
Centrum voor Wiskunde en Informatica

REPORTRAPPORT

Coordination of a Parallel Proposition Solver

C.T.H. Everaars and B. Lisser

Software Engineering (SEN)

SEN-R9832 December 1998

Report SEN-R9832
ISSN 1386-369X

CWI
P.O. Box 94079
1090 GB Amsterdam
The Netherlands

CWI is the National Research Institute for Mathematics
and Computer Science. CWI is part of the Stichting
Mathematisch Centrum (SMC), the Dutch foundation
for promotion of mathematics and computer science
and their applications.
SMC is sponsored by the Netherlands Organization for
Scientific Research (NWO). CWI is a member of
ERCIM, the European Research Consortium for
Informatics and Mathematics.

Copyright © Stichting Mathematisch Centrum
P.O. Box 94079, 1090 GB Amsterdam (NL)

Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333

Telefax +31 20 592 4199

Coordination of a Parallel Proposition Solver

C.T.H. Everaars and B. Lisser
Kees.Everaars@cwi.nl and Bert.Lisser@cwi.nl

CWI

P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

ABSTRACT

In this paper we describe an experiment in which MANIFOLD is used to coordinate the interprocess

communication in a parallelized proposition solver. MANIFOLD is very well suited for applications

involving dynamic process creation and dynamically changing (ir)regular communication patterns among

sets of independent concurrent cooperating processes. The idea in this case study is simple. The proposition

solver consists of a fixed numbers of separate processing units which communicate with each other such

that the output of one serves as the input for the other. Because one of the processing units performs a

computation intensive job, we introduce a master/worker protocol to divide its computations. We show

that this protocol implemented in MANIFOLD adds another hierarchic layer to the application but leaves

the previous layers intact. This modularity of MANIFOLD offers the possibility to introduce concurrency

step by step. We also verify the implementation of the proposition solver using a simple family of assertions

and give some performance results.

1991 Computing Reviews Classification System: D.3.3, D.1.3, D.3.2, F.1.2, D.2.1.

1991 Mathematics Subject Classification System: 68N15, 68Q10.

Keywords and Phrases: Parallel Computing, Distributed Computing, Coordination Languages, Propo-

sition Solvers.

Note: joint work between SEN2 ”Specification and Analysis of Embedded Systems” and SEN3 ” Coordi-

nation Languages”

1. Introduction

Correctness assertions, about e.g., the safety of railway platforms, the working of embedded
systems, or computer programs are frequently formulated as statements in propositional logic
[GKvV95]. Such a proposition, formulated in some specification language, can then form the
input for a proposition solver that tests the correctness of the assertion. In general, we can see
a proposition solver as a system that solves equations such as p(~x) = true, where ~x stands for
the free boolean variables in proposition p. The satisfiability of the proposition p is checked and
a solution of the equation is computed, provided that p is satisfiable. In [LW98] we can find a
description of a library containing formal specifications of components that can be used as building
blocks for a generic solver tool for logical propositions.

In this paper we describe how the actual implementation of the solver components are used
in cooperation with each other to build a real working parallel proposition solver. The different
components of the solver were implemented (in C) by a group of researchers in the department
of Software Engineering at CWI (Centrum voor Wiskunde en Informatica) in the Netherlands in
cooperation with the Dutch Railways for checking railway safety systems [GKvV95]. Finishing
the implementation (and debugging) of the individual components, they looked for an efficient
interprocess communication tool that could take care for the necessary communication channels
between the different components. There are many different languages and programming tools
available that can be used to implement this kind of communication, each representing a different
approach to communication. Normally, languages like Compositional C++, High Performance
Fortran, Fortran M, Concurrent C(++) or tools like MPI, PVM, and PARMACS are used (see
[Arb97] for some critical notes on these languages and tools). There is, however, a promising novel
approach: the application of coordination languages [GC92].

2. The Manifold Coordination Language 2

In this paper we describe how the coordination language MANIFOLD is used for the interprocess
communication between the different components of this proposition solver. MANIFOLD is a coor-
dination language developed at the CWI in the Netherlands. It is very well suited for applications
involving dynamic process creation and dynamically changing (ir)regular communication patterns
among sets of independent concurrent cooperating processes [Arb95, Arb96].

