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Abstract. We introduce the notion of nonhomomorphicity as an al-
ternative criterion that forecasts nonlinear characteristics of a Boolean
function. Although both nonhomomorphicity and nonlinearity reflect a
“difference” between a Boolean function and all the affine functions, they
are measured from different perspectives. We are interested in nonhomo-
morphicity due to several reasons that include (1) unlike other criteria,
we have not only established tight lower and upper bounds on the non-
homomorphicity of a function, but also precisely identified the mean of
nonhomomorphicity over all the Boolean functions on the same vector
space, (2) the nonhomomorphicity of a function can be estimated effi-
ciently, and in fact, we demonstrate a fast statistical method that works
both on large and small dimensional vector spaces.
Key Words: Boolean Functions, Cryptography, Nonhomomorphicity,
Nonlinear Characteristics.

1 Motivation of this Research

It is known that a function f on Vn is affine if and only if f satisfies such property
that for any even k with k ≥ 4,

f(u1) ⊕ · · · ⊕ f(uk) = 0 (1)

whenever u1 ⊕ · · · ⊕ uk = 0.
In addition, it can be verified that f is affine if and only if there exists an

even k with k ≥ 4 such that (1) holds whenever u1⊕ · · ·⊕ uk = 0. Therefore we
regard (1) as a characteristic that is useful in telling a non-affine function from
an affine one.

Now consider a non-affine function f on Vn. Let k be an even with k ≥ 4 and
(u1, . . . , uk) be a k-tuples with u1 ⊕ · · · ⊕ uk = 0. If

f(u1)⊕ · · · ⊕ f(uk) = 0

then f satisfies the affine property at the particular vector (u1, . . . , uk). On the
other hand, if

f(u1)⊕ · · · ⊕ f(uk) = 1
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then f behaves in a way that is against the affine property at (u1, . . . , uk).
The above observations motivate us to define the number of k-tuples of vec-

tors in Vn, (u1, . . . , uk) with u1⊕· · ·⊕uk = 0 such that the affine property (1) is
satisfied, as the homomorphicity of f , and furthermore, the number of k-tuples
of vectors in Vn, (u1, . . . , uk) with u1⊕· · ·⊕uk = 0 such that the affine property
(1) is not satisfied, as the nonhomomorphicity of f .

While nonhomomorphicity and nonlinearity are similar to each other in that
they both reflect a “distance” between a Boolean function and all the affine func-
tions, the former differentiates itself from the latter in the way the “distance”
is measured. Nonhomomorphicity has several interesting properties suggesting
that it can serve as a useful nonlinearity indicator: (1) unlike other criteria,
we have not only established the tight lower and upper bounds on nonhomo-
morphicity, but also precisely identified the mean of nonhomomorphicity over
all the Boolean functions with the same size, (2) the nonhomomorphicity of a
function can be estimated efficiently. In fact, we show a fast statistical method
for estimating the nonhomomorphicity of a function. The computing time of
the statistical method is not relevant to the dimension (number of variables) of
the function. This guarantees that we can use a computer program to analyze
Boolean functions of higher dimensions efficiently.

2 Introduction to Boolean Functions

Denote by Vn the vector space of n tuples of elements from GF (2). The truth
table of a function f from Vn to GF (2) (or simply functions on Vn) is a
(0, 1)-sequence defined by (f(α0), f(α1), . . . , f(α2n−1)), and the sequence of f
is a (1,−1)-sequence defined by ((−1)f(α0), (−1)f(α1), . . . , (−1)f(α2n−1)), where
α0 = (0, . . . , 0, 0), α1 = (0, . . . , 0, 1), . . ., α2n−1−1 = (1, . . . , 1, 1). f is said to be
balanced if its truth table contains an equal number of ones and zeros.

Given two sequences ã = (a1, · · · , am) and b̃ = (b1, · · · , bm), their component-
wise product is defined by ã ∗ b̃ = (a1b1, · · · , ambm). In particular, if m = 2n and
ã, b̃ are the sequences of functions on Vn respectively, then ã ∗ b̃ is the sequence
of f ⊕ g.

Let ã = (a1, · · · , am) and b̃ = (b1, · · · , bm) be two vectors (or sequences),
the scalar product of ã and b̃, denoted by 〈ã, b̃〉, is defined as the sum of the
component-wise multiplications. In particular, when ã and b̃ are from Vm, 〈ã, b̃〉 =
a1b1 ⊕ · · · ⊕ ambm, where the addition and multiplication are over GF (2), and
when ã and b̃ are (1,−1)-sequences, 〈ã, b̃〉 =

∑m
i=1 aibi, where the addition and

multiplication are over the reals.
A (1,−1)-matrix H of order m is called a Hadamard matrix if HHt = mIm,

where Ht is the transpose of H and Im is the identity matrix of order m. A
Sylvester-Hadamard matrix of order 2n, denoted by Hn, is generated by the
following recursive relation

H0 = 1, Hn =
[

Hn−1 Hn−1

Hn−1 −Hn−1

]
, n = 1, 2, . . . . (2)
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Let `i, 0 ≤ i ≤ 2n− 1, be the i row of Hn. Then `i is the sequence of a linear
function ϕi(x) defined by the scalar product ϕi(x) = 〈αi, x〉, where αi is the ith
vector in Vn according to the ascending lexicographic order. (See for instance
Lemma 2 of [7].)

