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Abstract. It is not known to date how to partially share the factors of
an integer (e.g., an RSA modulus) with verifiability. We construct such a
scheme on exploitation of a significantly lowered complexity for factoring
n = pq using a non-trivial factor of ¢(n).

1 Introduction

Partial key escrow purports to add a great deal of difficulty to mass privacy
intrusion which is possible in ordinary key escrow with abusive authorities while
preserving the property of an ordinary escrowed cryptosystem in targeting small
number of criminals. In partial key escrow, a portion of an individual’s private
key with an agreed and proved size will not be in escrow. Key recovery requires
a non-trivial effort to determine the missing part. A partial key escrow scheme
must render that the determination of the missing key part will only be possible
after recovery of the key part which is in escrow (usually with a set of distributed
agents who are collectively trusted to share the escrowed key part). If the miss-
ing part can be determined before, or without taking, a prescribed key recovery
procedure, then off-line pre-computations can be employed for finding the miss-
ing part and this can be done in a massive scale with many or all users targeted.
This constitutes a so-called prematured key recovery attack: the missing key
part is not really missing and the whole private key of each user can be made
available right after recovery of the escrowed key part. The effect of partial key
escrow is thereby nullified and the scenario of mass privacy intrusion can still be
assumed just as the case of an ordinary key escrow scheme. In their recent work
“Verifiable partial key escrow”, Bellare and Goldwasser [l] discussed scenarios
of prematured key recovery attacks.

Thus, a necessary step in verifiable partial key escrow is for a key owner to
prove that a private key contains a hidden number which will not be in escrow
and has an agreed size. To discover this number requires first to recover the
escrowed part of the private key, and only after that recovery can an exhaustive
search procedure be lunched to determine the missing number. The cost of the
search will be a well-understood problem given the proved size of the missing
number.

The previous verifiable partial key escrow scheme of Bellare and Goldwasser
[ was proposed for discrete logarithm based cryptosystems. In that realization,
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a key y = g% is cut into two parts y1y2 = g% g%2 = ¢** %2 where x1 is a partial

private key and is proved in escrow, zs is the remaining private component which
will not be in escrow but has an agreed bit size to be proved by the key owner
during the key escrow time. Using a bit commitment scheme these proofs can
be done without revealing the partial private and public keys. Key recovery will
have to be via recovering 1, y1 then ya = y/y;1 followed by searching x5 from ys.
Note that neither of the partial public keys should be revealed before recovering
x1, or else searching x5 can take place before x; is recovered.

It is not known to date how to partially escrow integer factors (e.g., prime
factors of an RSA modulus) with verifiability. Full key escrow for integer fac-
toring based cryptosystems can take the approach of escrowing a prime factor
of an integer [ (the scheme in [[&J] achieves public verifiability). It is however
not straightforward to perceive a partial integer-factor sharing scheme along
that approach. A major problem is to establish a precise cost for key recov-
ery (e.g., a 24%level time cost, which is non-trivial but expensively manageable
by a well resourced agent, and has been chosen as a suitable workload for the
partial key escrow scheme for discrete-log based cryptosystems [].) Chopping
down an 80-bit blockll from a prime factor and throwing it away will unlikely be
a correct rendering because, in integer factoring based cryptosystems, a prime
factor should have a size significantly larger than 80 bits, and so the remain-
ing escrowed part of the factor will be sufficiently large to allow exploitation of
polynomial-time factoring methods (e.g., Coppersmith [A]) to factor the integer
in question. On the other hand, throwing away a much larger number block may
render a key unrecoverable.

We will construct a scheme for verifiable partial sharing of the factors of
an integer. The central idea in our realization is an observation (one of the
cryptanalysis results in [i]) on a significantly lowered and precisely measurable
time complexity for factoring n = pq if a factor of ¢(n) (the Euler phi function)
is known. This factor will be proved to have an agreed size and will be in escrow
in verifiable secret sharing. We will reason that without recovery of this factor,
integer factoring will be as the same difficult as the original factoring problem.

In the remainder of the paper, Section 2 describes a lowered complexity
for factoring n with a known factor of ¢(n), Section 3 constructs the proposed
scheme; Section 4 analyzes the security and performance of the scheme; finally,
Section 5 concludes the work.

