
Fast Elliptic Curve Algorithm Combining

Frobenius Map and Table Reference to Adapt to
Higher Characteristic

Tetsutaro Kobayashi, Hikaru Morita, Kunio Kobayashi, and Fumitaka Hoshino

NTT Laboratories
Nippon Telegraph and Telephone Corporation

1-1 Hikari-no-oka, Yokosuka-shi, Kanagawa-ken, 239-0847 Japan
kotetsu@isl.ntt.co.jp

Abstract. A new elliptic curve scalar multiplication algorithm is pro-
posed. The algorithm offers about twice the troughput of some con-
ventional OEF-base algorithms because it combines the Frobenius map
with the table reference method based on base-φ expansion. Further-
more, since this algorithm suits conventional computational units such
as 16, 32 and 64 bits, its base field Fpm is expected to enhance elliptic
curve operation efficiency more than Fq (q is a prime) or F2n .

Keywords: Elliptic curve cryptosystem, Scalar multiplication, OEF, Fi-
nite field, Frobenius map, Table reference method.

1 Introduction

While speeding up modular exponentiation has been a prime approach to speed-
ing up the RSA scheme, scalar multiplication of an elliptic curve point can speed
up elliptic curve schemes such as EC-DSA and EC-ElGamal. In particular, el-
liptic curves over Fq (q is a prime) or F2n have been implemented by many
companies and standardized by several organizations such as IEEE P1363 and
ISO/IEC JTC1/SC27.

For the F2n type, many efficient computational algorithms have been pro-
posed. Koblitz introduced a base-φ expansion method that uses a Frobenius map
to multiply F2n -rational points over the elliptic curve defined over F2,F4,F8 or
F16 in [2]. Müller [7] and Cheon et. al. [5] extended the base-φ expansion method
to elliptic curves defined over F2r , where r is a small integer. Koblitz also ex-
panded the base-φ expansion method to F3,F7 in [3].

However, since the calculation over small characteristic fields does not of-
fer adequate speed on general purpose machines, very high-capacity tables or
special-purpose machines are needed. If you select dlog2 pe (the bit size of a
prime number p) to match the operation unit of an individual computer, the
scalar multiplication of Fpm could be calculated faster than that of Fq or F2n

where dlog2 pme should be close to dlog2 qe or dlog2 2ne(= n) under the condi-
tion of the same security level. Bailey and Paar newly proposed an elliptic curve
scheme on OEF (Optimal Extension Fields), or an Fpm type, at Crypto’98 [1].

J. Stern (Ed.): EUROCRYPT’99, LNCS 1592, pp. 176–189, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

Fast Elliptic Curve Scalar Multiplication 177

Their method represents the elliptic curve points using a polynomial basis. They
showed that multiplication as well as addition and subtraction can be efficiently
computed by introducing a binomial as a minimal polynomial.

Though the original OEF method simply indicated how to compute addition
and multiplication on Fpm , efficient computational techniques similar to those
developed for the F2n type have not been introduced to the OEF world.

This paper extends the base-φ extension method from F2n to the general
finite field Fpm by using a table reference method. Several table reference meth-
ods have been developed for schemes using fixed primitive points – base points
– such as the DSA scheme [6]. Ours is the first to combine the Frobenius map
and the table reference method and so does not need any pre-computation. It
can be applied to any higher-characteristic elliptic curve as well as the small-
characteristic. When p equals two, this method is reduced to Koblitz’s method.
Different from Cheon’s method, this method isn’t limited to an elliptic curve
defined on F2r . The method works over OEF-type elliptic curves because the
table reference method is effective even if p is large. If you select p close to 216,
232 or 264, that are suitable operation units for computers, our method is about
twice as fast as ordinary OEF methods.

Section 2 describes the idea of our proposed method. Its procedure is given
in Sect. 3. Section 4 shows how to construct the proposed OEF parameters. Its
efficiency and further techniques are given in Sects. 5 and 6. Section 7 concludes
this paper.