Definition 1. A function f on Vn is called an affine function if f(x) = c ⊕
a1x1⊕· · ·⊕anxn where and each aj and c are constant in GF (2). In particular,
f is called a linear function if c = 0.

Definition 2. The Hamming weight of a (0, 1)-sequence ξ is the number of ones
in the sequence. Given two functions f and g on Vn, the Hamming distance
d(f, g) between them is defined as the Hamming weight of the truth table of
f(x) ⊕ g(x), where x = (x1, . . . , xn). The nonlinearity of f, denoted by Nf , is
the minimal Hamming distance between f and all the affine functions on Vn,
i.e., Nf = mini=1,2,...,2n+1 d(f, ϕi) where ϕ1, ϕ2, . . ., ϕ2n+1 are all the affine
functions on Vn.

It is known that the nonlinearity of a function f on Vn can be expressed as

Nf = 2n−1 − 1
2

max{|〈ξ, `i〉|, 0 ≤ i ≤ 2n − 1} (3)

where ξ is the sequence of f and `0, . . ., `2n−1 are the rows of Hn, namely,
the sequences of the linear functions on Vn. (For a proof of (3) see for instance
Lemma 6 of [7].) In addition, the maximum nonlinearity of a function is 2n−1−
2

1
2n−1, namely, Nf ≤ 2n−1 − 2

1
2n−1.

Given a function f on Vn, a (1,−1) matrix defined by M = ((−1)f(αi⊕αj)),
where αi, αj ∈ Vn and 0 ≤ i, j ≤ 2n − 1, is called the (1,−1) incidence matrix,
or simply, the matrix of f . The following is attributed to R. L. McFarland [2]:

M = 2−nHn diag(〈ξ, `0〉, 〈ξ, `1〉, . . . , 〈ξ, `2n−1〉)Hn (4)

where ξ be the sequence of function f on Vn, `i be the ith row of Hn, and
diag(a, b, · · · , c) denotes the diagonal matrix whose entries on the diagonal are
a, b, . . . , c.

A function f on Vn is called a bent function [6] if 〈ξ, `i〉2 = 2n for every
i = 0, 1, . . ., 2n − 1, where ξ is the sequence of f and `i is a row in Hn. A bent
function on Vn exists only when n is a positive even number, and it achieves the
highest possible nonlinearity 2n−1 − 2

1
2n−1.

3 Homomorphicity and Nonhomomorphicity

The following lemma is important in this paper, as it explores a characteristic
property of affine functions which will be useful in studying nonhomomorphicity.

Lemma 1. Let f be a function on Vn. Then
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(i) f is an affine function if and only if f satisfies such property that for any
even k with k ≥ 4, f(u1) ⊕ · · · ⊕ f(uk) = 0 whenever u1 ⊕ · · · ⊕ uk = 0,

(ii) f is an affine function if and only if there exists an even k with k ≥ 4 such
that f(u1) ⊕ · · · ⊕ f(uk) = 0 whenever u1 ⊕ · · · ⊕ uk = 0.

Proof. Let f be a function on Vn. We first prove Part (ii) of the lemma.
Assume that f is affine. By using Definition 1, it is easy to verify that for any

even k with k ≥ 4, f(u1)⊕· · ·⊕f(uk) = 0 whenever u1⊕· · ·⊕uk = 0. Conversely,
assume that there exists an even k with k ≥ 4 such that f(u1)⊕· · ·⊕ f(uk) = 0
whenever u1 ⊕ · · · ⊕ uk = 0. We now prove that f is affine.

Let u1 and u2 be any two vectors in Vn. Obviously, the k vectors u1, u2,
u1⊕u2, 0, . . . , 0 satisfy u1⊕u2⊕(u1⊕u2)⊕0⊕· · ·⊕0 = 0. From the assumption,

f(u1)⊕ f(u2) ⊕ f(u1 ⊕ u2)⊕ f(0) ⊕ · · · ⊕ f(0) = 0 (5)

Consider two cases: f(0) = 0 and f(0) = 1.
Case 1: f(0) = 0. In this case f(cα) = cf(α) holds for any vector α ∈ Vn and

any value c ∈ GF (2). Hence (5) can be rewritten as

f(u1 ⊕ u2) = f(u1)⊕ f(u2) (6)

where u1 and u2 are arbitrary.
Let ej denote the vector in Vn, whose the jth component is one and others

are zero. For any fixed value xj in GF (2), j = 1, . . . , n, from (6), f(x1e1 ⊕
· · · ⊕ xnen) = f(x1e1)⊕ f(x2e2 ⊕ · · · ⊕ xnen) Applying (6) repeatedly, we have
f(x1e1 ⊕ · · · ⊕ xnen) = f(x1e1) ⊕ f(x2e2) ⊕ · · · ⊕ f(xnen) Note that f(0) = 0
implies f(cα) = cf(α) where c is any value in GF (2) and α is any vector in Vn.
Hence

f(x1e1 ⊕ · · · ⊕ xnen) = x1f(e1)⊕ · · · ⊕ xnf(en) (7)

From the definition of ej , x1e1 ⊕ · · · ⊕ xnen = (x1, . . . , xn). On the other hand,
if we write f(ej) = aj, j = 1, . . . , n then (7) can be rewritten as f(x1, . . . , xn) =
a1x1 ⊕ · · · ⊕ anxn This proves that f is linear.

