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Abstract. In this paper, we give some relationship between the nonlin-
earity of rational functions over F2n and the number of points of associ-
ated hyperelliptic curve. Using this, we get a lower bound on nonlinearity
of rational-typed vector Boolean functions over F2n . While the previous
works give us a lower bound on nonlinearity only for special-typed mono-
mials, our result gives us general bound applicable for all rational fuctions
defined over F2n . As an application of our results, we get a lower bound
on nonlinearity of n × kn S-boxes.

1 Introduction

One of the powerful attack for block ciphers is linear cryptanalysis which was
developed by Matsui[5] in 1993. The basic idea of linear cryptanalysis is to find
a linear relation among the plain text, cipher text and key bits. Such a relation
usually occurs by a low nonlinearity of substitutions in block ciphers.

Nonlinearity for Boolean functions was well-established [9]. However, it is
very difficult to analyze nonlinearity for vector Boolean functions, in general.
Some results on nonlinearity of vector Boolean functions were found in [2,6,7].
But the results are only concerned with the special types of monomials over F2n .

In this paper, we derive a novel relationship between the nonlinearity of a
rational function over F2n and the number of points of hyperelliptic curve over
that field. And, using such a relationship we obtain a lower bound on nonlinearity
of rational-typed vector Boolean functions over F2n . Furthermore, we give a
lower bound on nonlinearity of S-box constructed by concatenating two or more
S-boxes over F2n . Similar method has been used in the CAST algorithm [1], in
which 8 × 32 S-boxes were constructed by selecting 32 bent Boolean functions
over F28 . In that case, their S-boxes has been believed to be highly nonlinear, but
nobody gave lower bound on the nonlinearity. It has been known that it might
be very difficult to prove the lower bound on the nonlinearity of such S-boxes [8].

2 Preliminaries

2.1 Nonlinearity

We consider a vector Boolean function F : F2n → F2n . Let b = (b1, b2, · · · , bn) be
a nonzero element of F2n . We denote by b ·F the Boolean function which is the
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linear combination b1f1 + b2f2 + · · ·+ bnfn of the coordinate Boolean functions
f1, f2, · · · , fn of F .

Definition 1. The nonlinearity of F , N (F ), is defined as

N (F ) = min
b6=0

min
A∈Γ

#{x : A(x) 6= b · F (x)},

where Γ is the set of all affine functions over F2n .

If we define L(F, a, b) = #{x : a · x = b · F (x)}, then we have

N (F ) = 2n−1 − max
b6=0

max
a

|2n−1 − L(F, a, b)|. (1)

Observe that nonlinearity of arbitrary vector Boolean functions is upper-
bounded as

N (F ) ≤ 2n−1 − 2
n
2 −1.

and the equality holds for only bent functions.
The nonlinearity for special types of F , usually monomials, are investigated

by Nyberg [7].

Theorem 2.

1. Let F (x) = x2k+1.
(a) If n/s is odd for s = gcd(n, k), then

N (F ) = 2n−1 − 2(n+s)/2−1. (2)

(b) If n is odd and gcd(n, k) = 1, then

N (F−1) = 2n−1 − 2(n−1)/2. (3)

2. For F (x) = x−1,

N (F ) ≥ 2n−1 − 2n/2. (4)

2.2 Hyperelliptic Curves

In this section, we introduce a hyperelliptic curve and the Weil theorem which
have important roles in proving our main theorem. A hyperelliptic curve C over
F2n is an equation of the form

C : y2 + h(x)y = f(x), (5)

where f(x), h(x) ∈ F2n [x] with 2 deg h(x) + 1 ≤ deg f(x), and there are no
solutions x, y in the algebraic closure of F2n , which simultaneously satisfy the
equation y2 + h(x)y = f(x) and the partial derivative equations 2y + h(x) = 0
and h′(x)y−f ′(x) = 0. When a curve C has no solutions which satisfies the three
equations, we say that C is nonsingular. Otherwise, we say that C is sigular.

We define the set of F2n -rational points on C, denoted C(F2n ), the set of all
points (x, y) ∈ F2n × F2n that satisfies the equation (5) of the curve C, together
with a special point at infinity, denoted O.

For the number #C(F2n ) of the F2n -rational points on C, we have the fol-
lowing nontrivial bound [4].
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Theorem 3 (Weil). For any hyperelliptic curve C over F2n , we have

|#C(F2n ) − 2n − 1| ≤ 2g
√

2n, (6)

where g is the genus of the hyperelliptic curve C.