The rest of this paper is organized as follows. In section 2 we give a brief introduction to the
MANIFOLD language by discussing a “toy” application. Apart from showing some of the syntax
and semantics of MANIFOLD we find in this example already, in nutshell, most elements of the
MANIFOLD system1. In section 3 we give a formal description of the proposition solver and its
different functional units, and in section 4 we describe its actual implementation. Because one of
the functional units is responsible for the heavy computational work in the proposition solver, we
apply a coarse-grain restructuring on that functional unit. This adds another hierarchic layer to
the application which we describe in section 5. In section 6, we test with a family of assertions
the proposition solver and give some performance results. Finally, the conclusion of the paper is
in section 7.

2. The Manifold Coordination Language

In this section, we briefly introduce MANIFOLD. Programming in MANIFOLD is a game of dy-
namically creating process instances and (re)connecting the ports of some processes via streams
(asynchronous channels), in reaction to observed event occurrences. This style reflects the way one
programmer might discuss his interprocess communication application to another programmer by
telephone (let process a connect process b with process c so that c can get its input; when process
b receives event e, broadcast by process c, react on that by doing this and that; etc.). As is already
clear from this phone call, processes in MANIFOLD do not explicitly send a message to or receive a
message from another process. Processes in MANIFOLD are treated as black-box workers that can
only read or write through the openings (called ports) in their own bounding walls. It is always
a third party - a coordinator process that is called a manager - that is responsible for setting
up the communication channel (in MANIFOLD called a stream) between the output port of one
process and the input port of another process, so that data can flow through it. This setting up
of the communication from the outside is very typical for MANIFOLD and has several advantages.
An important advantage is that it results in a clear separation between the modules responsible
for computation and the modules responsible for coordination, and therefore also strengthens the
modularity and enhances the re-usability of both types of modules (see [Arb96], [Arb97]).

We now illustrate MANIFOLD through an example that implements a game of table tennis
between ”you ” and ”me”. We give the MANIFOLD source file of this example below (lines
numbers have been added).

1 #include "MBL.h"
2
3 #include "rdid.h"
4
5 event ping, pong.
6
7 /***/
8 manifold ping_pong_player(event e)
9 {

10 auto process v is variable.
11
12 begin: v = input; MES(v); raise(e); output = v; post(begin).
13 }
14
15 /***/
16 manifold umpire
17 {
18 process you is ping_pong_player(ping).
19 process me is ping_pong_player(pong).
20
21 begin: (MES("Lets start ping-ponging"),
22 activate(you, me), "ball" -> you, terminated(void)).
23
24 ping: you -> me.
25
26 pong: me -> you.
27 }

1For more information, refer to our html pages located at
http://www.cwi.nl/cwi/projects/manifold.html.

2. The Manifold Coordination Language 3

28
29 /***/
30 manifold Main
31 {
32 begin: umpire.
33 }

This code describes three manifolds (i.e., process types) named ping pong player, umpire and
Main (respectively lines 8-13, 16-27, 30-33). A manifold is a template from which we can make
process instances. A process instance always has an event memory in which itself or other process
instances can put event occurrences. MANIFOLD is an event driven language which means that
once a process instance detects an event occurrence in its event memory, the process instance
makes a transition out of its current state to the state that is labeled with the name of that
event occurrence. Switching to a state also means that the streams that were constructed in
the former state are broken down (see [Arb96] for the details). In MANIFOLD syntax, a state
looks like “event_name: actions to be executed.” and its semantic is “switch to this state
when there is an event with this name in the event memory and execute the actions”. The most
important (primitive) actions are (1) creating and activating process instances, (2) broadcasting
events (with the action raise) or putting it in a process’ own event memory (with the action
post), (3) connecting processes to each other by setting up streams between their ports (by the
action denoted by the arrow ->).

A manifold written in the MANIFOLD languages (we can also write them in a traditional pro-
gramming language such as C) always has the following structure. After the word manifold a
name is given (line 8: ping pong player) followed by some optional parameters (line 8: event e).
After this first line, comes the body of the manifold (lines 9-13). The body of a manifold is a block
enclosed in a pair of braces (for the ping-pong player, lines 9 and 13) and contains some optional
global declarations (line 10 for the ping-pong player, lines 18 and 19 for the umpire) followed by
one or more states to which an instance of the manifold can jump when there is a suitable event in
its event memory. In our case, we see that the ping pong player and Main manifolds (and thus
in the instances) have only the begin state. The umpire, on the other hand, has three different
states: the begin, ping, and pong states. A begin state in MANIFOLD is something special. Ac-
tivation of a process instance automatically puts an occurrence of the special high priority begin
event in the event memory of that process, which results in an initial state transition to the begin
state.