Case 2: f(0) = 1. Set g(x) = 1⊕ f(x). Then g is linear. By using the result
in Case 1, g(x1, . . . , xn) = b1x1 ⊕ · · · ⊕ bnxn where each bj ∈ GF (2). Hence
f(x1, . . . , xn) = 1⊕ b1x1 ⊕ · · · ⊕ bnxn This proves that f is affine.

We now prove Part (i) of the lemma. Assume that f is affine. From Definition
1, it is easy to check that for any even k with k ≥ 4, f(u1) ⊕ · · · ⊕ f(uk) = 0
whenever u1 ⊕ · · · ⊕ uk = 0. Conversely, assume f satisfies such property that
for any even k with k ≥ 4, f(u1)⊕ · · · ⊕ f(uk) = 0 whenever u1 ⊕ · · · ⊕ uk = 0.
Then from Part (ii) of the lemma, f must be affine. ut

From the characteristic property shown in Lemma 1, if a function f on Vn
satisfies f(u1) ⊕ · · · ⊕ f(uk) = 0 for a large number of k-tuples (u1, . . . , uk) of
vectors in Vn with u1 ⊕ · · · ⊕ uk = 0, then the function behaves more like an
affine function. This leads us to introduce a new nonlinearity criterion.
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Notation 1. Let f be a function on Vn and k an even with 4 ≤ k ≤ 2n. For
c ∈ GF (2), denote by H(k)

f,c the collection of ordered k-tuples (u1, . . . , uk) of
vectors in Vn with u1 ⊕ · · · ⊕ uk = 0 satisfying f(u1) ⊕ · · · ⊕ f(uk) = c where
c ∈ GF (2) is constant.

Definition 3. Let f be a function on Vn and k an even with 4 ≤ k ≤ 2n. For
c ∈ GF (2), we call h̃

(k)
f,0 = #H(k)

f,0, the kth-order homomorphicity of f, and

furthermore, h̃
(k)
f,1 = #H(k)

f,1, the kth-order nonhomomorphicity of f, where #S
denotes the number of elements in a set S.

Note that there exist 2(k−1)n k-tuples of vectors in Vn, (u1, . . . , uk), satisfying⊕k
j=1 uj = 0. Hence an interesting fact on h̃

(k)
f,c follows:

Lemma 2. Let f be a function on Vn. Then h̃
(k)
f,0 + h̃

(k)
f,1 = 2(k−1)n.

We note that Lemma 1 cannot be extended to the case of odd k. This explains
why we have not defined homomorphicity or nonhomomorphicity for an odd
order.

4 Calculations of Nonhomomorphicity

4.1 High Order Auto-Correlation

Recall that the auto-correlation of a function is defined as follows:

Definition 4. Let f be a function on Vn. For a vector α ∈ Vn, denote by ξ(α)
the sequence of f(x ⊕ α). Thus ξ(0) is the sequence of f itself and ξ(0) ∗ ξ(α)
is the sequence of f(x) ⊕ f(x ⊕ α). Let ∆(α) be the scalar product of ξ(0) and
ξ(α). Namely

∆(α) = 〈ξ(0), ξ(α)〉
∆(α) is called the auto-correlation of f with a shift α.

Obviously, ∆(α) = 0 if and only if f(x)⊕f(x⊕α) is balanced, i.e., f satisfies
the propagation criterion with respect to α. On the other hand, if |∆(α)| = 2n,
then f(x) ⊕ f(x⊕ α) is a constant and hence α is a linear structure of f .

Next we consider a generalization of the definition for auto-correlation. The
generalization will turn out to be a useful tool in studying nonhomomorphic
characteristics of functions.

Definition 5. Let f be a function on Vn and ξ = (a0, a1, . . . , a2n−1) be the
sequence of f. For a vector α ∈ Vn and an integer k = 2, 3, . . ., the kth-order
auto-correlation of f with a shift α, denoted by ∆(k)(α), is defined as

∆(2)(α) = ∆(α), ∆(k)(α) =
2n−1∑
j=0

[aj∆(k−1)(αj ⊕ α)], k = 3, 4, . . .

where ∆(α) is the auto-correlation of f as defined in Definition 4, and αj is the
vector corresponding to the integer j.
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It is important to point out that nonhomomorphicity, high order auto-corre-
lation and high order derivation introduced in [4] are three completely different
concepts. Let f be a function on Vn. In [4], the derivation of f at vector β,
denoted by ∆βf(x), is defined as follows

∆βf(x) = f(x) ⊕ f(x ⊕ β).

and the kth-order derivation of f at vectors β1, . . . , βk, denoted by ∆
(k)
β1,...,βk

f(x),
is defined recursively as

∆
(k)
β1,...,βk

f(x) = ∆(∆(k−1)
β1,...,βk−1

f(x)).

