
A Lazy Model-Based Algorithm
for On-Line Classification

Gabor Melli

DataSage, Inc. www.datasage.com
gmelli@datasage.com

Abstract. This paper presents a lazy model-based algorithm, named DBPredic-
tor, for on-line classification tasks. The algorithm proposes a local discretization
process to avoid the need for a lengthy preprocess stage. Another advantage of
this approach is the ability to implement the algorithm with tightly-coupled SQL
relational database queries. To test the algorithm’s performance in the presence
of continuous attributes an empirical test is reported against both an eager model-
based algorithm (C4.5) and a lazy instance-based algorithm (k-NN).

1 Introduction

The large number of structured observations now stored in relational databases has cre-
ated an opportunity for classification tasks that require a prediction for only a single
event. This type of prediction will be referred to as on-line classification, to differen-
tiate it from classification tasks that allow for batch style model induction. This paper
proposes an algorithm, called DBPredictor, for such on-line classification tasks. The
algorithm performs a top-down heuristic search through the IF antecedent THEN con-
sequent rule space of the specific event to be classified. The two challenges addressed
in this paper are the local discretization of numerical attributes and a tightly-coupled
implementation against SQL based databases.

Section 2 contrasts the lazy model-based approach to classification form other well
known approaches. Section 3 describes DBPredictor with a focus on the support for
numerical attributes and an SQL interface. Section 4 presents the results of an empiri-
cal investigation into DBPredictor’s accuracy with respect to the number of numerical
attributes. Finally, Section 5 concludes with a paper summary.

2 Previous Work

An algorithm for on-line classification tasks must decide whether to use an eager or lazy
approach, and whether it should be model-based or instance-based. Eager algorithms
induce a complete classification structure (classifier) before they can process any clas-
sification requests. Lazy algorithms, on the other hand, commence to work immediately
on classifying the given event [3]. Model-based algorithms, represent their result in a
language that is richer than the language used to describe the dataset, while instance-
based algorithms represent their result in the same language that is used to described
the dataset [11].



2 Gabor Melli

Based on these descriptions, on-line classification tasks would likely benefit from a
lazy model-based algorithm. Such an algorithm would focus its effort on classifying the
particular event in question, and would also return a rationale that may help the person
interpret the validity of the prediction. Two recent proposals that do make use of a lazy
model-based approach include of former version of DBPredictor [8] and the LazyDT [6]
(Lazy Decision Tree) algorithms. The main difference between these algorithms is the
use of a rules in one and the use of decision tree paths in the other.

These two algorithms however, cannot be tightly-coupled with a SQL based rela-
tional database [2, 7] because they require datasets to be both discretized and stored in
memory. The version of DBPredictor presented in this paper addresses both these is-
sues and presents a tightly-coupled implementation of the SQL Interface Protocol (SIP)
proposal [2, 7]. Other details of this algorithm are presented in [9].

3 Algorithm

DBPredictor requires three input parameters: a partially instantiated event e; the at-
tribute whose value is to be predicted Ac; and a dataset D from the same domain as e.
With this information, DBPredictor performs a search through a constrained space of
all the applicable IF antecedent THEN consequent classification rules. The search starts
from a general seed rule that covers e. The algorithm then generates several candidate
rules that are more specialized than the previous rule. To determine which rule to fur-
ther specialize on, the candidate rules are tested with a heuristic function F(). The rule
that achieves the highest value at each specialization step is the one selected for the next
round of specialization. The search proceeds until a stopping criterion is encountered.

3.1 top down search()

Once the seed rule r� has been composed, DBPredictor simply outputs the rule re-
turned by a call to top down search with parameters �r�� �D� e� Ac��. This proce-
dure performs a greedy top-down search through a constrained rule space. Procedure 3.1
presents a pseudo-code overview of top down search(). Only two of its four sub-
procedures are described in detail in the coming sections:generate antecedents(),
and get consequent(). The heuristic function F() can be any impurity measure.
Several heuristics, such as entropy and Euclidean distance have been successfully tested
in [9]. Finally, best rule() selects the rule with the highest estimated predictive
value.

3.2 generate antecedents()

The generate antecedents() procedure returns the set of rules to be tested by
the heuristic function. To constrain the search space from the �n possible attribute-value
combinations, the procedure returns only the, up to n� � rules possible by specializing
on each of the n attributes.



A Lazy Model-Based Algorithm for On-Line Classification 3

Procedure 3.1 top down search()
Input: (r� P ): rule r and algorithm parameters P � �D�e�c�.
Output: A rule r� that covers e but which cannot be further specialized.
Method:
1: R� generate antecedents(r� P)
2: for all rule r� � R do
3: r�

conseq� � get consequent(r� � P )
4: r�

value � F(r� � r)
5: end for
6:
7: best r� � best rule(R)
8: if (best r� �� �) then
9: return(top down search(best r�� P ))

10: else
11: return(r)
12: end if

Symbolic Attributes The first time a specialization is attempted on a proposition that
refers to a symbolic attribute Ai, the proposition is simply updated from (Ai � ANY )
to (Ai � ei). If the proposition on this attribute has already been specialized, then no
further specialization is attempted.

Numerical Attributes The method described above for symbolic attributes cannot be
successfully applied to continuous attributes. If, for example, e� � ��� and the range
on attribute A� is [0.5, 9.0], then generating the proposition �A� � ���� would likely
result in a rule that covers few, if any, records in the dataset. One way to overcome this
situation is by discretizing all continuous attributes in the dataset before using the clas-
sification algorithm. This approach could be thought of as eager discretization because
many of the regions that are made discrete are not necessary for the single classification
task at hand. DBPredictor instead uses a two sided test (Ai � �ei � �� ei 	 �
), where
� � �, on continuous attributes. After a scan through the dataset to locate the min, max

range for each attribute, he � for each proposition in the seed rule is set to the larger of
(max� ei) and (ei�min). The proposition in the example above would be initialized
to (A� � ����� �� ���	 �).