In our artificial game of table tennis, we consider a ping-pong player as someone who sequentially
performs in his begin state the following actions (sequential execution is syntactically denoted by
the connective “;” between the actions):

• It reads (catches) a ball (line 12: v=input) from its input port and stores it in a variable
(line 10).

• It shows the ball on the screen (line 12: MES(v)).

• It broadcasts the event it receives as a parameter (line 8) to signal the umpire that it is
intends to write (return) the ball to its output port (line 12: raise(e)).

• It puts the begin event in its own event memory (line 12: post(begin)) which results in
another round of execution of the actions in the begin state.

The umpire manifold can be described as follows:

• Using in the global declaration part, the syntactic construct “process x is y.”, it creates
two processes named “you” and “me” as instances of the ping-pong player manifold (line 18,
19). Note that the actual parameters in the process creation “you” and “me” are respectively
ping and pong so that “you” always raises ping and “me” always raises pong (line 12:
raise(e)).

• In the begin state, the umpire shows the message “Lets start ping-pongging” on the
screen (line 21), activates the two process instances “you” and “me” (line 22), gives a ball

2. The Manifold Coordination Language 4

to “you” (line 22: "ball" -> you) and waits (denoted by terminated(void) on line 22)
until it detects one of the global events (declared on line 5).

• Because “you” starts returning the ball and raises (broadcasts) the ping event (line 12), the
first event found in the event memory of the umpire is ping which causes a state transition
from the begin state to the ping state. In this state a stream is created between “you” and
“me” so that the ball can flow through this stream to “me” (line 24: you -> me).

• The process instance “me” behaves the same way as “you” except that it raises the event
pong to signal the umpire that the ball is written to its output port. In reaction to this
event, the umpire makes a state transition out of the ping state, which results in breaking
the connection between “you” and “me”, and enters the pong state where a new connection
between “me” and “you” (line 26: me -> you) is created through which the ball can flow
back to “you”. It is clear that this table tennis game never stops.

The third manifold is Main. The name Main is indeed special in MANIFOLD: there must be a
manifold with that name in every MANIFOLD application and an automatically created instance
of this manifold called main is the first process that is started up in an application. In our case the
Main manifold has only the begin state in which it automatically creates an process instance of the
umpire manifold, just by calling the umpire by name (line 32). This implicit process instantiation
is an alternative to the explicit creation of a process (as we did on line 18) and explicit activation
(as we did on line 22).

Our table tennis program is very artificial and one might think of many other ways to implement
it. For instance we can set up the stream connections between the ping-pong players in the umpire
in just one state, in which case there is no need to do state transitions and thus there is no need
to break the stream connections between the ping-pong players again and again. We chose to
implement it as we did because it clearly shows the dynamic changing of connections on the beat
of event occurrences which is an important aspect of MANIFOLD’s event driven nature.

Process instances in a MANIFOLD application always run as separate threads (light weight
processes [NBF96]) within an operating-system level process. This latter process (heavy weight)
is called a task instance in MANIFOLD. The way process instances are bundled in task instances
influences the mechanism that is actually used for the data transport in streams (the ->). The
bundling can be done automatically as well as controlled. When we take care that all the process
instances of the MANIFOLD application run as threads in the same task instance, the effective data
transport in the streams between these process instances is implemented in shared memory. In
that case we in fact play “shared memory table tennis”. We can also bundle the process instances
in such a way that each ping-pong player and the umpire is housed in a separate task instance.
In that case the effective data transport in streams between the process instances is implemented
using Unix sockets. The mapping of process instances in task instances is considered to be a
separate stage in the application construction. This mapping is described in a file which is the
input for the MANIFOLD linker MLINK. An example of such an the input file is shown below (line
numbers have been added).

1 {task *
2 {load 10}
3 {weight ping_pong_player 10}
4 {weight umpire 10}
5 }
6
7 {task pingpong
8 {include pingpong.o}
9 }

In this file we specify that a task instance is considered to be “full” when its load exceeds 10 (line
2) and that the weight of an instance of the ping-pong player or umpire is also 10 (line 3, 4).
The net result of this is that each task instance will house only one thread and thus instances
of ping-pong player and the umpire end up in different instances of the task named pingpong
(line 7). The primary output of the manifold linker is a makefile, plus a number of C source files
necessary to provide the inter-task information.