We can see the kth-order derivation of f at vectors β1, . . . , βk, ∆
(k)
β1,...,βk

f(x),
is itself a function on Vn. In contrast, both the kth-order nonhomomorphicity
and the kth-order auto-correlation of f with a shift β are fixed integer values.
To examine further how the three concepts differ, consider a bent function f
of degree s. For k even with k > s, the kth-order derivation of f at vectors
β1, . . . , βk, ∆

(k)
β1,...,βk

f(x), is obviously the zero function. In contrast, for the kth-

order auto-correlation of f , we have ∆(k)(0) = 2−n
∑2n−1
i=0 〈ξ, `i〉k = 2

1
2nk (which

follows from Corollary 1 and Lemma 3 to be introduced later on), and for the
kth-order nonhomomorphicity of f , we have h̃

(k)
f,1 = 2(k−1)n−1 − 2

1
2nk−1, which

follows from Theorem 3 in Section 5.
To examine the properties of the kth-order auto-correlation ∆(k)(α), we con-

sider a matrix defined by (∆(k)(αi ⊕ αj)) where i, j = 0, 1, . . . , 2n − 1. Note
that the diagonal of the matrix (∆(k)(αi ⊕αj)) is composed of 2n repetitions of
∆(k)(0). By simple induction on k, we have the following result:

Theorem 1. Let f be a function on Vn, M be the matrix of f and ξ be the
sequence of f. Then

(∆(k)(αi ⊕ αj)) = Mk = 2−nHn diag(〈ξ, `0〉k, 〈ξ, `1〉k, . . . , 〈ξ, `2n−1〉k)Hn

where `0, `1, . . ., `2n−1 are the rows of Hn.

This result shows that the two matrices, (∆(k)(αi ⊕ αj)) and

diag(〈ξ, `0〉k, 〈ξ, `1〉k, . . . , 〈ξ, `2n−1〉k)

are similar in the sense that from the former one can easily find out the latter
through the use of Hn, and vice versa. Furthermore, it is not hard to see that
the sum of the entries on the diagonal of (∆(k)(αi ⊕ αj)) is identical to that of
diag(〈ξ, `0〉k, 〈ξ, `1〉k, . . . , 〈ξ, `2n−1〉k). In other words,

2n−1∑
i=0

∆(k)(αi ⊕ αi) = 2n∆(k)(0) =
2n−1∑
i=0

〈ξ, `i〉k.

Hence we have proved
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Corollary 1. Let f be a function on Vn, M be the matrix of f and ξ be the
sequence of f. Then ∆(k)(0) = 2−n

∑2n−1
i=0 〈ξ, `i〉k.

For k = 2, we have ∆(2)(0) = 2n. This indicates that Corollary 1 embodies
Parseval’s equation (Page 416 of [5])

∑2n−1
i=0 〈ξ, `i〉2 = 22n as a special case in

which k = 2.

4.2 Expression of Nonhomomorphicity by Other Indicators

Recall (3), the nonlinearity of a function f on Vn is related to the maximum
|〈ξ, `i〉|, where ξ is the sequence of f and `i is the ith row of Hn. We give a
precise expression of nonhomomorphicity by using the same indicator.

Theorem 2. For a function f on Vn and k an even with 4 ≤ k ≤ 2n. h̃
(k)
f,0 and

h̃
(k)
f,1 can be expressed as follows:

(i) h̃
(k)
f,0 = 2(k−1)n−1 + 1

2
∆(k)(0) = 2(k−1)n−1 + 2−n−1

∑2n−1
i=0 〈ξ, `i〉k

(ii) h̃
(k)
f,1 = 2(k−1)n−1− 1

2∆(k)(0) = 2(k−1)n−1− 2−n−1
∑2n−1
i=0 〈ξ, `i〉k

where ξ is the sequence of f and `i denotes the ith row of Hn.

Proof. We need only to prove that h̃
(k)
f,1 = 2(k−1)n−1− 1

2∆(k)(0), as the rest part

of the theorem follows from Corollary 1 and the fact that h̃
(k)
f,0 + h̃

(k)
f,1 = 2(k−1)n.

Write ξ = (a0, a1, . . . , a2n−1) where each aj = ±1. Consider uj ∈ Vn, j =
1, . . . , k, and

⊕k
j=1 uj = 0. Clearly,

⊕k
j=1 f(uj) = 1 if and only if Πk

j=1auj = −1
where the subscript uj in auj is viewed as the integer representation of vector
uj. It is easy to verify

1
2
(1−Πk

j=1auj ) =


1 if

⊕k
j=1 f(uj) = 1

0 if
⊕k

j=1 f(uj) = 0

Hence

h̃
(k)
f,1 =

1
2

∑⊕
k

j=1
uj=0

(1− aujau2 · · ·auk)

=
1
2

∑
u1,...,uk−1∈Vn

(1− au1au2 · · ·auk−1au1⊕u2⊕···⊕uk−1)

= 2(k−1)n−1− 1
2

∑
u1,...,uk−1∈Vn

au1au2 · · ·auk−1au1⊕u2⊕···⊕uk−1

= 2(k−1)n−1

− 1
2

∑
u1,...,uk−2∈Vn

au1au2 · · ·auk−2

∑
uk−1∈Vn

auk−1au1⊕u2⊕···⊕uuk−2⊕uk−1
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= 2(k−1)n−1− 1
2

∑
u1,...,uk−2∈Vn

au1au2 · · ·auk−2∆
(2)(u1 ⊕ u2 ⊕ · · · ⊕ uk−2)

= 2(k−1)n−1

− 1
2

∑
u1,...,uk−3∈Vn

au1au2 · · ·auk−3

∑
uk−2∈Vn

auk−2∆
(2)(u1 ⊕ u2 ⊕ · · · ⊕ uk−2)

= 2(k−1)n−1− 1
2

∑
u1,...,uk−3∈Vn

au1au2 · · ·auk−3∆
(3)(u1 ⊕ u2 ⊕ · · · ⊕ uk−3)

...