2 Approach

2.1 Frobenius Map

In this section, we define the Frobenius map. Let E/Fp denote a non-supersin-
gular elliptic curve defined over a finite field Fp where p is a prime or any power
of a prime. P = (x, y) is an Fpm -rational point of elliptic curve E defined over
Fp. The Frobenius map φ is defined as

φ : (x, y)→ (xp, yp).

The Frobenius map is an endomorphism over E(Fpm). It satisfies the equation

φ2 − tφ + p = 0, −2
√

p ≤ t ≤ 2
√

p. (1)

Since E is non-supersingular, the endomorphism ring of E is an order of the
imaginary quadratic field Q(

√
t2 − 4p) [8]. The ring Z[φ] is a subring of the

endomorphism ring.
To compute the Frobenius map φ takes negligible time, provided that element

a ∈ Fpm is represented using a normal basis of Fpm over Fp.

178 Tetsutaro Kobayashi et al.

2.2 Normal Basis and Polynomial Basis

The elements of the field Fpm can be represented in several different ways; for
example, “polynomial basis” and “normal basis.” In polynomial basis, element
a ∈ Fpm is represented as

a = am−1α
m−1 + · · ·+ a1α + a0. (2)

where ai ∈ Fp and α is a defining element of Fpm over Fp.
In normal basis, a ∈ Fpm is represented as

a = am−1α
pm−1

+ · · ·+ a1α
p + a0α (3)

where ai ∈ Fp and α is a generator of normal basis.
Addition and subtraction in Fpm are quite fast in both representation forms.

When you choose polynomial basis, multiplication and squaring can be done
with reasonable speed.

When you choose normal basis, the p-th power operation, which is equal
to the Frobenius map, is quite fast. Though multiplication isn’t fast in general
normal basis, there are several techniques for fast multiplication in F2m such
as the optimal normal basis [9]. Thus, fast algorithms for scalar multiplication
using the Frobenius map [2] have been developed using F2 or its extension field
represented by normal basis.

On the other hand, we developed a fast Frobenius map algorithm for OEF
[1] which has a special polynomial basis.

2.3 Frobenius Map for OEF

Let OEF be the finite field Fpm that satisfies the following:

– p is a prime less than but close to the word size of the processor,
– p = 2n ± c, where log2 c ≤ n/2 and
– An irreducible binomial f(x) = xm − ω exists.

Although the paper [1] showed that OEF has an efficient algorithm for mul-
tiplication and squaring, there was no discussion of the Frobenius map. In this
section, we present a new algorithm to compute the Frobenius map in OEF.

We consider the following polynomial basis representation of an element a ∈
Fpm :

a = am−1α
m−1 + · · ·+ a1α + a0

where ai ∈ Fp, α ∈ Fpm is a root of f(x). Since we choose dlog2 pe to be less
than the processor’s word size, we can represent a using m registers.

The Frobenius map moves a to ap;

φ(a) = ap = am−1α
(m−1)p + · · ·+ a1α

p + a0. (4)

Fast Elliptic Curve Scalar Multiplication 179

Since α is a root of f(x) = 0, αm = ω,

αip = α(ip mod m)ωbip/mc

where bxc is the maximum integer not exceeding x.

Assuming gcd(m, p) = 1, (i1p mod m) = (i2p mod m) is equivalent to i1 = i2.

Thus, the map π(i)
4
= ip mod m is bijective.

We rewrite Equation (4) using π(i) as follows:

ap = a′
m−1α

m−1 + · · ·+ a′
1α + a′

0,

where a′
π(i)

4
= aiω

b ip
m c.

Since p, m and ω are independent of an element a, we can pre-compute
ωi = ωb ip

m c before computing the Frobenius map. Accordingly, the complete
procedure to compute the Frobenius map to an element on OEF is as follows;

[Frobenius Map Procedure for OEF]
Input: [a0, . . . , am−1] (= a)
Output: [a′

0, . . . , a′
m−1] (= φ(a))

Step 1: compute bi = aiωi, for i = 1 to m− 1.
Step 2: compute a′

π(i) = bi, for i = 1 to m− 1.
Step 3: a′

0 = a0.

This procedure needs only m−1 multiplications on Fp. This takes negligible
time compared to multiplication on Fpm , which needs m2 multiplications 1 on
Fp.