2 Integer Factoring with an Additional Knowledge

Let n = pq for p and q being distinct primes. Then

n+l={p-1)(@-1)+({@+q. (1)

! Searching a number of this size requires 2'° operations using known best algorithms
based on a square-root reduction; we will discuss this reduction in Section 2.
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Let r be a factor of (p—1)(¢—1), but not a factor of p—1 and ¢—1 (otherwise
r2 will be a factor of (p —1)(q¢ — 1)). Then

p+qg=n+1(modr). (2)
When r is smaller than p + ¢, congruence (2) means the equation
p+qg=(mn+1 mod r)+ kr, (3)

for an unknown k. If p + ¢ becomes known, factoring n into p and ¢ follows a
simple calculation. Equation (3) shows that if r is known, finding the quantity
p + q is equivalent to finding the unknown &, and hence the difficulty to factor
n is equivalent to that to find k.

Let |a| denote the bit size of the integer a in the binary representation. For
Ip+ q| > |r|, noting (n 4+ 1 mod ) < r, we have

k| 4+ [r| =1 < |p+q| < |k +|r|+1,
or
k|~ |p+q| —|r|

So when r is known, the time needed to determine p + ¢, or to factor n, is
bounded above by performing

9lp+al—Ir| (4)

computations. The algorithm is to search k in equation (3).

The bound in (4) can further be lowered significantly. Note that most ele-
ments in the multiplicative group of integers modulo n Z; have orders larger
than p+ g unless factoring n is easy. This means that arbitrarily picking v € Z}:,
and letting v be the least number satisfying

u’ mod n =1,
then in an overwhelming probability,
v>p+tq.
Combining (1) and (3), we will have
n+l=(p-1)(¢g—1)+ (n+1 mod r)+ kr. (5)

Raising u to the both sides of (5), writing w = u” mod n, and noting u»~D@-1) =
1 (mod n), we have
un+17(n+1 mod 7) = wk (mod T‘L) (6)

We point out that the quantity & in (6) is exactly that in (3) because kr <
p + ¢ which should be smaller than the order of u (namely, transforming (3) to
(6), the number & will not be reduced in modulo the order of u). With r (hence
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w) known, extracting k from the equation (6) using Shank’s baby-step giant-step
algorithm (see e.g., [, Section 5.4.1) will only need about
Lkl
272
operations (multiplication in Z;) and the same order in the space complexity.

This is a much lowered bound from (4) as it is the positive square root of (4).
To this end we have proven the following statement.

Lemma 1. Let n = pq for p, q being two distinct primes, and r be a known
factor of ¢p(n) = (p — 1)(¢ — 1) with |r| < |p+ q|. Then time and space for

. |ptal—|r]|
factoring n can use 27 2 as an upper bound. a

A number of previous integer factoring based cryptosystems make use of a
disclosed sizable factor of ¢(n) where n is the product two secret primes [FIIIET].
Each of these systems includes moduli settings that allow feasible factorization
using our method. For instance, a modulus setting in [B] satisfies w = 35.

Remark Lemma 1 states an upper bound, which means to factor n = pq
with a known 7|(p — 1)(¢ — 1) needs at most 2 ety operations. However, this

complexity measurement reaches the lowest known to date on exploitation of
computing small discrete logarithms. Any algorithm using fewer operations will
provide a breakthrough improvement on solving the (small) discrete logarithm
problem. The same argument applies to the verifiable partial key escrow scheme
of Bellare and Goldwasser.

If r is unknown, then equation (3), hence equation (6), are not usable. For
n being the product of large primes p and ¢, factorization is so far known to be
an infeasible problem. The verifiable partial integer-factor sharing scheme to be
specified in the next section will make use of this big time-complexity difference
between factoring n with a sizeable factor of (p—1)(¢—1), and doing it without.

3 The Proposed Scheme

A user (Alice) shall construct her public key n = pq satisfying that p and g are
primes of the same size, (p — 1)(¢ — 1) has a factor r with |[p+¢| —|r| = 80 and
r is not a factor of both p — 1 and ¢ — 1.