By the Riemann-Hurwitz formula, we have g = bd−1
2 c for the degree d of

f(See [4, p332]). When a curve given by the equation (5) is singular, the the-
orem does not hold. In this case, we have the following, using the theory of
desigularization of algebraic curves(See [4, p.358]).

|#C(F2n ) − 2n − 1| ≤ 2g
√

2n − g +
(d − 1)(d − 3)

2
, (7)

where g is the genus of the singular curve C and d is the degree of f . Since the
genus g is less than bd−1

2 c, we can get the same inequality for a singular curve
under some condition.

Corollary 4. Let C be a curve given by the irrducible equation y2 + h(x)y =
f(x), which satisfies deg f ≥ max{2 degh + 1, 3}. Assume that C is nonsingular
or d = deg f ≤ 2n/4+1 + 2. Then we have

|#C(F2n ) − 2n − 1| ≤ 2bd − 1
2

c√2n. (8)

Proof. If C is nonsingular, we have g = bd−1
2 c. Hence the corollary is proved. If

C is singular, we have g ≤ bd−1
2 c − 1 so that

|#C(F2n ) − 2n − 1| ≤ (2
√

2n − 1)(bd − 1
2

c − 1) +
(d − 1)(d − 3)

2
.

The right-hand side is less than or equal to 2bd−1
2 c√2n if d2 − 5d + 7 ≤ 4

√
2n.

Hence the corollary follows for 3 ≤ d ≤ 2n/4+1 + 2.

3 Nonlinearity of Rational Functions over F2n

In this section, we get a lower bound on nonlinearity of rational functions over
a finite field, using the bound on the numbers of points of hyperelliptic curves
over that field. We consider a rational function of the form F (x) = P (x)/Q2(x)
for P (x), Q(x) ∈ F2n [x] where we may define F (α) to be any elements of F2n for
a root α of Q(x).

First, we introduce a lemma. We donote by Tr(·), an absolute trace map-
ping [3].

Lemma 5. The following polynomial equation of one variable x

x2 + ax + b = 0, a 6= 0, b ∈ F2n (9)

is reducible over F2n if and only if Tr( b
a2 ) = 0.
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Proof. If we replace by ax, x of the equation (5) and divide the equation by a2,
we get x2 +x+ b/a2 = 0. Hence x2 +ax+ b = 0 is reducible over F2n if and only
if x2 − x = b/a2 has a root in F2n . By Hilbert theorem 90 [3], it is equivalent to
Tr(b/a2) = 0.

By using the above lemma, we can derive the following theorem.

Theorem 6. Let P (x), Q(x), G(x) ∈ F2n [x], F (x) = P (x)/Q2(x) where G(x)
is a permutation. Suppose that Ca,b : y2 + Q(x)y = aQ2(x)G(x) + bP (x) is
nonsingular for each a, b 6= 0 in F2n , or d = max{2 deg Q + deg G, deg P} ≤
(2n/2+2 − 2)1/2 + 2. If Q(x) has r distinct roots in F2n and gcd(P (x), Q(x)) has
s distinct roots in F2n , then the nonlinearity of F ◦ G−1 is lower-bounded as
follows :

N (F ◦ G−1) ≥ 2n−1 − bd − 1
2

c2n/2 − r +
s

2
.

Proof. Choose a basis B of F2n over F2 and take its dual basis B̂. Represent
binary vectors in F2n , a and b by the basis B, and G(x) and F (x) by its dual
basis B̂. Then we have

a · G(x) = Tr(aG(x)), b · F (x) = Tr(bF (x)).

Hence

L(F ◦ G−1, a, b) = #{x|a · x = b · F (G−1(x))}
= #{x|Tr(aG(x)) = Tr(bF (x))}
= #{x|Tr(aG(x) + bF (x)) = 0}

Let α1, α2, · · · , αr be r distinct roots of Q(x). If α 6= αi for all i, Ca,b has two
distinct points whose x-coordinate is α, whenever the equation of y, y2+Q(α)y−
(aQ2(α)G(α)+bP (α)), is reducible. Also, Ca,b has one point whose x-coordinate
is αi, whenever the equation of y, y2 − bP (αi), is reducible. Considering the
infinity point O, we have

#Ca,b(F2n ) − 1

= 2 · #{x|Tr(
aQ2(x)G(x) + bP (x)

Q(x)2
)=0, Q(x) 6= 0} +

∑

i

#{y|y2 = bP (αi)}

= 2 · #{x|Tr(aG(x))=Tr(bF (x)), Q(x) 6= 0} +
∑

i

#{y|y2= bP (αi)} (10)

= 2L(F ◦ G−1, a, b) − 2#{i|Tr(aG(αi))=Tr(bF (αi))} +
∑

i

#{y|y2= bP (αi)}.