2.4 Base-φ Scalar Multiplication Method

This section describes the basic idea of base-φ scalar multiplication given by
Koblitz[2].

Consider scalar multiplication, kP where k and P represent a scalar multi-
plier and an elliptic curve point P , respectively. Consider k = 15 as an example.
By using the binary method, 15P is calculated as 2(2(2P + P) + P) + P by
three elliptic curve doublings and three elliptic curve additions. If you use the
signed-binary method, 15P is calculated as 2(2(2(2P)))−P by four elliptic curve
doublings and one elliptic curve subtraction. General computational times are
given by Table 1 where n = dlog2 pme.

Base-φ expansion is generally calculated as follows: If an intermediate mul-
tiplier ki is represented by ki = xi + yiφ where xi and yi are integers, x0 = k
and y0 = 0, the equation is modified to ki = ui + ki+1φ, where ui is defined as
an integer such that ui = xi (mod p) and −p

2
< ui ≤ p

2
.

1 This is the straightforward method.

180 Tetsutaro Kobayashi et al.

Table 1. Computational Times for Binary Method

EC Doubling EC Addition Total

Binary (maximum) n n 2n

(avarage) n
n

2

3n

2

Signed Binary (maximum) n
n

2

3n

2

(avarage) n
3n

8

11n

8

ki+1 = xi+1 + yi+1φ, xi+1 = yi + t
xi − ui

p
and yi+1 = −xi − ui

p
by using

φ2 − tφ + p = 0. Iterating this operation, k is expanded to

k =
l∑

i=0

uiφ
i, where − p

2
≤ ui ≤ p

2
. (5)

l is an integer and is discussed in Sect. 3.
In the case of k = 15, p = 2, the elliptic curve is E/F2 : y2 + xy = x3 + 1

(trace t is 1 as an example), 15 = −1 + φ4 − φ8. Accordingly, 15P is calculated
by two elliptic curve additions, which is much faster than the signed or unsigned
binary method.

Koblitz[2] presented the scalar multiplication algorithm for F2m -rational
points over E/F2. Solinas[4] improved it. In those papers ui ∈ {−1, 0, 1}. Thus
it needs at most l elliptic curve additions and computation of the Frobenius map
to calculate kP .

On the other hand, we must limit the elliptic curve defined over E/Fp for
Fpm -rational points to utilize a base-φ scalar multiplication method. Since there
is only an exponential time attack such as [10], it is not obstacle to use the
elliptic curves for elliptic curve cryptosystems.

2.5 Generalized Base-φ Scalar Multiplication

We consider the fact that the cost of φiP can be reduced very much for OEF
as shown at Section 2.3. Though traditional base-φ scalar multiplication has
been applied to finite fields with small characteristics, it can be applied to more
general cases such as OEF.

This, however, makes each coefficient ui in Equation (6) large, because 0 ≤
|ui| ≤ p/2. When ui is large, the delay time to calculate uiφ

iP from φiP becomes
a bottle neck. Thus, the traditional base-φ method is not always faster than the
binary method. This is one reason why the base-φ scalar multiplication method
was applied only to fields with small characteristics.

Fast Elliptic Curve Scalar Multiplication 181

To solve this problem, we introduce the idea of the table reference scalar
multiplication method. After each value of φiP is stored in a memory table, we
should perform addition on the elliptic curve. There are two different ways to
look up the table and add.

One method uses only addition. If 15P + 13φ2P + 2φ3P is to be calculated,
X ← P and Y ← O then Y ← Y + X is computed twice. X ← X + φ2P then
Y ← Y + X is computed eleven times. X ← X + φ3P then Y ← Y + X is
computed twice. Generally speaking, when you compute

k =
l∑

i=0

uiφ
i (6)

where −p

2
≤ ui ≤ p

2
, the elliptic curve addition should be computed roughly as

l +
p

2
. This idea of the original table reference method was created for the non-

elliptic curve scheme by Brickell et al. [6]. By introducing the base-φ method, this
method can be enhanced to handle any primitive. Thus, our method supports
not only signature generation by EC-DSA but also verification which involves
multiplication of unpredictable elliptic curve points.