Alice shall then prove in zero-knowledge the following things: (i) n is the
product of two hidden prime factors p and g of the same size; (ii) a hidden number
r is a factor of (p — 1)(¢ — 1) but not that of both p — 1 and ¢ — 1, satisfying
‘QE — |r| = 80; (iii) verifiable secret sharing of r with a set of agents (called
shareholders). After all of these have been done, we know from the previous
section that if r is recovered by co-operative shareholders, n can be factored
by finding &k in (6) with 240 operations using the known fastest algorithms in
computing small discrete logarithms. On the other hand, if r is not available, n
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will be in the same position as an ordinary RSA modulus, and given the size of
n, no computationally feasible algorithm is known to factor it.

To this end we have fully described the working principle of a verifiable partial
integer-factor sharing scheme. In the remaining of this section we shall construct
computational zero-knowledge protocols for proof of the required structure of
n, and for verifiable secret sharing of r. These constructions will use various
previous results as building blocks, which can be found, respectively, in the work
of Chaum and Pedersen [ (for proof of discrete logarithm equality), Damgard [
(for proof of integer size), Pedersen [iZ] (for verifiable threshold secret sharing),
and Mao [[] (for proof of correct integer arithmetic).

These protocols will make use of a public cyclic group with the following
construction. Let P be a large prime such that @ = (P — 1)/2 be also prime.
Let f € Z} be a fixed element of order (). The public group is the multiplica-
tive group generated by f. We assume that it is computationally infeasible to
compute discrete logarithms to the base f. Once setup, the numbers f and P
(hence @ = (P —1)/2) will be announced for use by the system wide entities.

3.1 Proof of Correct Integer Arithmetic

We shall apply y = f* mod P as the one-way function needed to prove the
correct integer arithmetic. (In the sequel we will omit the presentation of modulo
operations whenever the omission does not cause confusion.)

For integers a and b, Alice can use the above one-way function to prove ¢ = ab
without revealing a, b and c. She shall commit to the values a, b and ¢ by sending
to a verifier (Bob) their one-way images (A4, B,C) = (f%, f*, f2*) and prove to
him that the pre-image of C' is the product of those of A and B.

However note that for the one-way function f* used, the proved multiplica-
tion relationship depicted above is in terms of modulo ord(f) (here ord(f) = Q is
the order of the element f), and in general this relationship does not demonstrate
that log,;(C') = log;(A)log(B) is also true in the space of integers. Neverthe-
less, if Alice can show the bit sizes of the respective discrete logarithms (i.e.,
|log¢(A)|, [logs(B)| and |log;(C)|), then the following lemma guarantees the
correct multiplication.

Lemma 2. Let ab = ¢(mod Q) and |c| + 2 < |Q|. If |a| + |b] < |c| + 1 then
ab=c.

Proof. Suppose ab # c¢. Then ab = ¢ + ¢Q for some integer ¢ # 0. Noticing
0<e<@,so

lal + [b] > |ab| = [c+ Q[ > |Q] =1 > |c[ + 1,
contradicting the condition |a| 4 [b] < |c| + 1. O

Thus y = f* forms a suitable one-way function to be used for proof of the
correct product of integers in its pre-image space, provided the bit sizes of the
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pre-images are shown. Given f#, there exists efficient protocols to show |z| with-
out revealing x ([{4]). In the next subsection we will specify a simplified variation
of the proof which protects x up to computational zero-knowledge. Applying the
bit-size proof protocol, we can specify a protocol (predicate) Product(A, B,C)
below. The predicate will return 1 (Bob accepts) if log;(C') = log;(A)log,(B),
or return 0 (Bob rejects) if otherwise.

Protocol Product(f®, f, fa°)

(a run will be abandoned with 0 returned if any party finds any error in any
checking step, otherwise it returns 1 upon termination.)

Alice sends to Bob: |a ab|, and demonstrates the following evidence:

i) logs(f*) =logp (f*°) and log;(f*) = logsa (f*);
i) lal + [b] < |ab| < |Q| — 2.

In Product, showing (i) can use the protocol of Chaum and Pedersen [, and
showing (ii) can use a protocol Bit-Size to be specified in the next subsection.
Note that only the bit sizes regarding the first two input values need to be
shown because, having shown the equations in step (i), the size regarding the
third value is always the summation of those regarding the former two.

We will analyze the security and performance of this protocol in Section 4.

