
On Information-Theoretic Measures

of Attribute Importance

Y.Y. Yao, S.K.M. Wong, and C.J. Butz

Department of Computer Science, University of Regina
Regina, SK, S4S 0A2, Canada

Abstract. An attribute is deemed important in data mining if it parti-
tions the database such that previously unknown regularities are observ-
able. Many information-theoretic measures have been applied to quantify
the importance of an attribute. In this paper, we summarize and criti-
cally analyze these measures.

1 Introduction

Watanabe [21] suggested that pattern recognition is essentially a conceptual
adaptation to the empirical data in order to see a form in them. The form is
interpreted as a structure which always entails small entropy values. Many of the
algorithms in pattern recognition may be characterized as efforts to minimize en-
tropy [20]. The philosophy of entropy minimization in pattern recognition can be
applied to related fields, such as classification, data analysis, machine learning,
and data mining, where one of the tasks is to discover patterns or regularities
in a large data set. Regularities and structureness are characterized by small
entropy values, whereas randomness is characterized by large entropy values.

One may partition the statistical population into smaller populations using
the values taken by an attribute. Such an attribute is deemed important for
data mining if regularities are observable in the smaller populations, while be-
ing unobservable in the statistical population. In other words, if an attribute is
used for data mining, then the attribute should lead to entropy reduction. The
well known ID3 inductive learning algorithm [16] uses exactly such a measure
for attribute selection in a learning process. Based on the philosophy of en-
tropy minimization, this paper examines information-theoretic measures [2, 18]
for evaluating attribute importance in data mining.

2 Measuring Attribute Importance

Let X denote a discrete random variable and xi a value in the domain of X .
A joint probability distribution is a real-valued function PX over X such that
0 ≤ PX(xi) ≤ 1 and

∑n

i=1
PX(xi) = 1, where n denotes the number of elements

in the domain of X . We write PX as P if X is understood. Shannon’s entropy
function H is defined over P as:

H(P ) = −
n

∑

i=1

P (xi) log P (xi),



where P (xi) log P (xi) = 0 if P (xi) = 0. We say Shannon’s entropy is over X and
write H(P ) as H(X) when the distribution P over X is understood. Shannon’s
entropy is a nonnegative function, i.e., H(X) ≥ 0. It reaches the maximum
value log n when P is the uniform distribution, i.e., P (x1) = . . . = P (xn) = 1

n
.

The minimum entropy value 0 is obtained when the distribution P focuses on a
particular value xj , i.e., P (xj) = 1 and P (xi) = 0, 1 ≤ i ≤ n, i 6= j.

The conditional entropy, i.e., the difference between joint entropy and marginal
entropy, is given by:

H(X | Y ) = H(X, Y ) − H(Y ).

Mutual information can be defined as:

I(X ; Y ) = H(X) − H(X | Y ) = H(Y ) − H(Y | X) = H(X) + H(Y ) − H(X, Y ).

That is, the mutual information measures the decrease of uncertainty about X
caused by the knowledge of Y , and vice versa. It is a measure of the amount of
information about X contained in Y . This measure is the same as the amount
of information about Y contained in X , namely, I(X ; Y ) = I(Y ; X). Further-
more, the amount of information contained in X about itself is obviously H(X),
namely, I(X ; X) = H(X).

One may view an attribute and a database as a statistical variable tak-
ing values from its domain and a statistical population, respectively [5, 14].
Information-theoretic measures quantify relationships between random variables.
They can immediately be applied for the analysis of databases and the evaluation
of the usefulness of attributes in data mining [14].

One of the main tasks in knowledge discovery and data mining (KDD) is to
find important relationships, or associations, between attributes. In statistical
terms, two attributes are associated if they are not independent [11]. Two at-
tributes are independent if changing the value of one does not affect the value
of the other. From this standpoint, we comment on the meaning of information-
theoretic measures in the context of data mining.

For an attribute (or a set of attributes) X , the entropy value H(X) indi-
cates the information uncertainty associated with X . An attribute with a very
large domain normally divides the database into more smaller classes than an
attribute with a small domain. A regularity found in a very small portion of
database may not necessarily be useful. On the other hand, an attribute with
small domain usually divides the database into a few larger classes. One may
not find regularities in such large subsets of the database. Entropy values may
be used to control the selection of attributes. It is expected that an attribute
with middle range entropy values may be more useful. Similar ideas have been
used successfully in information retrieval [22]. A high frequency term tends to
have a higher entropy value, and a lower frequency term tends to have a lower
entropy value. Both may not be good index terms. The middle frequency terms
tend to be useful in describing documents in a collection.

The conditional entropy H(Y |X) measures the degree of one-way implica-
tion or functional dependency of the sets of attributes X and Y . If the func-
tional dependency X → Y holds, we conclude that P (yj |xi) is either 1 or 0. In



term of conditional entropy, X → Y holds if and only if H(Y |X) = 0 [10, 14].
By the relationships between entropy, conditional entropy, and mutual informa-
tion, the above condition can be equivalently stated as H(X) = H(X, Y ) or
I(X ; Y ) = H(Y ) [10]. If Y is dependent on X , the partition of the database
by X and Y is exactly the same as the one produced by X alone. The former
condition reflects this observation. The latter condition shows that the mutual
information between X and Y is the same as the self-information of Y . The con-
ditional entropy function can be used to measure the importance of attributes for
discovering one-way associations. For a fixed Y , one obvious disadvantage of us-
ing H(Y |X) is that it favours attributes with large domains, namely, attributes
with high entropy values [16].