The second method uses both doubling and addition. If 15P + 13φ2P +
2φ3P = (1111)2P + (1101)2φ2P + (0010)2φ3P is calculated, X ← P + φ2P is
computed then doubled. X ← X + P + φ2P is computed then doubled. X ←
X +P +φ3P is computed then doubled. Finally, X ← X +P +φ2P is computed.

In general, when you compute k =
l∑

i=0

uiφ
i where −p

2
≤ ui ≤ p

2
, the elliptic

curve addition and doubling should be computed roughly (l + 1)(dlog2 pe− 1)/2
and dlog2 pe − 2 times, respectively. If the reference table contains not only P
and φiP but also their combinations such as P + φ2P , P + φ3P and so on, the
addition and doubling times could be reduced by at least dlog2 pe − 2.

We found that there are some trade offs. Which of the two methods is better?
How many values should the memory table store? It depends on the case.

3 Procedure

3.1 Base-φ Scalar Multiplication

In this section, we describe the base-φ scalar multiplication method. The follow-
ing procedure computes Q = kP for inputs P and k, where 0 < k < Nm and P
is an Fpm-rational point and is not an Fp-rational point on E. We use wH(x) to
represent the Hamming weight of x expressed in signed binary digit, Nm denotes
the number of Fpm-points on E, and t denotes a trace of E.

182 Tetsutaro Kobayashi et al.

[Base-φ Scalar Multiplication Procedure]
Input: k, P, E, t, p
Output: Q (= kP)
Step 1: Base-φ Expansion of k

Step 1-1: i← 0, x← k, y ← 0, uj ← 0 for ∀j.
Step 1-2: if (x = 0 and y = 0) then go to Step 2:.
Step 1-3: ui ← x mod p.
Step 1-4: v ← (x− ui)/p, x← tv + y, y ← −v, i← i + 1.
Step 1-5: go to Step 1-2:.

Step 2: Optimization of Base-φ Expansion
Step 2-1: di ← ui + ui+m + ui+2m for 0 ≤ i < m.
Step 2-2: ci ← di − z for 0 ≤ i ≤ m− 1,

where z is an integer that minimizes
∑

i

wH(ci).

Step 3: Table Reference Multiplication
Step 3-1: Pi ← φiP for 0 ≤ i < m.
Step 3-2: Q← O, j ← dlog2 pe+ 1.
Step 3-3: Q← 2Q.
Step 3-4: for (i = 0 to m− 1) {

if (cij = 1) then Q← Q + Pi.
}

Step 3-5: j ← j − 1.
Step 3-6: if (j ≥ 0) then go to Step 3-3.

First, the procedure finds ui such that k =
l∑

i=0

uiφ
i in Step 1 by using

φ2 − tφ + p = 0. This part of the procedure is nearly equal to the procedure in
[7] and integer l is nearly equal to 2m + 3. This is discussed in Sect. 3.2.

Next, it reduces the series of base-φ expansion{u0, . . . , ul}into{c0, . . . , cm−1}
in Step 2. Detailed explanation is given in Sect. 3.3.

Finally, it calculates kP using {c0, . . . , cm−1} in Step 3. Step 3 requires

dlog2 pe elliptic curve doublings and
mdlog2 pe

2
elliptic curve additions at most.

On the other hand, we can use the following Step 3′ in stead of Step 3 to
compute kP using the Frobenius map. Step 3′ requires p + m + 2 elliptic curve
additions at most. We can choose the method which has lower computation cost.

[Another Table Reference Multiplication Procedure]
Step 3′: Table Reference Multiplication

Step 3′-1: Q← O, S ← O, d← max
i
{ci}.

Step 3′-2: for (i = 0 to m− 1) {
if d = ci then S = S + φiP .

}
Step 3′-3: Q← Q + S, d← d− 1.
Step 3′-4: if d 6= 0 then go to Step 3′-2.

Fast Elliptic Curve Scalar Multiplication 183

3.2 Loop Number of Step 1

In this section, we discuss l in Step 1.

