multiplication is not trivial to implement on MMX, MMX still provides some
speedup (compared to the Pentium) per every multiplication (an important
factor to get an overall speedup).

4 Fast Implementation

We have addressed all problems mentioned above and completed a fast imple-
mentation of IDEA on a Pentium MMX. Some of the tasks we had to solve
are outlined below. We assume the plaintext to be in an MMX register and the
pointer to the key schedule in an integer register. The ciphertext can be read
afterwards from the same MMX register.

General optimization. Optimal use of registers, with minimized number of
move instructions. Minimized use of memory: only constants and subkeys are
read from memory. Subkeys and constants are correctly aligned to avoid time



254 Helger Lipmaa

X1X1
1 X1 X1

2 3 4

Z 1
1

A1
1

1
1E

1
1M

3
1M

4
1M

1
3A

Z 1 Z 1

Z 1

Z 1

XXXX1

1Z

2 3 4

2 3 4

5

6

2 2 2 2

Z 1 Z Z Z

XX1 X X2 3 4

1 2 3 4

9

2 3 4

Y Y Y Y

(7 more rounds)
tra

ns
fo

rm
a

tio
n

O
ut

p
ut

Th
e

 fi
rs

t r
o

un
d

A1
2
1

2

A1
4

2
1E

3
1E

1E 1E

1E4

5 6

M

1
9M A1 A9 9M9

22

9 9 9 9

9 9 9

Fig. 1. The schematics of IDEA
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penalties due to data misalignment (the key schedule has therefore expanded
from 104 to 136 bytes). Data in memory is kept compactly and reused to reduce
the number of cache misses. From the integer registers only one is used (as a
pointer to the round subkeys). Nothing is written from MMX registers to memory
or integer registers.

Effective use of super-scalar parallelism. In our implementation, 693 in-
structions are paired into 358 cycles. Excellent pairing (0.517 cycles per instruc-
tion) is a little miracle (cf to > 0.56 cycles per instruction got by Bosselaers
when implementing hash functions for the Pentium, [Bos97]) and is definitely
one of the sources of the effectiveness of our implementation.

Use of SIMD parallelism. Mr
1 and Mr

2 (resp, Ar1 and Ar2, . . . ) are calculated
in parallel by using the SWAR capability of MMX processors. This is another
main factor in increasing the speed of IDEA.

Emulation of �, using the available MMX instructions, is done, as we believe,
optimally. In the following we shortly explain how.

Lemma 1.

a ∗u b =216 · (Mulh(a, b) + (a & Cmpgt(0, b)) + (b & Cmpgt(0, a))) +
Mull(a, b) .

Proof:

a, b ≥s 0. In this case a ∗s b = a ∗u b.
a ≥s 0, 0 >s b. In this case, a is a positive and b is a negative number. Thus,

a ∗s b = a ∗u (b− 216) = a ∗u b− 216 ∗u a.
b ≥s 0, 0 >s a. Complementary to the previous case.
0 >s a, b. In this case, a ∗s b = a ∗u b− 216 ∗u a− 216 ∗u b− 232 ≡ a ∗u b− 216 ∗u

a− 216 ∗u b.

Results got by analyzing the four cases can be generalized by simple means to
complete the proof. �

As already mentioned, MMX lacks unsigned comparison instructions. Our
implementation needs one of them, which will be emulated using existing in-
structions. Let Cmpleu(a, b) = True(a ≤u b). It is easy to see that

Cmpleu(a, b) = Cmpeq(Subus(a, b), 0) .

Lemma 2. Let a, b ∈ ZZ216. Let h := (a ∗u b)/216 and l := (a ∗u b) & (216 − 1)
be calculated by the previous lemma. Then

a� b =((1� a� b) & Cmpeq(h, l))�
((1� l� h� Cmpleu(h, l)) & (Cmpeq(h, l)⊕ (216 − 1))) .
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Proof: The claim follows easily from Lemma 2 of [LM90] by noticing that h = l
iff a ∗u b = 0. �

These formulas give a direct way to break down the � operation into ba-
sic operations, corresponding one-to-one to MMX instructions. For example,
Cmpeq(h, l) corresponds to the instruction pcmpeqw, Cmpgt(h, l) to pcmpgtw,
Subus(a, b) to psubusw, Mull(a, b) to pmullw, Mulh(a, b) to pmulhw. The given
formula for emulation of 16-bit unsigned multiplication is, as far as we know,
faster than any previously published algorithm for MMX and therefore interest-
ing in itself.