= 2(k−1)n−1− 1
2

∑
u1,u2∈Vn

au1au2∆
(k−2)(u1 ⊕ u2)

= 2(k−1)n−1− 1
2

∑
u1∈Vn

au1∈Vn
∑
u2∈Vn

au2∆
(k−2)(u1 ⊕ u2)

= 2(k−1)n−1− 1
2

∑
u1∈Vn

au1∈Vn∆(k−1)(u1) = 2(k−1)n−1− 1
2
∆(k)(0).

This completes the proof. ut

5 Bounds on Nonhomomorphicity

First we introduce Hölder’s Inequality [3] that will be used in our discussions
on lower and upper bounds. It states that for real numbers cj ≥ 0, dj ≥ 0,
j = 1, . . . , k, p and q with p > 1 and 1

p + 1
q = 1, the following is true:

(
k∑
j=1

cpj )
1/p(

k∑
j=1

dqj)
1/q ≥

k∑
j=1

cjdj (8)

where the quality holds if and only if there exists a constant ν ≥ 0 such that
cj = νdj for each j = 1, . . . , k.

By using Hölder’s Inequality, we can prove

Lemma 3. Let f be a function on Vn and k an even integer with k ≥ 4. Then

2n−1∑
i=0

〈ξ, `i〉k ≥ 2n+ 1
2nk

where the equality holds if and only if n is even and f is bent.

Armed with the above result, next we show a bound on nonhomomorphicity.

Theorem 3. Let f be a function on Vn and k an even integer with k ≥ 4. Then
the following statements hold:
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(i) h̃
(k)
f,1 satisfies

2(k−1)n−1− 1
2
(2n − 2Nf )k ≤ h̃

(k)
f,1 ≤ 2(k−1)n−1− 2

1
2nk−1 (9)

where Nf denotes the nonlinearity of f,
(ii) An equality in (9) holds if and only if f is bent. In other words, f is bent if

and only if
h̃

(k)
f,1 = 2(k−1)n−1− 2

1
2nk−1.

Recall that the nonlinearity of a function reaches the minimum nonlinearity
if and only if the function is affine while the nonlinearity of a function reaches
the maximum nonlinearity if and only if the function is bent. The above theorem
shows there exists a consistent relationship between nonlinearity and nonhomo-
morphicity, especially when the order of nonhomomorphicity is large. Thus, if
h̃

(k)
f,1 is large, we expect that f is closer to a bent function than to an affine one,

and conversely if h̃
(k)
f,1 is small, then the function is closer to affine than to bent.

As h̃
(k)
f,0 + h̃

(k)
f,1 = 2(k−1)n, we have the following complementary result:

Corollary 2. Let f be a function on Vn and k an even integer with k ≥ 4. Then
the following statements hold:

(i) h̃
(k)
f,0 satisfies

2(k−1)n−1 + 2
1
2nk−1 ≤ h̃

(k)
f,0 ≤ 2(k−1)n−1 +

1
2
(2n − 2Nf)k2(k−1)n−1 (10)

where Nf denotes the nonlinearity of f,
(ii) An equality in (10) holds if and only if f is bent. In other words, f is bent

if and only if
h̃

(k)
f,0 = 2(k−1)n−1 + 2

1
2nk−1.

A consequence of Theorem 3 and Corollary 2 is

Corollary 3. Let f be a function on Vn and k an even integer with k ≥ 4. Then
h̃

(k)
f,0 − h̃

(k)
f,1 ≥ 2

1
2nk, and the equality holds if and only if f is bent.

An implication of the above corollary is that there exists no function on Vn
such that h̃

(k)
f,0 = h̃

(k)
f,1.

6 Comparing Nonhomomorphicity and Nonlinearity

A natural question on nonhomomorphicity is how it is related to other nonlin-
ear characteristics, such as nonlinearity which indicates the minimum distance
between a particular function and all the affine functions. It turns out that
nonhomomorphicity and nonlinearity are two indicators that are not directly
comparable. We demonstrate this by inspecting three specific functions f , g and
h on V2s with s ≥ 5.

Recall that the rows in Hs, the Sylvester-Hadamard matrix of order 2s, are
denoted by `i, i = 0, 1, . . . , 2s − 1. The three functions are defined as follows:
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1. f — the sequence of f is the concatenation of `1, `2, . . ., `2s−1 with `1 being
repeated twice, i.e., `1, `1, `2, . . . , `2s−1.

2. g — the sequence of g is composed of four repetitions of a bent sequence η
of length 22s−2, i.e., η, η, η, η.

3. h — the sequence of f is the concatenation of `1, `4, . . ., `2s−1 with `1 being
repeated four times, i.e., `1, `1, `1, `1, `4, . . . , `2s−1.