3.2 Proof of Integer Size

The basic technique is due to Damgard [M]. We specify a simplified version based
on the discrete logarithm problem. In our variation, the number in question is
protected in computational (statistical) zero-knowledge.

Let I be the interval [a, b](= {z]|a <z < b}),e = b—a, and [+e = [a—e, b+e€].
In Protocol Bit-Size specified below, Alice can convince Bob that the discrete
logarithm of the input value to the agreed base is in the interval I + e.

Protocol Bit-Size(f*)
Execute the following k times:

1. Alice picks 0 < t; < e at uniformly random, and sets ¢, := t; — e; she sends to
Bob the unordered pair C; := ft, Co := f'2;
2. Bob selects b =0 or b = 1 at uniformly random, and sends b to Alice;
3. Alice sets w1 :=t1, ug :=ta forb =0, uy :=t1+5s, up :=ty+sforb=1,
and sends w1, us to Bob;
4. Bob checks the following (with i = 1, 2):
forb=0, —e <u; <eand C; = f*,
forb=1,a—e<u; <b+eand C;f° = f4,

Set, for instance, I := [2¢71, 2¢]. Then e will be 271, and Bit-Size will prove
that the discrete logarithm of the input value does not exceed ¢+ 1 binary bits.
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3.3 Proof of the Prime Factors’ Structure

Let n = pq be the user Alice’s public key for an integer factoring based cryp-
tosystem. The proposed scheme will require Alice to set the primes p and ¢ with
the following structure

p=2p's+1, ¢=2¢t+1, (7)

Here p’, ¢/, s,t are distinct odd numbers, any two of them are relatively prime,
and their sizes satisfy
Pl = Is| = lq'| — [t| = 80. (8)
Then set
r = 4st. 9)

As a procedure for key setup, Alice should first choose the numbers p/, ¢’ s,
t at random with the required sizes, oddity and relative-prime relationship. She
then samples if p and ¢ in (7) are prime. The procedure repeats until p and ¢
are prime. For p/, ¢/, s, t being odd, both p and ¢ will be congruent to 3 modulo
4, rendering n to be a Blum integer [I]. We will need this property for proof
of two prime structure of n. It is advisable that p’ and ¢’ be chosen as primes,
resulting in p and ¢ as the so-called strong primes (for n in a secure size, p’
and ¢’ will be large). This follows a desirable moduli setting for integer factoring
based cryptosystems.

From (7) and (8) we know

Ipl = 2ls| = |p'| — [s] = 80 = [¢'| — || = lq| — 2J¢.
Noting |p| = |q|, so the above implies |s| = |¢|, and
Ip+q| —|r| = |p| +1— |4st| =~ |p| +1 — (2 +2]s]) € {79, 80, 81}.

Once the key values are fixed, Alice shall publish

(p—1)(g—1)

A:f‘p’B:f‘q’ C:fTaD:f "
Using these published values, Alice can prove to Bob the following two facts:
i) n =log;(A)logs(B), by running Product(A, B, f");
ii) log(C) divides (logs(A) —1)(log;(B) —1), by running Product(C, D, %)
(note here the dis-log of the third input is (log;(A) — 1)(log;(B) —1)).

During the proof that runs Product, Alice has also demonstrated the bit size
values | log(A)|, [logs(B)| and |log;(C)|. Bob should check that

n
log (4)] — [ 1og, ()] ~ 21— 1og, (0)] € (70,50, 81},

Finally Alice should prove that n consists of two prime factors only. This can
be achieved by applying the protocol of Van de Graaf and Peralta [ for proof
of Blum integers (we have constructed n to be a Blum integer), and the protocol
of Boyar et al [H] for proof of square-free integers.
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3.4 Verifiable Secret Sharing of r

For self-containment, we include Pedersen’s threshold verifiable secret sharing
scheme [i4] for sharing the secret r among a multi number of shareholders with
threshold recoverability.

Let the system use m shareholders, Using Shamir’s ¢ (< m) out of m threshold
secret sharing method ([i2]), Alice can interpolate a t-degree polynomial r(x)

t—1
r(z) = Zcixi mod @,

i=0

where the coefficients c1, ¢, - -+, ¢;_1 are randomly chosen from Zg, and ¢o = .
The polynomial satisfies 7(0) = r. She shall send the secret shares r(i) (i =
1,2,---,m) to each of the m shareholders, respectively (via secret channels),

and publishes _
"% mod P, for i =0,1,---,m,

and
f% mod P for j=0,1,---,t—1.