3. A Formal Description of the Proposition Solver 5

This makefile is meant to be used as a black-box by recursive make commands in programmer-
defined makefiles that finally create the executable files suitable for the appropriate platforms.
With this the task composition stage comes to an end and the final stage in application construction
can start. This is the run-time configuration stage, in which we define the mapping of tasks to
hosts. This mapping too is described in a file which is the input for the MANIFOLD run-time
configurator CONFIG. An example of such an the input file is shown below.

{host host1 sampan.cwi.nl}
{host host2 pont.cwi.nl}
{host host3 opduwer.cwi.nl}
{locus pingpong $host1 $host2 $host3}

Here we define three variables host1, host2 and host3, which we set to respectively sampan.cwi.nl,
pont.cwi.nl and opduwer.cwi.nl. These are the names of computers located at different places
and connected via a network. The last line in the file states that task instances (in our case three)
of the pingpong task can be started on any of these three machines.

Note that the different mappings in the task composition stage and the run-time configuration
stage do not affect the semantics of the MANIFOLD source code.

Running the ping-pong program using the task composition and run-time configuration de-
scribed above forms a “distributed table tennis game” and gives the following output.

262159 112 pingpong umpire() pingpong.m 21 -> Lets start ping-ponging
786433 63 pingpong ping_pong_player(event) pingpong.m 12 -> ball
524289 63 pingpong ping_pong_player(event) pingpong.m 12 -> ball
786433 63 pingpong ping_pong_player(event) pingpong.m 12 -> ball
524289 63 pingpong ping_pong_player(event) pingpong.m 12 -> ball
786433 63 pingpong ping_pong_player(event) pingpong.m 12 -> ball
Etc.

Each of these output lines has the following structure. It starts with a long label followed by a
-> before the actual message (the value of the argument of MES). The label shows respectively the
identification of the task instance, the identification of the process instance, the name of the task,
the name of the manifold, and the name of the MANIFOLD source file and the line number where
MES is called. With such a label in front of the actual message, we always know who is printing
what and where.

The MANIFOLD system runs on multiple platforms and consists of a compiler (MC), a linker
(MLINK), a run-time configurator (CONFIG), a run-time system library, a number of utility pro-
grams, and libraries of built-in and predefined processes of general interest. Presently, it runs on
IBM RS60000 AIX, IBM SP1/2, Solaris, Linux, Cray, and SGI IRIX.

3. A Formal Description of the Proposition Solver

In this section we describe the solver components we use to build a parallel proposition solver
that solves closed quantified propositions. For a full description of the components we refer to the
formal specifications in [LW98] and for an elementary introduction literature on logic we refer to
[NS93]. The task of solving closed quantified propositions can be divided in four transformations
which will be done sequentially in such a way that the output of one transformation serves as
input for the next transformation.

The sequence of transformations a proposition has to go through, is shown in figure 1 and is as
follows (for details we again refer to [LW98]).

• PRENEX 2 is the component that transforms a proposition to a prenex normal form (i.e.,
a quantifier free proposition preceded by a row of quantifiers).

• CNF (Conjunctive Normal Form) is the component that transforms a proposition in the
prenex normal form to a quantified conjunctive normal form (i.e., a conjunctive normal form
preceded by a row of quantifiers). This is done in the following way. First the proposition
in the prenex normal form is split by a separate splitting component named SPLIT in a

2From here on in this paper we use small letters for processes and software components and capital letters for
transformations and manifolds.

3. A Formal Description of the Proposition Solver 6

quantifier free part and a list of quantifiers. The quantifier free part is transformed by a sep-
arate component named CNFHH (Conjunctive Normal Form HeerHugo) to an existential
conjunctive normal form (i.e., a conjunctive normal form preceded by a row of existential
quantifiers). This output and the list of quantifiers are joined together by a component
named JOIN, which results in a quantified conjunctive normal form.

• UQE (Universal Quantifier Eliminator) is the component that transforms quantified con-
junctive normal forms to existential conjunctive normal forms. This transformation is done
by the rule

∀x.∃~y.φ(x, ~y) = ∃~y1.φ(false, ~y1) ∧ ∃~y2.φ(true, ~y2) = ∃~y1, ~y2.(φ(false, ~y1) ∧ φ(true, ~y2))

and is the most computation intensive part of the proposition solver.

• HH (HeerHugo) is the component that simplifies existential conjunctive normal forms. Heer-
hugo has been developed at the University of Utrecht and CWI for checking railway safety
systems [Gro97].