By using (3), we know that the nonlinearities of the three functions are
Nf = Ng = 22s−1 − 2s, and Nh = 22s−1 − 2s+1.

Consider k even with k ≥ 4. By Theorem 2, we have the following nonhomo-
morphic characteristics for the three functions:

h̃
(k)
f,1 = 22(k−1)s−1− 2−2s−1(2sk+2s − 2sk+s+1 + 2sk+k+s−1)

h̃
(k)
g,1 = 22(k−1)s−1− 2−2s−1 · 2sk+k+2s−2

h̃
(k)
h,1 = 22(k−1)s−1− 2−2s−1(2sk+2s − 2sk+s+2 + 2sk+2k+s−2)

Thus for these three functions f , g and h, their nonlinearities and nonhomo-
morphic characteristics are related as follows:

(i) f v.s. g: Nf = Ng, but h̃
(k)
f,1 > h̃

(k)
g,1.

(ii) f v.s. h: Nf > Nh, and h̃
(k)
f,1 > h̃

(k)
h,1.

(iii) g v.s. h: Ng > Nh, but h̃
(k)
g,1 < h̃

(k)
h,1 if k ≤ s− 1, and h̃

(k)
g,1 > h̃

(k)
h,1 if k ≥ s.

Properties of these three functions clearly show that nonlinearity and non-
homomorphicity are not comparable indicators. They, however, can be used to
complement each other in studying cryptographic properties of functions.

The two functions g and h are of particular interest: while h̃
(k)
g,1 < h̃

(k)
h,1 for

k ≤ s− 1, their positions are reversed for k ≥ s. This motivates us to examine
the behavior of nonhomomorphicity as k becomes large.

Theorem 4. Let f and g be two functions on Vn. If h̃kf,1 6= h̃kg,1, then there
is an even positive k0, such that h̃kf,1 < h̃kg,1 for every even k with k ≥ k0, or
h̃kf,1 > h̃kg,1 for every even k with k ≥ k0.

Assume that Nf > Ng. Then from (3), we have

max{|〈ξ, `i〉|, 0 ≤ i ≤ 2n − 1} < max{|〈η, `i〉|, 0 ≤ i ≤ 2n − 1}.

Using a similar proof to that for the above theorem, we can show

Theorem 5. Let f and g be two functions on Vn. If Nf > Ng, then there is an
even positive k0, such that h̄kf,1 > h̄kg,1 for every even k with k ≥ k0.
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While Theorem 5 shows that nonhomomorphicity and nonlinearity are con-
sistent when the dimension k is large, the three example functions f , g and
h, together with Theorems 4 and 5, do indicate that nonhomomorphic charac-
teristics of a function cannot be fully predicted by other cryptographic criteria,
such as nonlinearity. Therefore, nonhomomorphicity can serve as another impor-
tant indicator that forecasts certain cryptographically useful properties of the
function.

Comparing (ii) of Theorem 2 and (3), we find that although both nonlinearity
and nonhomomorphicity reflect non-affine characteristics, the former focuses on
the maximum |〈ξ, `i〉| while the latter is more concerned over all |〈ξ, `i〉|.

7 The Mean of Homomorphicity and Nonhomomorphicity

Let f be a function on Vn, χ denote an indicator (a criterion or a value), and χf
denote the indicator of f . Note that there precisely 22n functions on Vn. We are
concerned with the mean of the indicator χ over all the functions on Vn, denoted
by χ, i.e. χ = 2−2n

∑
f χf .

The upper and lower bounds on χf cannot provide sufficient information on
the distribution of χ of a majority of functions. For this reason, we argue that
the mean of the indicator χ over all the functions on Vn, i.e. χ = 2−2n

∑
f χf ,

should also be investigated. Note that there exist precisely 22n functions with n
variables.

Notation 2. Let Ok (k is even) denote the collection of k-tuples (u1, . . . , uk)
of vectors in Vn satisfying uj1 = uj2 , . . . , ujk−1 = ujk, where {j1, j2, . . . , jk} =
{1, 2, . . ., k}. Write ok = #Ok.

It is easy to verify

Lemma 4. Let n and k be positive integers and u1 ⊕ · · · ⊕ uk = 0, where each
uj is a fixed vector in Vn. Then

f(u1)⊕ · · · ⊕ f(uk) = 0

holds for every function f on Vn if and only if k is even and (u1, . . . , uk) ∈ Ok.

Lemma 5. In Notation 2, let k be an even with 2 ≤ k ≤ 2n. Then

ok =
k/2∑
t=1

(
2n

t

) ∑
p1+···+pt=k/2, pj>0

(k)!
(2p1)! · · · (2pt)!