Including also the necessary move instructions, the minimal number of MMX
instructions needed to emulate � by the procedure given above is 26. Additional
highly processor (and algorithm) dependent mechanisms enable to get rid of
three more instructions per IDEA multiplication, therefore resulting in 69 in-
structions per round (remember, we do Mr

1 and Mr
2 in parallel). Everything else

(e.g., parallel adding, xoring) is accomplished in 13 instructions, hence a round
takes 82 instructions. The output transform takes 29 instructions and the nec-
essary endianness conversion takes 8 instructions, therefore the full IDEA has
693 instructions. After pairing, IDEA encryption takes 358 clock cycles or 29.7
Mbits/s on a 166MHz MMX. Note that our implementations are not subject to
timing attacks [Koc96] due to the lack of jump instructions and any variable
duration instructions.

Remark 1. Schneier and Whiting [SW97] have conjectured that there exists an
IDEA implementation for the Pentium with ≈ 400 cycles, which is unrealistic for
the next reason. Every round has four sequential emulations of �. The critical
path of the � operation contains integer multiplication (with latency 9) and
at least 6 other instructions (moving one of the operands into the accumulator
and afterwards converting the result of ∗u to the result of �) that cannot be
paired with each other, therefore the multiplications take at least 60 cycles per
round. The XOR and addition operators present in the IDEA schematics cannot
be paired with emulations of � and therefore take additional time. Adding the
output transform and endianness conversion, there seems to be no obvious way
to significantly better the implementation of Bosselaers.

5 Parallel Execution of Four IDEA-s

In MMX, four 16-bit multiplications are executed simultaneously. The same is
true for every other instruction used to emulate �. During each round, three
such 4-way multiplications are done, giving a 64-bit result, only a part of which
is really used in the implementation described in Section 4 (Figure 2, left):

First multiplication (Mr
1 , M

r
2 ). The first (bits 0 . . .15) and the fourth (bits

48 . . .63) word of the result are used. (This multiplication is also done during
the output transformation.)

Second multiplication (Mr
3 ). The second word (bits 16 . . . 31) of the result

is used.
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Third multiplication (Mr
4). The third word (bits 32 . . . 47) of the result is

used.

063 1632063 163248 48

A
 round

Output transformation

Fig. 2. Using of SWAR data during IDEA (unused fields are left blank). Left:
one IDEA in parallel, right: four IDEA’s in parallel.

We extended our implementation to encrypt four blocks in parallel, by fully
using the results of all four multiplications at every step (Fig. 2, right. Note
that such implementation will require unparallelizing the execution of M r

1 and
Mr

2 ). Two 4 × 4 matrix transpositions (to (un)parallelize four 64-bit blocks),
additional endianness conversions and extensive memory access (due to the lack
of registers) will “slow” the implementation down to ≈ 135 cycles per IDEA
encryption. A not-fully optimized implementation encrypts one IDEA block in
135.75 cycles (543 cycles/1056 instructions for 4-way IDEA), Table 2. This scales
up to about 212 Mbits/s on a 450 MHz Pentium II, compared to the 300 Mbits/s
of the fastest (known) hardware solution by Ascom.

Cipher IDEA 4-way IDEA

166 MHz MMX, seconds 8.97− 9.07 3.53− 3.56
166 MHz MMX, Mbits/s 28.2− 28.5 71.8− 72.4
MMX, cycles (with overhead) 372 − 376 147− 148
MMX, cycles (w/o overhead) 358 135.75

233 MHz Pentium II, seconds 7.78− 7.96 2.38− 2.43
233 MHz Pentium II, Mbits/s 32.2− 32.9 105.1− 107.2
Pentium II, cycles (with overhead) 453 − 464 139− 142

Table 2. Test data. The “real life” throughput of IDEA-ECB on the Pentium
MMX and on the Pentium II. Seconds - the time to encrypt four million 64-bit
blocks.