PRENEX

CNF

UQE

HH

?

?

?

?

?

?

?

?

Proposition - for instance ∀x.(x ∧ ¬x) ∨ ∃p.p

Prenex normal form - ∀x.∃p.(x ∧ ¬x ∨ p)

Conjunctive normal form preceded by a list of quantifiers - ∀x.∃p.((x ∨ p) ∧ (¬x ∨ p))

Conjunctive normal form after elimination of the universal quantifiers - ∃p.∃q.(p ∧ q)

Simplified conjunctive normal form - true

Figure 1: Transformations done at proposition solving

4. The Coordination in the Proposition Solver 7

4. The Coordination in the Proposition Solver

The communication patterns in the proposition solver as given in section 3 in fact describe a
pipeline model. It is a sequence of functional units (“stages”) which performs a task in several
steps. Each functional unit takes its input and produces output, where the output of one serves
as the input for next stage. This arrangement allows all the stages to work in parallel, thus giving
greater throughput than if each input had to pass through the whole pipeline before the next
input could enter. We can visualize such a system as a set of nodes that are connected by streams
in which data flows in one direction.

Each functional unit as described in section 3 has been implemented as a separate software
component written in C. The generic data type used in the implementation to store a proposition,
is a tree structure and is called a term. In the software components all kinds of operations are
done on these terms, e.g., composing and decomposing terms, reading and writing terms, etc. For
this we use the primitives defined in the term library of ToolBus [BK96].

Because the terms we communicate among the software components are very big (sometimes
more than 7 megabytes) it is obvious that we want the interprocess communication in shared
memory. This way it is sufficient to transport the pointer to a term from one software component
to another. As already stated, transporting data in MANIFOLD is special. In MANIFOLD pro-
cesses do not read and write directly from and to other processes, but they read and write from
and to their own ports. It is a third party (a coordinator) that sets up, from the outside, the
connections between them. For the manifolds written in C (also called atomic processes) we do
this reading and writing to and from ports using, respectively, the functions AP PortRemoveUnit
and AP PortPlaceUnit from the atomic process interface library. This is a standard MANIFOLD

library with many C functions, which allows access to the MANIFOLD world. Besides the standard
ports named input, output, and error we also have ports with user defined names, as we will
see.

In the actual implementation of the proposition solver we need two additional software com-
ponents; one for reading the assertion we want to verify (i.e., a term) and another for writing
the true value of the assertion to the screen. These are named, respectively, rd and pr (Print
Result). Below, we enumerate the different software components, describe them using MANIFOLD

terminology, and show the stream connections between them in figure 2.

• rd reads a term representing a quantified closed proposition from a file and writes a pointer
to this term to its own output port.

• prenex reads a term pointer to a quantified closed proposition from its input port, trans-
forms the term to its prenex normal form, and writes a pointer to this result to its own
output port.

• cnf reads a pointer to a term in prenex normal form, transforms the term to its quantified
conjunctive normal form, and writes a pointer to this result to its own output port. cnf does
not do the work by itself but behaves as a manager that delegates the work to others. The
workers coordinated by cnf are:

– split reads from its input port a pointer to a term in prenex normal form (this is the
same pointer read by cnf from its input port), splits the term into a quantifier-free part
and a list of quantifiers, the pointers to which are written to two user-defined output
port qfprop (Quantifier-Free PROPosition) and qvarlist (Quantifier VARiable LIST),
respectively.

– cnfhh reads a pointer to a quantifier-free proposition, transforms the term to an exis-
tential conjunctive normal form, and writes a pointer to this result to its own output
port.

– join reads from a user defined input port named qvarlist, a pointer to a term rep-
resenting a list of free quantifiers, reads from another user defined input port named
ecnf1 (Existential Conjunctive Normal Form 1) a pointer to a term representing an

4. The Coordination in the Proposition Solver 8

join

split

cnfhh

cnf

main

cnf hhprenex uqe

prrd

Figure 2: The network topology of the proposition solver

existential conjunctive normal form, joins these terms together to obtain a term repre-
senting a quantified conjunctive normal form, and writes a pointer to this result to its
own output port.

• uqe reads a pointer to a term in quantified conjunctive normal form from its input port,
transforms it to its existential conjunctive normal form, and writes a pointer to this result
to it to its own output port.

• hh reads a pointer to a term in existential conjunctive normal form from its input port,
transforms it to a simpler existential conjunctive normal form, and writes a pointer to this
result to its own output port.