Each shareholder can verify

t—1
o = H(fcj)i] (mod P) fori=1,2---,m.
j=0

Assume that at least ¢ of the m shareholders are honest by performing correct
checking. Then the polynomial r(x) is now secretly shared among them. When
key recovery is needed, they can use their secret shares to interpolate r(x) and
recover r = r(0).

We should point out that this sub-protocol is not a necessary component in
the proposed scheme. There exists other schemes to prove a correct threshold
encryption of a discrete logarithm (e.g., [l achieves verifiable secret sharing
with a public verifiability; that is, secret sharing can be done without the pres-
ence of the m shareholders and without assuming ¢ of them to be honest). We
have chosen Pedersen’s scheme for simplicity in presentation.

4 Analysis

We now provide security and performance analyzes on the proposed verifiable
partial integer-factor sharing scheme.

4.1 Security

The security of the proposed scheme consists of the correctness and the privacy.
The former concerns whether Alice can successfully cheat Bob to accept her
proof using a key in which the private component is either not recoverable,
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or recoverable at a much higher cost than that of the procedure specified in
Section 2. The latter concerns whether Bob can gain any knowledge, as a result
of verifying Alice’s proof, leading to discovery of Alice’s private key without
going through the prescribed key recovery procedure.

Correctness

In Section 2 we have established the precise cost for key recovery. The remark
following Lemma 1 further emphasizes that should there exist an algorithm that
can find the missing key part with fewer than 240 operations, that algorithm will
also form a breakthrough improvement from all methods we know to date for
computing small discrete logarithms. The remaining correctness issue is on that
of the sub-protocols which realize the mathematics established in Section 2.

The two sub-protocols that construct Product have well understood correct-
ness properties [l . The cheating probability for proof of a Diffie-Hellman triple
is 1/Q where Q is the order of f, and that for Bit-Size is 1/2*, here k is the
number of iterations in the it. Using k = 40 will achieve a sufficiently low chance
for successful cheating by Alice. So we can use 1/2%° as the cheating probability
for Product (since 1/Q < 1/2%0 for usual sizes of Q).

Next, the correctness of the protocol for proof of two-prime structure is also
well established [EH], with error probability 1/2* for k iterations of message
verification. Again, k can be set to 40.

We note that in the proofs for the structural validity of n (i.e., n = pq, the
primality of p, g, the relation r|(p — 1)(¢ — 1), and the required sizes of these
numbers), the verification job does not involve handling any secret. Therefore it
can be carried out by anybody and can be repeated if necessary. So Bob cannot
collude with Alice without risking to be caught.

Finally, the correctness of the protocol for verifiable sharing of r 4] has a
two-sided error. The error probability for Alice’s successful cheating is 1/@Q which
is negligible as @) is sufficiently large. The other side of the error is determined by
the number of dishonest shareholders. The number r can be correctly recovered
if no fewer than ¢ out of the m shareholders are honest (i.e., they follow the

protocol). Usually the threshold value t is set to | %].

Privacy

Although each of the sub-protocols used in the construction of the main scheme
has its own proved privacy, we cannot assume that when they run in combination
they will still provide a good privacy for the main scheme. Thus, we shall study
the privacy of the main scheme in the following manner: (i) the values that have
been made public in the main scheme do not themselves leak useful information
for finding the prime factors, and (ii) when viewed together, they will not produce
a formula usable for finding the prime factors. We emphasize that the quality
of (ii) is essential as we must be sure that the published values will not damage
the original privacy of each sub-protocol used in the main scheme.
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In addition to the public key n, in the main scheme Alice has published the
following values:

|n| n|
,lpl =gl = =, |r| =~ =L —80.
Ip| = |q| 5 |7 5

(p—1)(g—1)

A:fp’ B:fqa C:fra D:f

First of all it is obvious that there is no danger for disclosing the bit size
information of the secret numbers. So we need only to consider the first four
numbers: A, B, C and D.

We note that (A, B, ) and (C, D, %) forming two Diffie-Hellman triples.
This fact, however, will not help Bob to find the discrete logarithms of A, B,
C, and D, following the security basis of the Diffie-Hellman problem. Analo-
gously, any arithmetic of these numbers will not produce anything easier than
the original Diffie-Hellman problem.