Theorem 1. [7] Let p ≥ 4 and let k ∈ Z[φ]. If we set l = d2 logp ||k||e+ 3, then
there exist rational integers −p/2 ≤ ui ≤ p/2, 0 ≤ i ≤ l, such that

k =
l∑

i=0

uiφ
i (7)

where ||k|| :=
√

kk̄ and k̄ is the complex conjugate of k and dxe is the minimum
integer greater than or equal to x.

Since the proof of Theorem 1 in [7] does not assume p to be a small power
of two, the loop in Step 1 ends at most in i ≤ d2 logp ||k||e+ 3 for general p.

3.3 Optimization of Base-φ Expansion

This section explains the background of the procedure in Step 2.

Step 2-1 If k is randomly chosen from 0 < k < Nm, we can assume k '
pm and l = d2 logp ke + 3 ' 2m + 3. However, the series of base-φ expansion
{u0, . . . , u2m+3} can be easily reduced to {d0, . . . , dm−1} by using the following
equation;

φm = 1 in EndE . (8)

This is because xpm

= x for ∀x ∈ Fpm . Thus,

d2 logp ke+3∑
i=0

uiφ
i =

m−1∑
i=0

(ui + ui+m + ui+2m)φi

=
m−1∑
i=0

diφ
i.

Step 2-2 We can accelerate Step 3 by decreasing the density of ‘1’s in the bit
expression of di by using Equation (9).

m−1∑
i=0

φi = 0 (9)

Since P is not an Fp-point over E, φP 6= P . Equation (9) is derived from
Equation (8) and φ 6= 1.

The theoretical required time for scalar multiplication for the case of m = 7
and A = dlog2 pe is shown in Table 2. “Type I expansion” denotes the proposed
procedure using di instead of ci at Step 3 and “Type II expansion” denotes the
full proposed procedure.

184 Tetsutaro Kobayashi et al.

Table 2. Required Time for Scalar Multiplication (m = 7)

Algorithm EC Addition EC Doubling Total

binary
7

2
A 7A

21

2
A (' 10.5A)

signed binary
21

8
A 7A

77

8
A (' 9.6A)

Type I expansion
7

2
A A

9

2
A (' 4.5A)

Type II expansion
77

32
A A

109

32
A (' 3.4A)

4 Elliptic Curve Generation

In this section, we discuss how to generate elliptic curves for the base-φ expansion
method.

Let p be a prime, where p > 3 and let E be the elliptic curve

Y 2 = X3 + aX + b (10)

over Fp(a, b ∈ Fp). We should define elliptic curve E over Fp to use base-φ
expansion. In such a case, we can easily compute Nm by using Theorem 2.

Theorem 2 (Weil Conjecture [8, pp.132-137]). Suppose E is an elliptic
curve over Fp and t := p + 1−N1. The number of Fpm -points on E is

Nm = pm + 1− (αm + βm),

where α, β are the roots of x2 − tx + p.

From the view point of cryptography, E is a “good” elliptic curve if Nm has
a large prime factor. Since Nn ' pn and Nn divides Nm if n divides m, we have
the best chance of getting a large prime factor of Nm when m is a prime. We
can generate elliptic curve E/Fp with Nm that has a large prime factor by using
the following procedure.

[Elliptic Curve Generation Procedure for Base-φ Expansion]
Input: p, m
Output: E/Fp, Nm

Step 1: Generate E/Fp randomly and find its order N1 = p + 1− t.
Step 2: Find Nm using the Weil conjecture.
Step 3: If Nm doesn’t have a large enough prime factor, go to Step 1.

Fast Elliptic Curve Scalar Multiplication 185

For example, let p = 231 − 1, m = 7 and M :=
Nm

N1
(N1 ' 231, Nm ' 2186).

We can find some parameters such that M becomes prime. One example is
a = −3, b = −212, dlog2 Me = 186.

5 Further Speed Up Techniques

5.1 Affine Coordinates

Points on an elliptic curve can be represented by some different coordinate sys-
tems: for example, affine coordinates or Jacobian coordinates, as shown in [11]
and the Appendix. The number of operations on a finite field differ with the
system. If you choose Jacobian coordinates, no inversion on the finite field is
needed, but “elliptic curve addition” needs ten or more multiplications on the
field. On the other hand, if you choose affine coordinates, “elliptic curve addi-
tion” needs one inversion and two multiplications. Thus, if inversion is faster
than 8 multiplications, affine coordinates are faster than Jacobian coordinates.
The implementation in [1] used the Jacobian coordinates because no efficient in-
version algorithm for OEF has been proposed. Therefore, if we have a fast enough
inversion algorithm, affine coordinates can accelerate elliptic curve operation.