• pr reads a pointer to a term in existential conjunctive normal form, evaluates the value of
this term and prints its value, which can be “true”, “false” or “I don’t know” to the screen.

The MANIFOLD source code of the proposition solver is very simple and is shown below.

1 //pragma include "hugo4.ato.h"
2
3 #include "MBL.h"
4
5 #include "rdid.h"
6
7 manner init_tb atomic.
8
9 manifold RD(port in filename) atomic {internal.}.

10
11 manifold PRENEX() atomic {internal.}.
12
13 manifold SPLIT()
14 port out qfprop.
15 port out qvarlist.

4. The Coordination in the Proposition Solver 9

16 atomic {internal.}.
17
18 manifold CNFHH() atomic {internal.}.
19
20 manifold JOIN()
21 port in qvarlist.
22 port in ecnf1.
23 atomic {internal.}.
24
25 manifold UQE() atomic {internal.}.
26
27 manifold HH() atomic {internal.}.
28
29 manifold PR() atomic {internal.}.
30
31 /***/
32 manifold CNF()
33 {
34 process split is SPLIT.
35 process cnfhh is CNFHH.
36 process join is JOIN.
37 begin:
38 (
39 MES("begin"),
40 activate(split, cnfhh, join),
41 input -> split,
42 split.qfprop -> cnfhh -> join.ecnf1,
43 split.qvarlist -> join.qvarlist,
44 join -> output
45).
46
47 end: MES("end").
48
49 }
50 /***/
51 manifold Main(process arg)
52 {
53 process rd is RD(tuplepick(arg, 2)).
54 process prenex is PRENEX.
55 process cnf is CNF.
56 process uqe is UQE.
57 process hh is HH.
58 process pr is PR.
59
60 begin:
61 (
62 MES("begin"),
63 init_tb,
64 activate(rd, prenex, cnf, uqe, hh, pr),
65 rd -> prenex -> cnf -> uqe -> hh -> pr
66).
67
68 end: MES("end").
69 }

The source code is in principle no more than the declarations of the different software components
with their ports and the specification of the connections among them at each of the hierarchic
layers. We now walk through the code.

With the pragma on line 1 we can verify the prototyping of the manifolds written in C with
the declarations given for them in manifold source files. A mismatch will result in a syntax error
issued by the C compiler.

On lines 3 and 5 we include some .h files for predefined processes and subprograms used in this
source code.

Line 7 is the declaration for a subprogram written in C (denoted by the keyword atomic). It is
used for initializing the term library of ToolBus [BK96].

Hereafter we see the declarations of eight manifolds implemented as atomic processes written
in C (lines 9, 11, 13, 18, 20, 25, 27, and 29) and two manifolds written in the manifold language
(lines 32 and 51). The Main manifold (line 51) and the RD (line 9) are the only manifolds in the
source file that have arguments. The argument of Main is used to pass the filename, containing
the proposition(s) we want to verify, from the Unix command line into the MANIFOLD world.
The way we do that in MANIFOLD is analogous to the way we do such things in ANSI C. The
argument in the RD manifold is meant to pass a filename to the underlying C function so that it
can open this file and read a proposition from it.

All the manifolds in this source code have only the standard set of ports (input, output and
error) except the SPLIT and JOIN manifolds. These two, as explained earlier, have additional
user-defined ports. SPLIT has two additional output ports named qfprop and qvarlist (lines 14
and 15) and JOIN has two additional input ports named qvarlist and ecnf1 (lines 21 and 22).

The CNF manifold written in the MANIFOLD language is a manager that coordinates the three

4. The Coordination in the Proposition Solver 10

worker manifolds SPLIT, CNFHH, and JOIN. The workers are created in the global declaration part
of CNF (lines 34-36). In the begin state of CNF we print a message to the screen to indicate that
we are in the begin state (line 39), we activate process instances (line 40), and set up the desired
connections (lines 41-44) as shown in figure 2. In MANIFOLD we use the notation p.i to refer to
port i of the process instance p. Furthermore, p → q means the same as p.output→ q.input and
to refer to the standard ports of a process instance from inside the process itself, we use the words
input, output, and error. Thus line 41 means: connect the standard input port of (in instance
of) CNF to (the input port of) split and line 42 means connect the qfprop output port of split
to (the standard input port of) cnfhh and (the standard output port of) cnfhh to the ecnf1 input
port of join.