The first equality follows from lemma 5. Observe that all curves Ca,b for a, b 6= 0
satisfy the assumption of Corollary 4 and the degree of the equation Ca,b at x
is less than or equal to d. Hence we have

|#Ca,b(F2n ) − 2n − 1| ≤ 2bd − 1
2

c√2n. (11)
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Combining it with the identity (10), we have

|2n−1 − L(F ◦ G−1, a, b)|
≤ bd − 1

2
c
√

2n + |#{i|Tr(aG(αi)) = Tr(bF (αi))} − 1
2

∑

i

#{y|y2 = bP (αi)}|.

If we take the maximum through all a, b 6= 0 ∈ F2n , we have

max
a,b6=0

|2n−1 − L(F ◦ G−1, a, b)| ≤ bd − 1
2

c
√

2n + r − s

2
.

Hence we have

N (F ◦ G−1) ≥ 2n−1 − bd − 1
2

c2n/2 − r +
s

2
.

Observe that C(F, a, b) is singular if and only if Q(x) = 0, Q′(x)y = bP ′(x)
and y2 = bP (x) has a common solution. Hence C(F, a, b) is non-singluar for any
nonzero b ∈ F2n if F (x) satisfies the following condition:

For any root of Q(x) = 0 in the algebraic closure of F2n ,

(
Q′(α)
P ′(α)

)2P (α) /∈ F
∗
2n . (12)

If we use Theorem 6, we can obtain the following useful results.

Corollary 7.

1. For any polynomial F (x) ∈ F2n [x] of degree d ≥ 3,

N (F ) ≥ 2n−1 − bd − 1
2

c2n/2.

2. For any polynomial H(x) ∈ F2n [x] of degree m and a positive integer k,
F (x) = H(x)

x2k−1 has a lower bound on its nonlinearity as follows:

N (F ) ≥ 2n−1 − bd − 1
2

c2n/2 − 1
2
,

where d = max{2k + 1, m + 1}.

Proof. 1. We take G(x) = x, Q(x) = 1 and P (x) = F (x) in Theorem 6. Then
a curve Ca,b : y2 + y = ax + bF (x) is irreducible and nonsingular for each
a, b 6= 0. Since the degree of each curve Ca,b at x is d, we have the above
assertion.

2. We take G(x) = x, Q(x) = xk and P (x) = xH(x) in Theorem 6. Then a
curve Ca,b : y2 + xky = ax2k+1 + bxH(x) is irreducible and nonsingular for
each a, b 6= 0. If we take d = max{2k + 1, m + 1}, the degree of each curve
Ca,b is less than or equal to d, which completes the proof.



S-boxes with Controllable Nonlinearity 291

We can extend the above corollary to the composite function cases.

Corollary 8. Assume that e, f be integers satisfying ef ≡ 1 mod (2n − 1).

1. For any polynomial F (x) ∈ F2n [x] of degree m ≥ 3,

N (F (xf )) ≥ 2n−1 − bd − 1
2

c2n/2,

where d = max{e, m}.
2. For any polynomial H(x) ∈ F2n [x] of degree m and a positive integer k, let

F (x) = H(x)
x2k−1 .

N (F (xf )) ≥ 2n−1 − bd − 1
2

c2n/2 − 1
2
,

where d = max{2k + e, m + 1}.
Proof. 1. Take G(x) = xe, Q(x) = 1 and P (x) = F (x) in Theorem 6. Then for

a curve Ca,b : y2 + y = axe + bF (x) the similar assertions as the proof of
Corollary 7 hold.

2. Take G(x) = xe, Q(x) = xk and P (x) = xH(x) in Theorem 6. Then for a
curve Ca,b : y2 + xky = ax2k+e + bxH(x) the similar assertions as the proof
of Corollary 7 hold.

By applying Corollary 7, we get some useful results. See the example.

Example 9. 1. For F (x) = x3 + x5 + x6 ∈ F2n [x],

N (F ) ≥ 2n−1 − 2n/2+1.

2. For F (x) = x−1 + x3 ∈ F2n [x],

N (F ) ≥ 2n−1 − 2n/2+1 − 1
2
.