Proof. Let (u1, . . . , uk) ∈ Ok. Then the multiple set {u1, . . . , uk} can be divided
into t disjoint subsets Π1, . . . , Πt where (1) 1 ≤ t ≤ k, (2) each Πj is a 2pj
(pj > 0) copy of a vector βj i.e. Πj = {βj, . . . , βj} and |Πj| = 2pj, (3) βj 6= βi,
if j 6= i, (4) {u1, . . . , uk} = Π1 ∪ · · · ∪Πt.
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Note that there exist
(

2n

t

)
different choices of t distinguished vectors β1, . . . ,

βt from Vn. Arranging each multiple set {u1, . . . , uk}, we obtain precisely (k)!/
(2p1)! · · · (2pt)! distinguished ordered sets. Note that 2p1 + · · · + 2pt = k and
1 ≤ t ≤ k/2. The proof is completed. ut

From Lemma 4, if (u1, . . . , uk) ∈ Ok then f(u1) ⊕ · · · ⊕ f(uk) = 0 holds for
every function f on Vn. Therefore, in this case f(u1) ⊕ · · · ⊕ f(uk) = 0 with
u1 ⊕ · · · ⊕ uk = 0 does not really reflect an affine property. Hence we focus on
H(k)
f,0 −Ok and H(k)

f,1.

Theorem 6. Let k be an even with 2 ≤ k ≤ 2n. Then

(i) the mean of h̃
(k)
f,0 over all the functions on Vn i.e. 2−2n

∑
f h̃

(k)
f,0, satisfies

2−2n
∑
f

h̃
(k)
f,0 =

1
2
ok + 2(k−1)n−1

where ok is given in Lemma 5.
(ii) the mean of h̃

(k)
f,1 over all the functions on Vn i.e. 2−2n

∑
f h̃

(k)
f,1, satisfies

2−2n
∑
f

h̃
(k)
f,1 = −1

2
ok + 2(k−1)n−1

Proof. To prove Part (i), we consider two cases for (u1, . . . , uk) ∈ H(k)
f,0.

Case 1: (u1, . . . , uk) ∈ Ok. From Lemma 4, f(u1)⊕ · · · ⊕ f(uk) = 0 holds for
every function f on Vn.

Case 2: (u1, . . . , uk) ∈ H(k)
f,0 − Ok. Note that f(u1) ⊕ · · · ⊕ f(uk) takes the

value zero and the value one with an equal probability of a half for a random
function f on Vn. Therefore

2−2n
∑
f

h̃
(k)
f,0 = 2−2n

∑
f

#Ok + 2−2n
∑
f

#(H(k)
f,0(0)− Ok)=ok +

1
2
[2(k−1)n− ok]

=
1
2
ok + 2(k−1)n−1

This proves (i) of the theorem.
Part (ii) can be proven in a similar way, once again by noting that f(u1) ⊕

· · · ⊕ f(uk) takes the value zero and the value one with an equal probability of
a half, for a a random function f on Vn. ut

A function whose nonhomomorphicity is larger than the mean, namely h̃
(k)
f,1 >

2−2n
∑
f h̃

(k)
f,1, indicates that the function is more nonlinear. The converse also

holds.
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8 Relative Nonhomomorphicity

The concept of relative nonhomomorphicity introduced in this section is useful
for a statistical tool to be introduced later.

Notation 3. Let k be an even with k ≥ 4 and Rk denote the collection of ordered
k-tuples (u1, . . . , uk) of vectors in Vn satisfying u1 ⊕ · · · ⊕ uk = 0.

We have noticed

#Rk = 2(k−1)n and #(Rk −Ok) = 2(k−1)n− ok. (11)

From the proof of Theorem 6, if (u1, . . . , uk) ∈ Rs−Ok then f(u1)⊕· · ·⊕f(uk)
takes the value zero and the value one with equal probability.

Definition 6. Let f be a function on Vn and k be an even with k ≥ 4. Define the

kth-order relative nonhomomorphicity of f, denoted by ρ
(k)
f,1, as ρ

(k)
f,1 =

h̃
(k)
f,1

#(Rk−Ok) ,

i.e. ρ
(k)
f,1 =

h̃
(k)
f,1

2(k−1)n−ok .

From Theorem 6, we obtain

Corollary 4. Let k be an even with 2 ≤ k ≤ 2n. Then the mean of ρ
(k)
f,1 over all

the functions on Vn i.e. 2−2n
∑
f ρ

(k)
f,1, satisfies 2−2n

∑
f ρ

(k)
f,1 = 1

2 .

From Corollary 4,

ρ
(k)
f,1

{
≥ 1

2 then the nonhomomorphicity of f is not smaller than the mean
< 1

2 then the nonhomomorphicity of f is smaller than the mean (12)

In practice, if ρ
(k)
f,1 is much smaller than 1

2 , then f should be considered crypto-
graphically weak.

9 Estimating Nonhomomorphicity

As shown in Theorem 2, the nonhomomorphicity of a function can be determined
precisely. In this section, however, we introduce a statistical method to estimate
nonhomomorphicity. Such a method is useful in fast analysis of functions.

Denote a real-valued (0, 1) function on Rk − Ok, t(u1, . . . , uk), as follows

t(u1, . . . , uk) =
{

1, if f(u1)⊕ · · · ⊕ f(uk) = 1
0, otherwise

Hence from the definition of nonhomomorphicity we have

h̃
(k)
f,1 =

∑
(u1,...,uk)∈Rk−Ok

t(u1, . . . , uk)
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Let Ω be a random subset of Rk − Ok. Write ω = #Ω and

t =
1
ω

∑
(u1,...,uk)∈Ω

t(u1, . . . , uk) (13)

Note that this is the “sample mean” [1]. In particular, Ω = R
(k)
n − Ok, t is

identified with the “true mean” or “population mean” [1], namely, ρ
(k)
f,1.