258 Helger Lipmaa

6 Different Multimedia Extensions

If MMX had the unsigned multiplication instruction, the number of instructions
per IDEA multiplication would decrease by 6. If MMX had the unsigned compar-
ison instruction pcmpgtuw, the number of instructions per IDEA multiplication
would decrease by 2. In the presence of both of these instructions, IDEA en-
cryption on MMX machines could be done much faster than DES (we estimate
≈ 250− 255 cycles); 4-way IDEA would be faster than Square [DKR97] or any
of the recently proposed AES candidate ciphers (we estimate ≈ 95−100 cycles).
Conditional move instructions, present in the Cyrix’s — but not in the Intel’s
— version of MMX, would further speed up IDEA. If even such imperceptible
changes fastened up a cipher significantly, what about the multimedia extensions
that differ from MMX in major aspects?

Lately, in May 1998, Motorola unveiled their new multimedia architecture
called AltiVec [Mot98], claimed to be much more powerful than any of the pre-
viously mentioned architectures. In particular, AltiVec has increased parallelism
(128-bit vector registers) and a family of instructions to perform up to eight
16-bit (un)signed multiplications (with accumulate) in parallel. Additionally, Al-
tiVec has a special inter-element byte permutation instruction and several vector
rotation instructions and therefore allows to implement new fast ciphers using
data-dependent rotations and byte permutations. One of the goals of AltiVec
(unlike the MMX) was to accelerate data encryption algorithms [Mot98, page
1-4]. A short comparison between MMX and AltiVec is given in Table 3.

Architecture MMX AltiVec

Company Intel Motorola

Year 1997 1999

Endianness little both

Max no of operands 2 4

](vector registers) 8 (FP) 32 (separate)

Width of vector registers 64 128

8-bit parallelism 8 16

16-bit parallelism 4 8

32-bit parallelism 2 4

16×16-bit signed multiplication Yes Yes

16×16-bit unsigned multiplication No Yes

Signed comparison Yes Yes

Unsigned comparison No Yes

Data-dependent rotation No Yes

Table 3. Short comparison of MMX and AltiVec.

Vector processors provide even more parallelism. Krste Asanović has reported
an implementation of 32-way IDEA on a 40 MHz T0 [AJ96] reaching 112 Mbits/s.
No “industry-standard” block cipher has that level of inner parallelism.
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7 Block Cipher Parallelization

Ciphers using S-boxes and/or lookup tables (e.g., DES, alleged RC4, SEAL,
Blowfish, Khufu) do not take major advantage from the multimedia extensions of
MMX (though they could benefit from the larger cache or word-size) as the MMX
registers cannot be used as memory pointers. Parallelization of these ciphers
would need accessing several “randomly” chosen memory cells simultaneously.
RC5 [Riv95], which does not use S-boxes, does not benefit from MMX either
because of the expensive non-parallelizable variable rotation involved.

It is interesting to note that some of the newest block ciphers, including
the AES candidates MARS [BCD+98] and RC6 [RRSY98], rely on the 32-bit
unsigned multiplication. The reasoning of the authors is that such multiplication
is very cheap on nowadays common microprocessors. This claim is indeed true,
but MMX technology cannot be used to accelerate these ciphers (and neither
can AltiVec) because of the lack of a 32-bit parallel multiplication. There is a
certain tradeoff (and even a contradiction) here. MARS and RC6 are optimized
for the new 32-bit processors (mainly for the Pentium II), utilizing fully the
32-bit operations provided by such processors. At the same time, these ciphers
ignore the multimedia extensions existing in the very same processors.

Further work can be done in trying to optimize different conventional ciphers
for the Pentium MMX, but as it was pointed out, most of the commonly known
block ciphers do not benefit from MMX. Still, in some cases interleaving Pentium
integer and MMX instructions may result in some speedup. In particular, bit-
slice MMX implementations of different block ciphers should be more than twice
as fast because of the longer wordsize and additional logical operations.