In this section, we present a fast inversion algorithm for OEF. We consider
the polynomial basis representation of a field element a ∈ Fpm :

a = am−1α
m−1 + · · ·+ a1α + a0

where ai ∈ Fp, α ∈ Fpm is a primitive root of xm − ω.
The inversion c of a is defined as

ac = (am−1α
m−1 + · · ·+ a1α + a0)(cm−1α

m−1 + · · ·+ c1α + c0) = 1.

Since α is a root of xm − ω,

ac =

((∑
0≤u≤m−1

(aucm−1−u)

)
αm−1

)
+

∑
0≤t≤m−2

((∑
0≤u≤t

(auct−u) +

(∑
t+1≤u≤m−1

(
auct+m−u

))
ω

)
αt

)
= 1. (11)

We introduce ci from Equation(11).




c0

c− 1
...

cm−2

cm−1


 =




a0 am−1ω am−2ω · · · a2ω a1ω
a1 a0 am−1ω · · · · · · a2ω

a2 a1 a0
. . .

...
... a0 am−1ω

am−1 am−2 · · · · · · a1 a0




−1


1
0
...
0
0


 . (12)

186 Tetsutaro Kobayashi et al.

Table 3. Calculation Cost for Each Coordinate System over OEF(m = 3)

Coordinates EC Doubling EC Addition

Affine 57M 51M
Chudnovsky Jacobian 81M 117M

Modified Jacobian 72M 153M

For example, if m = 3 then
 c0

c1

c2


 = (a3

0 − 3a0a1a2ω + a3
1ω + a3

2ω
2)−1


a2

0 − a1a2ω
a2
2ω − a0a1

a2
1 − a0a2


 .

[Inverse Procedure for OEF, m = 3]
Input: [a0, a1, a2] (= a)
Output: [c0, c1, c2] (= c = a−1)
Step 1: Compute b0 ← a2

0, b1 ← a2
1, b2 ← a2

2ω,
e0 ← a0a1, e1 ← a1a2ω, e2 ← a0a2,
e3 ← a0b0, e4 ← a1b1ω, e5 ← a2(b2 − 3e0)ω.

Step 2: Compute d← (e3 + e4 + e5)−1.
Step 3: Compute c0 ← d(b0− e1), c1 ← d(b2− e0), c2 ← d(b1 − e2)

Since we can normally use ω as a small integer such as 2 or 3, we ignore mul-
tiplication by ω and 3 to count computing cost. Using this procedure, inversion
over Fp3 needs 12 multiplications and one inversion over Fp.

Let M denote the cost of multiplication over Fp and let the cost of inversion
over Fp be 15M . Then, the costs of multiplication, squaring, and inversion over
Fpm are 9M , 6M , and 27M , respectively. In this case, the elliptic curve operation
costs in each coodinate are as shown in Table 3. The operations over affine
coordinates are about twice as fast as those over Jacobian coordinates.

Though the proposed inversion algorithm needs O(m3) computing cost, it is
efficient enough for small m.

6 Total Efficiency

We show the total efficiency of the base-φ scalar multiplication method.
Table 4 shows the current results of our elliptic curve implementation. We

implemented our algorithms on a 500 MHz DEC Alpha workstation which has
a 64-bit architecture and a 400 MHz Intel Pentium II PC which has a 32-bit
architecture.

We executed the elliptic curve generation algorithm shown in the procedure
described in Sect. 4 for the word sizes of 16 and 32.