At each specialization DBPredictor makes �� strictly smaller than the previous �
used by the parent’s proposition. The decrease in � between iterations is determined by
an internally set fraction named num ratio (numerical partitioningratio):

��
�

�

num ratio

P �

i
�

�
Ai � �ei � ��� ei 	 ��


�

An empirically determined default value for num ratio is presented in Section 4.



4 Gabor Melli

3.3 get consequent()

Once a set of rule antecedents have been generated, the get consequent() proce-
dure is used to construct each rule’s consequent. For a given rule’s antecedent (r�antecedent),
the procedure executes the following SQL query to return a summary of attribute Ac

for all the dataset records that match the antecedent: SELECT Ac, COUNT(*) FROM
D WHERE r�antecedent GROUP BY Ac. This implementation has the advantage that
it does not require the usage of temporary tables nor the existence of a key attribute in
the dataset.

4 Empirical Results

An empirical study was conducted to test DBPredictor’s accuracy with respect to the
proportion of continuous attributes in the dataset.1 Twenty three datasets from the UCI
repository [10] were used in this study: anneal, heart-h, audiology, hepatitis*, breast-
w, horse-colic, chess, iris*, credit-a, letter, credit-g, liver-disease, diabetes, mushroom,
echocardiogram*, segment, glass, soybean-small, hayes-roth*, tic-tac-toe*, heart, vote,
and heart-c. An attempt was made to include previously studied datasets [6, 5, 12] with
a wide variety of sizes and proportions of continuous attributes2. The benchmark algo-
rithms for this study were the C4.5 r8 decision tree algorithm [11, 12] and the IB1 k-
nearest neighbor algorithm [4]. Finally, each algorithm’s true error rate on each dataset
was estimated with the use of multiple ten-fold stratified cross-validation tests.

4.1 Tuning num ratio

The first portion of the empirical study determined an appropriate value for DBPredic-
tor’s num ratio internal parameter. All three algorithm’s were tuned on five datasets
marked with a * beside its name. The value for num ratio that achieve the lowest
average error rate on these five datasets was 1.5. This value was passed on to the next
study. Similarly, the IB1 algorithm’s k was set to 5 after being tuned on the same five
datasets as DBPredictor.

4.2 Continuous Domains

To test for bias with respect to the proportion of numerical attributes in a dataset the
three pairwise combinations between DBPredictor, C4.5 and IB1 were contrasted. For
each pair, the datasets in which one algorithm performed significantly better3 than the
other were identified. Table 1 summarizes the results of the three pairwise tests. Rather
than being skewed to a strong bias for or against continuous attribute, the results suggest
that DBPredictor’s bias is instead situated between that of IB1 and C4.5.

1 An ANSI-C implementation of the algorithm can be downloaded from the
www.cs.sfu.ca/m̃elli/DBPredictor Web site.

2 the 23 datasets possessed on average 48% numerical attributes and ranged from 0% to 100%
3 based on a two-tailed t-test with 99.5% confidence



A Lazy Model-Based Algorithm for On-Line Classification 5

Table 1. Average percentage of numerical attributes in the datasets that each algorithm performed
significantly more accurately than another algorithm. The datasets that DBPredictor was more
accurate than IB1 had 39% numerical attributes on average.

DBP/C4.5 DBP/IB1 C4.5/IB1
54%/55% 39%/52% 20%/57%

5 Conclusion

This paper presents an algorithm, named DBPredictor, that is targeted to on-line classi-
fication tasks. These tasks require the prediction of a single event’s class, based on the
records stored in a relational database. DBPredictor uses a lazy model-based approach
in that it performs only the work it requires to classify the single event. The opportu-
nity presented in this paper is the use of proposition specialization. A tightly-coupled
SQL based implementation of the algorithm is presented, along with the results of an
empirical study into the relative bias for or against datasets with numerical attributes.

References

1. AAAI. Thirteenth National Conference on Artificial Intelligence. AAAI Press, 1996.
2. R. Agrawal and J. C. Shafer. Parallel mining of association rules: Design, implementation,

and experience. IEEE Trans. Knowledge and Data Engineering, 8:962–969, 1996.
3. D. W. Aha, editor. Lazy Learning. Kluwer Academic, May 1997.
4. D. W. Aha, D. Kibler, and M. K. Albert. Instance-based learning algorithms. Machine

Learning, 6(1):37–66, 1991.
5. P. Domingos. Unifying instance-based and rule-based induction. Machine Learning,

24(2):141–168, August 1996.
6. J. H. Friedman, R. Kohavi, and Y. Yun. Lazy decision trees. [1], pages 717–724.
7. G. H. John and B. Lent. SIPping from the data firehose. In Proceedings, Third International

Conference on Knowledge Discovery and Data Mining, pages 199–202. AAAI Press, 1997.
8. G. Melli. Ad hoc attribute-value prediction. [1], page 1396.
9. G. Melli. Knowledge based on-line classification. Master’s thesis, Simon Fraser University,

School of Computing Science, April 1998.
10. P. M. Murphy and D. W. Aha. UCI repository of machine learning databases. Irvine,

CA: University of California, Department of Information and Computer Science, 1995.
ftp://ics.uci.edu/pub/machine-learning-databases.

11. J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, 1993.
12. J. R. Quinlan. Improved use of continuous attributes in C4.5. Journal of Artificial Intelli-

gence Research, 4:77–90, March 1996.