Furthermore we can get rid of the last term ‘1/2’ if n is odd.
3. For F (x) = x−3 + x−1 ∈ F2n [x],

N (F ) ≥ 2n−1 − 2n/2+1 − 1
2
.

Furthermore we can get rid of the last term ‘1/2’ if n is even.

If we apply Corollary 8, we can obtain lower bounds on nonlinearity of some
monomials whose nonlinearity has not analyzed theoretically yet.

Example 10. Consider F27 . Let F (x) = x3 and G(x) = (x5)−1 = x51. Then we
have F ◦ G−1(x) = x28. By the above statement, we have

N (x28) ≥ 2n−1 − 2n/2+1.

Since nonlinearity preserves under composition with linear functions like x2, x7

has the same nonlinearity with (x7)4. Hence we have

N (x7) ≥ 2n−1 − 2n/2+1.
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We can apply Theorem 6 directly to get a lower bound on nonlinearity of
some rational functions,

Example 11. 1. For any irreducible polynomial H(x) of degree d, we have

N (1/H) ≥ 2n−1 − d · 2n/2.

2. For F (x) = x−3(x − 1)−1( we assume F (0) = F (1) = 0),

N (F ) ≥ 2n−1 − 3 · 2n/2 − 1.

Table 1 shows the tightness of our lower bound on nonlinearity. The third
columnn shows the lower bound obtained by Theorem 6 and the fourth column
shows the exact value of nonlinearity calculated by computational experiment.
Note that S-boxes in Table 1 may not be a permutation. In order to apply them
for block cipher, the other properties such as differential probability should be
investigated.

Table 1. Lower bound on Nonlinearity and its Exact Value

Function n Our Lower Bound Exact Value

x3 + x5 + x6 7 48 48
8 96 96

x−1 + x3 7 41 46
8 96 100

x−3 + x−1 7 41 46
8 96 97

4 Nonlinearity of n× kn S-boxes

In this section. we derive nonlinearity of n × kn S-box constructed by concate-
nating k n × n S-boxes over F2n . At first, we present a proposition to relate
nonlinearity of n × kn S-box to that of n × n S-box.

Proposition 12. Let F : F2n → F2kn be a vector Boolean fuctions with F =
(F1, F2, · · · , Fk) for Fi : F2n → F2n . Then we have

N (F ) = min
(c1,c2,··· ,ck)∈F∗

2kn

N (c1F1 + c2F2 + · · · + ckFk),

where the sum and product are the field operations in F2kn .
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Proof. Choose a basis B of F2n over F2 and take its dual basis B̂. Let us represent
by the basis B the left sides of all inner products and by its dual basis B̂ their
right sides. For any nonzero b = (c1, c2, · · · , ck) with ci ∈ F2n , we have

L(F, a, b) = #{x|a · x = b · F (x)}
= #{x|Tr(ax + bF (x)) = 0}
= #{x|Tr(ax + c1F1(x) + · · · + ckFk(x)) = 0}
= L(c1F1 + · · · + ckFk, a, 1).

where 1 is a binary vector representing an identity element by the basis B.
Conversely, for any nonzero (c1, c2, · · · , ck) ∈ F2kn , ci ∈ F2n and a nonzero

b0 ∈ F2n , there exists a nonzero b ∈ F2kn such that L(c1F1 + · · ·+ ckFk, a, b0) =
L(F, a, b), which completes the proof.

By the above proposition, we can apply Theorem 6 to get a lower bound on
nonlinearity of n×kn S-box. For example, consider an n×2n S-box F = (F1, F2)
where F1(x) = x−1 and F2(x) = x3 are S-boxes over F2n . Then

N (F ) = min
(c1,c2) 6=0

N (c1x
−1 + c2x

3)

= min{min
ci 6=0

N (c1x
−1 + c2x

3),N (x−1),N (x3)}

≥ 2n−1 − 2n/2+1 +
1
2
.

The first equality follows from Proposition 12 and the last inequality follows
from Corollary 7.

Similarly, we can get lower bounds on nonlinearity of various n-by-kn boxes.
We present some of them in Table 2. The second column shows a lower bound of
nonlinearity of the S-boxes in the first column for even or odd n. The third and
fourth column shows the exact value of nonlinearity calculated by computational
experiment.

In Table 2, every rational function such as x−1 and x3 is a vector Boolean
function from F2n to F2n . Note that all functions are permutations for odd n,
but only x−1 and x7 are permutations for n = 8. If we combine our result with
Theorem 17 in [8], we can also construct highly nonlinear kn × kn S-boxes.
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