We should remind that, even for n having a widely-believed least size of 512
bits, the discrete logarithms of the published values above will all be sufficiently
large. The least one is r whose size satisfies

7| > 256 — 81 = 175,

which is still sufficiently large and immune to the square-root attack aimed for
extracting it from C.

Next we shall review if any of the published numbers will damage the original
privacy of each sub-protocol used. We can safely begin without concerning any
impact on the two sub-protocols used in proof of two-prime structure of n because
those protocols involves calculations in a different group: Z rather than Zp.

The two sub-protocols that construct Product require Alice to hide the pri-
vate input values (which are discrete logs of the input to Product or to Bit-Size)
by using a genuine random number in each round of message exchange (these
random numbers form the prover’s random input; review [l for proof of Diffie-
Hellman triple, and Section 3.2 for proof of integer size). In both sub-protocols,
the prover’s random input will have similar sizes as those of the private input. In
fact, the sub-protocol for proof of Diffie-Hellman triple is perfect (computational)
zero-knowledge [, and that for proof of bit size is statistical zero-knowledge [H].
As a result, Product can be simulated using the standard way for demonstrating
an honest verifier zero-knowledge protocol.

Finally we point out that Pedersen’s protocol for verifiable sharing of r (the
discrete log of C') has a well understood perfect privacy following the privacy of
Shamir’s secret sharing scheme based on polynomial interpolation [LAJE].

4.2 Performance

The main scheme consists of (i) verifiable secret sharing of r, (ii) two instances
of running Product, and (iii) proof of two-prime structure of n.

Since (i) can be viewed as common in verifiable secret sharing schemes, we
shall only analyze the performance of (ii) and (iii) as an additional cost for
achieving verifiable partial sharing of integer factors.
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The major cost in a run of Product is to prove the size of two integers
(twice running Bit-Size), adding a trivial cost for proof of discrete logarithm
equality (a three-move protocol). For the two runs of Product, total data to be
exchanged in Product will be bounded above by (4k + 2)|P| (binary bits) where
k is the number of iterations in Bit-Size. The number of computations needed
to be performed by both the prover and the verifier can be expressed by 4k|P|
(multiplications modulo P).

Next, in the proof of two-prime structure of n, the protocol of Van de Graaf
and Peralta [[i] involves agreeing k pairs of random numbers in Z* and k bits as
random signs. For each pair of the numbers agreed, the two parties will evaluate
a Jacobi symbol which is at a level of performing a few multiplications in Z*. So
the data to be exchanged here will be bounded above by (2k+1)|n| (binary bits),
where k can be as the same as that in Bit-Size. A similar estimate apply to the
protocol for proof of square-free numbers [H]. The number of computations need
to be performed by both the prover and the verifier can be expressed by 2k|n|
(multiplications modulo n). We can use |P| to up-bound |n|.

Combining the results in the two paragraphs above, we conclude in following
statement for the performance of the proposed scheme.

Lemma 3. With a verifiable secret sharing scheme for sharing the discrete log-
arithm of an integer, partial sharing of the prime factors of an integer of size up
to |P|—3 (binary bits) can be achieved by further transmitting (8k+3)|P| binary
bits, with both the prover and the verifier computing 6k|P| multiplications. O

If |P] is set to 1540, then the maximum size of the integers that can dealt
with by the proposed scheme will be 1536 (binary bits) (= 3 x 512). Considering
setting k = 40 will allow a sufficiently small probability of 1/24% for the prover
successfully cheating. Then, the total number of bits to be transmitted will be
497,420 (62 kilobytes). A slightly smaller number of multiplications (modulo P
and modulo n) will need to be performed by both the prover and the verifier.

5 Conclusion

We have constructed a verifiable partial integer-factor sharing scheme and shown
that the scheme is secure and practically efficient. The working principle of the
scheme is an observation on a significantly lowered time complexity for factoring
n = pq using a known factor of ¢(n). This is of independent interest in that the
lowered complexity bound should be regarded as a piece of must-know knowledge
for designing protocols or cryptosystems based on disclosing a factor of ¢(n) of
a non-trivial size.
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