Now consider
∑

(u1,...,uk)∈Ω(t(u1, . . . , uk) − t)2. We have∑
(u1,...,uk)∈Ω

(t(u1, . . . , uk)− t)2 =
∑

(u1,...,uk)∈Ω
t2(u1, . . . , uk)

− 2t ·
∑

(u1,...,uk)∈Ω
t(u1, . . . , uk) + ωt

2

Note that t2(u1, . . . , uk) = t(u1, . . . , uk). From (13),∑
(u1,...,uk)∈Ω

(t(u1, . . . , uk) − t)2 = ωt− 2ωt
2 + ωt

2 = ωt − 2ωt
2 + ωt

2

= ωt(1− t) (14)

Hence the quantity of
√

1
ω−1

∑
(u1,...,uk)∈Ω(t(u1, . . . , uk)− t)2, which is called

the “sample standard deviation” [1] and is usually denoted by µ, can be expressed
as

µ =

√√√√ 1
ω − 1

∑
(u1,...,uk)∈Ω

(t(u1, . . . , uk) − t)2 =

√
ωt(1− t)

ω − 1
(15)

By using (4.4) in Section 4.B of [1], the “true mean” or “population mean”, ρ
(k)
f,1,

can be bounded by

t− Ze/2
µ√
ω

< ρ
(k)
f,1 < t + Ze/2

µ√
ω

(16)

where Ze/2 denotes the value Z of a “standardized normal distribution” which to
its right a fraction e/2 of the data, (16) holds with a probability of (1−e)100% [1].

For example,

when e = 0.2, Ze/2 = 1.28, and (16) holds with a probability of 80%,
when e = 0.1, Ze/2 = 1.64, and (16) holds with a probability of 90%,
when e = 0.05, Ze/2 = 1.96, and (16) holds with a probability of 95%,
when e = 0.02, Ze/2 = 2.33, and (16) holds with a probability of 98%,
when e = 0.01, Ze/2 = 2.57, and (16) holds with a probability of 99%,
when e = 0.001, Ze/2 = 3.3, and (16) holds with a probability of 99.9%.
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From (13), 0 ≤ t < 1 and it is easy to verify that µ in (15) satisfies 0 ≤ µ ≤
1
2

√
ω
ω−1 , This implies that (16) can be simply replaced by

t−
Ze/2

2
√

ω − 1
< ρ

(k)
f,1 < t +

Ze/2

2
√

ω − 1
, (17)

where (17) holds with (1 − e)100% probability. Hence if ω i.e. #Ω is large,
then the lower bound and the upper bound on ρ

(k)
f,1 in (16) are closer to each

other. On the other hand, if we choose ω = #Ω large enough then Ze/2
µ√
ω

is
sufficiently small, and hence (16) and (17) will provide us with useful information.
For instance, viewing Corollary 4 and (17), we can choose ω = #Ω such that
Ze/2

2
√
ω−1

< 10−p. Hence ω ≥ Ze/2 · 102p is large enough. In this case (17) is
specialized as

t− 10−p < ρ
(k)
f,1 < t + 10−p (18)

where (18) holds with (1− e)100% probability.
In summary , we can analyze the nonhomomorphic characteristics of a func-

tion on Vn in the following steps:

1. we randomly fix even k with k ≥ 4, for example, k = 4, 6 or 8, and randomly
fix a large integer ω, for example, ω ≥ Ze/2 · 102p, and randomly choose a
subset of Rk −Ok, say Ω, with #Ω = ω,

2. by using (13), we determine t, i.e. “the sample mean”,
3. by using (18), we determine the range of ρ

(k)
f,1 with a high reliability,

4. viewing ρ
(k)
f,1 in (18), from Corollary 4,

ρ
(k)
f,1

{
≥ 1

2 then f is not less nonhomomorphic than the mean
> 1

2 then F is less nonhomomorphic than the mean (19)

where (19) holds with (1− e)% probability,
5. if ρ

(k)
f,1 is much smaller than 1

2 then f should be considered as cryptographi-
cally weak.

We have noticed that the statistical analysis has following advantages:

(1) the relative nonhomomorphicity, ρ
(k)
f,1 can be precisely identified by the use

of “population mean” or “true mean”,
(2) by using this method we do not need to search through the entire Vn,
(3) the method is highly reliable.

10 Extensions to S-boxes

Obviously, the concept of nonhomomorphicity of a Boolean function can be ex-
tended to that of an S-box in a straightforward way. Analysis of the general
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case of an S-box, however, has turned out to be far more complex. Neverthe-
less, we have obtained a number of interesting results on S-boxes, some of which
encompass results presented in this paper. We will report the new results in a
forthcoming paper. In the same paper we will also discuss how to utilize nonho-
momorphic characteristics of an S-box employed by a block cipher in analyzing
cryptographic weaknesses of the cipher.

11 Conclusions

Nonhomomorphicity is a new indicator for nonlinear characteristics of a function.
It can complement the more widely used indicator of nonlinearity. Two useful
properties of nonhomomorphicity are: (1) the mean of nonhomomorphicity over
all the Boolean functions over the same vector space can be precisely identified,
(2) the nonhomomorphicity of a function can be estimated efficiently, regardless
of the dimension of the vector space.
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