Fast Elliptic Curve Scalar Multiplication 187

Table 4. Scalar Multiplication Speed

Base-φ Expansion Method

Platform Order Size of EC-Add EC-Double Scalar Mult.
(bit) Base Field (µsec) (msec)

P II 400 186 231 − 1 19.7 13.2 1.95 Base-φ
P II 400 186 231 − 1 19.7 13.2 3.89 Signed Binary

P II 400 156 213 − 1 32.1 22.3 2.66 Base-φ
P II 400 156 213 − 1 32.1 22.3 5.50 Signed Binary

“P II 400” denotes 400 MHz Pentium II PC.

Affine Coordinates

Platform Order Size of EC-Add EC-Double Scalar Mult.
(bit) Base Field (µsec) (msec)

Alpha 500 183 261 − 1 4.64 5.25 0.994 Affine
Alpha 500 183 261 − 1 7.8 6.24 1.58 Jacobian(Bailey[1])

“Alpha 500” denotes 500 MHz DEC Alpha workstation.

Speed in Previous Works

Platform Order Size of EC-Add EC-Double Scalar Mult.
(bit) Base Field (µsec) (msec)

Sparc4 180 25 ∗a ∗a 59.2 Muller[7]
P 133 177 2 306 309 72 De Win[12]

Alpha 500 160 232 − 5 20 16.2 3.62 Bailey[1]
Alpha 500 160 216 − 165 207 166 37.1 Bailey[1]

“Sparc4” denotes SparcStation4.
“P 133” denotes 133 MHz Pentium PC.

a No information in [7].

The parameters used in the implementation are as follows:

[64-bit OEF]
p = 261 − 1, m = 3, f(x) = x3 − 37,
E : y2 = x3 − ax− a,

where a = 1798615821903599087α2 + 257902442738591772α
+ 1373279171338599842,

α is a root of f(x),

[32-bit OEF]
p = 231 − 1, m = 7, f(x) = x7 − 3,
E : y2 = x3 − 3x− 212,

[16-bit OEF]
p = 213 − 1, m = 13, f(x) = x13 − 2,
E : y2 = x3 − 3x + 30,

where f(x) is a minimal polynomial.

188 Tetsutaro Kobayashi et al.

We implemented 16-bit and 32-bit cases on the Pentium II (“P II” in Table
4) to examine the effectiveness of the base-φ scalar multiplication method. We
implemented the 64-bit case on the DEC Alpha (“Alpha” in Table 4) to examine
effectiveness of affine coordinates. “Speed in Previous Works” in Table 4 is shown
as reference.

The results clarify that the proposed base-φ expansion method speeds up
scalar multiplication by a factor of two over the traditional signed binary method
in the 16-bit and 32-bit OEF cases. In the case of 64-bit OEF, the new inversion
algorithm is about 60% faster for scalar multiplication.

7 Conclusions

This paper proposed a new algorithm that computes the Frobenius map and
inversion over OEF-type finite field Fpm . We need only m−1 multiplications over
Fp to compute the Frobenius map. The inversion algorithm needs one inversion
and O(m3) multiplications over Fp, and it is quite efficient for small m.

Consequently, we expanded the base-φ scalar multiplication method to suit
finite fields with higher characteristic (such as OEF) by introducing the table
reference method. When the proposed algorithm is applied to OEF-type elliptic
curves, the algorithm is about twice as fast as some conventional OEF-base
algorithms.

We proved the total efficiency of the proposed algorithm by implementation.
In the case of 16-bit and 32-bit OEF, the base-φ expansion method is twice as
fast as traditional techniques. In the case of 64-bit OEF, the calculation time is
1.6 times shorter due to use of the new inversion algorithm.

Acknowledgments

We are very grateful to Kazumaro Aoki of NTT for implementing OEF prim-
itives on the Pentium II architecture, and Eisaku Teranishi of NTT Advanced
Technology for implementing our base-φ method.

References

1. D. V. Bailey and C. Paar, “Optimal Extension Fields for Fast Arithmetic in Public-
Key Algorithms,” Advances in Cryptology – CRYPTO ’98, Lecture Notes in Com-
puter Science 1462, pp.472-485, Springer, 1998.

2. N. Koblitz, “CM-Curves with Good Cryptographic Properties,” Advances in
Cryptology – CRYPTO’91, Lecture Notes in Computer Science 576, pp.279-287,
Springer-Verlag, 1992.