Mutual information measures the degree of deviation of a joint distribution
from the independence distribution [21]. It may be used to evaluate the useful-
ness of attributes in finding two-way associations. With a fixed Y , the use of
I(X ; Y ) for finding a two-way association is in fact the same as using H(Y |X)
for finding a one-way association [13, 19]. Two sets of attributes X and Y are
statistically independent if I(X ; Y ) = 0. Equivalently, we can state this condi-
tion as H(X) = H(X |Y ), H(Y ) = H(Y |X), or H(X, Y ) = H(X) + H(Y ). If X
and Y are independent, one cannot use values of X to predicate the values of
Y , and vice versa. In information-theoretic terms, knowing the value of Y does
not reduce our uncertainty about X , and vice versa.

Conditional entropy and mutual information serve as the basic quantities
for measuring attribute associations. By combination and normalization, one
may obtain many information-theoretic measures of attribute importance. In
summary, the following three groups can be obtained:

– Lee [10], Malvestuto [14], Pawlak et al. [15]: H(X | Y ), H(Y | X);
Kv̊alseth [9], Malvestuto [14], Quinlan [16]: I(X ; Y )/H(X), I(X ; Y )/H(Y ).

– Knobbe and Adriaans [8], Linfoot [12], Quinlan [16]: I(X ; Y );
Malvestuto [14]: I(X ; Y )/H(X, Y ); Kv̊alseth [9]: 2I(X ; Y )/(H(X) + H(Y ));
Horibe [4], Kv̊alseth [9]: I(X ; Y )/max(H(X), H(Y ));
Kv̊alseth [9]: I(X ; Y )/min(H(X), H(Y )).

– López de Mántaras [13], Wan and Wong [19]: H(X | Y ) + H(Y | X);
López de Mántaras [13], Rajski [17]: (H(X | Y ) + H(Y | X))/H(X, Y ).

Measures in the first group are asymmetric while measures in the other two
groups are symmetric. Measures in the third group are distance measures. One
can obtain the following relationships between these measures:

(i)
I(X ; Y )

H(X)
= 1 −

H(X |Y )

H(X)
,

(ii)
I(X ; Y )

max(H(X), H(Y ))
= min

(

I(X ; Y )

H(X)
,
I(X ; Y )

H(Y )

)

,

(ii)
I(X ; Y )

min(H(X), H(Y ))
= max

(

I(X ; Y )

H(X)
,
I(X ; Y )

H(Y )

)

,



(iv) 0 ≤
I(X ; Y )

max(H(X), H(Y ))
≤

2I(X ; Y )

H(X) + H(Y )
≤

I(X ; Y )

min(H(X), H(Y ))
,

(v) H(X |Y ) + H(Y |X) = H(X, Y ) − I(X ; Y ),

(vi)
2I(X ; Y )

H(X) + H(Y )
= 2

(

1 −
H(X, Y )

H(X) + H(Y )

)

,

(vii)
H(X | Y ) + H(Y | X)

H(X, Y )
= 1 −

I(X ; Y )

H(X, Y )
.

They provide additional support for various measures. Furthermore, measures
of one-way association can be expressed in a general form as different normaliza-
tions of conditional entropy, while measures of two-way association as different
normalizations of mutual information [9].

In studying main problems for KDD, Klösgen [7] discussed two types of prob-
lems, namely, classification and predication and summary and description. Kam-
ber and Shinghal [6] referred to them as the discovery of discriminant and char-
acteristic rules, respectively. The classification and predication problem deals
with the discovery of a set of rules or similar patterns for predicting the val-
ues of a dependent variable. The ID3 algorithm [16] and the mining of associate
rules [1] are examples for solving this type of problem. The summary and de-
scription problem involves the discovery of a dominant structure that derives a
dependency. It is important to note that asymmetric measures may be suitable
for former problem, while symmetric measures may be appropriate for the latter.

In the study of association of random variables using statistical measures,
Liebetrau [11] pointed out that many symmetric measures do not tell us any-
thing about causality. When two attributes are shown to be correlated, it is
very tempting to infer a cause-and-effect relationship between them. It is very
important to realize that the mere identification of association does not provide
grounds to establish causality. Garner and McGill [3] showed that information
analysis is very similar to analysis of variance. One may then extend the argu-
ment of Liebetrau [11] to information-theoretic measures. In order to establish
causality, we need additional techniques in data mining.

3 Conclusion

This preliminary study has demonstrated that asymmetric measures quantify
one-way association and are typically related to conditional entropy, while sym-
metric measures quantify two-way association and are typically related to mutual
information. If information theory is to be used to develop a formal theory for
knowledge discovery and data mining, then the principle of entropy reduction
and models in which causality can be established [11] warrant more attention.
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