We also have added an end state in the CNF manifold (line 47). We switch to this state when
all the connections between the different process instances in the begin state are broken (each at
least on one side).

Note that CNF is a real manager. He delegates his input to others (line 41: input ->) and
presents their output as coming from himself (line 44: -> output).

In the Main manifold, we create in its declaration part the process instances we need and we also
have a begin and an end state. The actual argument used in the creation of process rd (line 53) is
a filename that contains the proposition to be verified by the proposition solver. This filename is
picked out (with the predefined process tuplepick) as the second argument in a list of arguments
that has been typed in on the Unix command line. This list of arguments is know in Main via the
argument arg (line 51).

In the end state, Main prints a message (line 62), initializes the term library (line 63), activates
the process instances (line 64) and sets up the connections among them as shown in figure 2.

A call to a makefile creates the executable for this MANIFOLD application which is named hugo.
When we type in hugo x on the command line, where x is a filename that contains a proposition

then the proposition solver calculates its truth value.
This coordination protocol is all that is needed for this application and the application runs fine

as long as we wait and feed it a new proposition only after the previous one has been handled. As
soon as we allow more than one term in the pipeline, the proposition solver crashes with a fatal
signal caused by a bad memory reference. Indeed, there is nothing wrong with our protocol, nor
with the solver components, per se. The problem is in the term library used in this application.
This term library is a collection of string manipulating functions that was originally developed
as a component of ToolBus [BK96]. These functions (and ToolBus) were developed without any
regards for threads, i.e., they were not implemented in a “thread friendly” style. Essentially, to be
“thread friendly”, functions must be reentrant and generally avoid references to global variables,
except through fine-grain locks. Such functions can be used in multi-threaded applications, and
especially on proper multi-processor platforms, this can significantly improve performance. There
are two alternatives for rectifying this problem: (1) make the functions reentrant and introduce
the necessary fine-grain locking to make the term library thread-safe; and (2) introduce a coarse-
grain lock to regulate the access to the entire library. Both alternatives are semantically correct
and avoid the crash. The first involves a good deal of rewriting of the library functions. The
second is easier to implement, but because the library is heavily used in this application, it inhibits
performance improvements (on multiprocessor platforms) by sequentializing term manipulation at
the overly-coarse level of library access. Because using the ToolBus term library in this application
suffers from some additional serious drawbacks (many redundant format conversions, inefficient
memory utilization, slow garbage collection, and problems with handling big terms) it was decided
to replace the library with a new one. However, we use the second alternative here as interim
solution, and focus on other coordination issues in this application. This leads to next issue.

The UQE transformation performs a computation intensive simplification on a list of terms. In
principle, we can cut this list into a number of pieces and perform the simplification transformation
on each of the sub-lists. When we take care that the transformations on the sub-lists are carried
out in separate worker processes, then they can run in parallel, as separate threads executing on
different processors on multi-processor hardware. In the next section, we describe this restructuring
of the UQE transformation using a master/worker protocol implemented in MANIFOLD.

5. Restructuring the UQE Transformation 11

5. Restructuring the UQE Transformation

The introduction of the master/worker protocol in the UQE transformation adds another hierar-
chic layer to the application but leaves, as we can see in figure 3, the previous layers intact. New

join

split

cnfhh

cnf

worker
[0]

worker
[1]

worker
[2]

uqe

m-uqe

worker
[n]....

cnf

main

hhprenex

pr

m_uqe

rd

Figure 3: The new network topology of the proposition solver

in this figure are the manifold M UQE, in which the master/worker protocol is implemented, and
another manifold named WORKER, which performs a simplification transformation on a sub-list. We
show the MANIFOLD program for this new structure below.

1 //pragma include "hugo6.ato.h"
2
3 #include "MBL.h"
4
5 #include "rdid.h"
6
7 #define NPART 5
8
9 #define IDLE terminated(void)

10
11 manner init_tb atomic.
12
13 manifold RD(port in filename) atomic {internal.}.
14
15 manifold PRENEX() atomic {internal.}.
16
17 manifold SPLIT()
18 port out qfprop.
19 port out qvarlist.
20 atomic {internal.}.
21
22 manifold CNFHH() atomic {internal.}.
23
24 manifold JOIN()
25 port in qvarlist.
26 port in ecnf1.
27 atomic {internal.}.
28
29 event divide, mission_accomplished, goon_uqe.
30
31 manifold UQE(port in npart)