3. N. Koblitz, “An Elliptic Curve Implementation of the Finite Field Digital Signature
Algorithm,” Advances in Cryptology – CRYPTO’98, Lecture Notes in Computer
Science 1462, pp.327-337, Springer-Verlag, 1998.

4. J. A. Solinas “An Improved Algorithm for Arithmetic on a Family of Elliptic
Curves,” Advances in Cryptology – CRYPTO’97, Lecture Notes in Computer Sci-
ence 1294, pp.357-371, Springer, 1997.

Fast Elliptic Curve Scalar Multiplication 189

5. J. H. Cheon, S. Park and S. Park, D. Kim, “Two Efficient Algorithms for Arith-
metic of Elliptic Curves Using Frobenius Map,” Public Key Cryptography: Pro-
ceedings of the First international workshop, PKC ’98, Lecture Notes in Computer
Science 1431, pp.195-202, Springer, 1998.

6. E. F. Brickell, D. M. Gordon, K. S. McCurley and D. B. Wilson, “Fast Exponenti-
ation with Precomputation,” Advances in Cryptology – EUROCRYPT’92, Lecture
Notes in Computer Science 658, pp.200-207, Springer, 1993.

7. V. Müller, “Fast Multiplication on Elliptic Curves over Small Fields of Character-
istic Two,” Journal of Cryptology(1998) 11, pp.219-234, 1998.

8. J. H. Silverman, The Arithmetic of Elliptic Curves, Springer-Verlag, New York,
1986.

9. R. Mullin, I. Onyszchuk, S. Vanstone, and R. Wilson, “Optimal Normal Basis in
GF (pn),” Discrete Applied Mathematics, 22:149-161, 1988.

10. M. J. Wiener and R. J. Zuccherato, “Faster Attacks on Elliptic Curve Cryp-
tosystems,” Fifth Annual Workshop on Selected Areas in Cryptography – SAC’98
pp.196-207, Workshop Record, 1998.

11. H. Cohen, A. Miyaji and T. Ono, “Efficient Elliptic Curve Exponentiation Using
Mixed Coordinates,” Advances in Cryptology – ASIACRYPT’98, Lecture Notes in
Computer Science 1514, pp.51-65, Springer-Verlag, 1998.

12. E. De Win, A. Bosselaers and S. Vandenberghe, “A Fast Software Implementation
for Arithmetic Operations in GF(2n),” Advances in Cryptology – ASIACRYPT’96,
Lecture Notes in Computer Science 1163, pp.65-76, Springer-Verlag, 1996.

Appendix: Coordinates

Let
E : y2 = x3 + ax + b (a, b ∈ Fp, 4a3 + 27b2 6= 0)

be the equation of an elliptic curve E over Fp.
For Jacobian coordinates, with x = X/Z2 and y = Y/Z3, a point on ellip-

tic curve P is represented as P = (X, Y, Z). In order to make addition faster,
the Chudnovsky Jacobian coordinates represents a Jacobian point as the quin-
tuple (X, Y, Z, Z2, Z3). On the other hand, in order to make doubling faster,
the modified Jacobian coordinates represents a Jacobian point as the quadruple
(X, Y, Z, aZ4).

The number of operations needed to compute elliptic curve doubling and
addition is shown in Table 5.

Table 5. Operations for Each Coordinate

Coordinates Elliptic Curve Doubling Elliptic Curve Addition

Affine 2 M + 2 S + 1 I 2 M + 1 S + 1 I
Chudnovsky Jacobian 5 M + 6 S 11 M + 3 S

Modified Jacobian 4 M + 4 S 13 M + 6 S

M: Multiplication, S: Squaring, I: Inversion.

	Introduction
	Approach
	Frobenius Map
	Normal Basis and Polynomial Basis
	Frobenius Map for OEF
	Base-$phi $ Scalar Multiplication Method
	Generalized Base-$phi $ Scalar Multiplication

	Procedure
	Base-$phi $ Scalar Multiplication
	Loop Number of bstep {1}
	Optimization of Base-$phi $ Expansion

	Elliptic Curve Generation
	Further Speed Up Techniques
	Affine Coordinates

	Total Efficiency
	Conclusions