One could think that MMX was designed “especially” to accelerate IDEA,
but it would be more correct to say that IDEA is a cipher with key attributes
very similar to those of multimedia applications (cf Sect. 3), by a loose definition
of multimedia applications as applications benefiting from the Pentium MMX
(different vendors have optimized their processors to be optimal for different
subsets of multimedia applications).

A family of new block ciphers can be designed to take full advantage of
MMX. A straightforward way would be to iteratively execute four copies of the
IDEA round function in parallel and then mix their outputs in a suitable way.
Would it be sufficient to apply a well chosen 8/16-bit word permutation to the
256-bit output of every round of this 4-way IDEA to get a secure cipher? A way
providing more efficient diffusion would be to use Pseudo-Hadamard Transforms
[Mas94,SKW+98]. Further research in this area is deferred to a future work. An
interested reader may turn to [Cla97], where parallelized versions of the stream
cipher Wake were proposed.

A more general task is to study design principles of secure ciphers based
on the same basic operations (e.g., massively parallel 16-bit multiplication and
addition of sequential data) as the existing multimedia applications. Such ciphers
would perform well on nowadays microprocessors, therefore reducing the need
for separate encryption and multimedia hardware (it can be compared to the
approach of [BP97] that uses the same hardware for RSA and IDEA). Efficient
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confusion on such ciphers may be achieved by using 16-bit multiplication mixed
with other 8-bit and 16-bit operations; diffusion may be achieved by additionally
using 32-bit and 64-bit operations (e.g., shifts — but remember the “small data
type” paradigm).

Yet another task is to study encryption modes allowing fast parallel encryp-
tion and decryption. The ECB mode can be used for both parallel encryption
and decryption, but it has limited security in real life situations. The CBC mode
can be used for parallel decryption but not for parallel encryption. The resulting
throughput of IDEA encryption on a 233 MHz Pentium II would be 32 − 33
Mbits/s for encryption and 105− 107 Mbits/s for decryption in standard CBC
mode (Table 2). Encryption modes allowing both fast parallel encryption and
decryption are needed. Note that such encryption modes are not only impor-
tant for software but also for hardware architectures. The hardware solution
mentioned before provides a throughput of 300 Mbits/sec in ECB mode, and a
throughput of 100 Mbits/sec in the other modes. An example candidate is the
counter mode [MOV96, Sect. 7.2.2] which allows parallel encryption/decryption
while providing almost ideal security in the random oracle model [BDJR97] but
which is not suited for use with differentially weak ciphers [BK98].

One could see the problem also from the viewpoint of a processor designer
and ask what (minimal) extensions should be added to an existing general-
purpose processor to achieve significant speedup of industry-standard crypto-
graphic primitives. While the general answer seems to be out of our reach due to
the diversity of cryptographic primitives, suggestions can be given to accelerate
any fixed primitive (see discussion in the beginning of Sect. 6).

8 Conclusion

We have shown that it is possible to speed up the IDEA block cipher significantly
by using the MMX extensions of Intel’s Pentium processor. This is remarkable
when taking into account the unfriendliness of the instruction set of MMX. Our
fast implementation is

– 1.65 times faster than the best known assembler implementation on the
Pentium by Antoon Bosselaers,

– ≈ 2.55 times faster than the C version on the Pentium in the popular library
SSLeay v0.90b, when compiled with egcs 1.0.2 and full optimization.

By parallelizing four IDEA’s, the encryption speed is increased by a factor of
about 2.64 times, giving a total acceleration of 4.35 times compared to the imple-
mentation of Bosselaers. Implications (including the massive parallel key search)
of using such parallel versions of conventional ciphers were already described in
[Bih97] and were not repeated in this paper.

By noting that most of the nowadays “industry-standard” block ciphers do
not benefit from MMX, we raise the problem of designing block ciphers (and
encryption modes) fully utilizing the basic operations of multimedia.
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