5. Restructuring the UQE Transformation 12

32 port out workers.
33 atomic {internal. event divide, mission_accomplished, goon_uqe.}.
34
35 manifold WORKER(event ready) atomic {internal.}.
36
37 manifold HH() atomic {internal.}.
38
39 manifold PR() atomic {internal.}.
40
41 /***/
42 manifold M_UQE()
43 {
44 event wait, ready.
45
46 process uqe is UQE(NPART).
47
48 priority wait > ready.
49
50 auto process i is variable.
51
52 auto process count is variable(0).
53
54 auto process worker is variable[NPART].
55
56 begin:
57 for i = 0 while i < NPART step i = i + 1 do
58 worker.input[i] = &WORKER(ready);
59 (
60 MES("begin"), activate(uqe), getunit(input) -> uqe, IDLE
61).
62
63 divide:
64 {
65 save *.
66 begin:
67 MES("divide");
68 for i = 0 while i < NPART step i = i + 1 do
69 (
70 getunit(uqe.workers) -> $worker.output[i],
71 MES("job to worker", i)
72);
73 post(wait).
74 }.
75
76 wait:
77 (MES("wait"), preemptall, IDLE).
78
79 ready.*:
80 (MES("ready"), count = count + 1);
81 EMES(count);
82 if (count == NPART) then (
83 count = 0, raise(goon_uqe),
84 post(wait),
85 MES("goon_uqe has been raised and wait has been posted")
86) else (
87 post(wait),
88 MES("wait has been posted")
89).
90
91 mission_accomplished:
92 MES("mission_accomplished");
93 for i = 0 while i < NPART step i = i + 1 do
94 deactivate($worker.output[i]).
95
96 end:
97 (MES("end"), output = uqe.output).
98
99 }

100
101 /***/
102 manifold CNF()
103 {
104 process split is SPLIT.
105 process cnfhh is CNFHH.
106 process join is JOIN.
107 begin:
108 (
109 MES("begin"),
110 activate(split, cnfhh, join),
111 input -> split,
112 split.qfprop -> cnfhh -> join.ecnf1,
113 split.qvarlist -> join.qvarlist,
114 join -> output
115).
116
117 end: MES("end").
118
119 }
120 /***/
121 manifold Main(process arg)
122 {
123 process rd is RD(tuplepick(arg, 2)).
124 process prenex is PRENEX.
125 process cnf is CNF.
126 process m_uqe is M_UQE.
127 process hh is HH.

5. Restructuring the UQE Transformation 13

128 process pr is PR.
129
130 begin:
131 (
132 MES("begin"),
133 init_tb,
134 activate(rd, prenex, cnf, m_uqe, hh, pr),
135 rd -> prenex -> cnf -> m_uqe -> hh -> pr
136).
137
138 end: MES("end").
139 }

The UQE manifold is slightly different than its previous version presented earlier. It now has a
parameter (line 31) that indicates in how many pieces the list is be cut, it has a user-defined
port named workers (line 32) and it can raise and receive events (line 33). On the other hand,
the structure of the manifolds CNF (line 102) and Main (line 121) has not changed except that
now M UQE is used in the pipeline of Main (line 134). Below, we give separate descriptions of the
new manifolds. These descriptions also explain how they cooperate with each other according a
master/worker protocol.

The new UQE manifold is still implemented in C (line 31) but it now behaves as follows:

1. Read a term pointer from the input port.

2. Do some computational work, but when a list of terms must be simplified, don’t do it
yourself. Instead raise the event divide (this is done by an AP Raise call in the C code of
UQE) to signal a coordinator (this will be the manifold M UQE) to delegate some work (we see
later how this event will be handled by M UQE).

3. Divide the list of terms in NPART pieces (which is set to 5 on line 7) and write the pointers
to the sub-lists to the user-defined output port workers (line 32).

4. Wait until the delegated work is done. This will be noticed by receiving the goon uqe event
in the event memory, which is raised by the coordinator M UQE (line 83).

5. Merge the sub-lists of terms into one big list.

6. Repeat steps 2, 3, 4, and 5 as many times as needed. When UQE is done with all its work,
it raises the event mission accomplished (by an AP Raise call in the C code) to signal the
coordinator M UQE that it is done.

The WORKER manifold is implemented in C (line 35) and it behaves as follows:

1. Read a pointer to a sub-list of terms from the input port.

2. Perform the simplification on the sub-list.

3. Raise (by a call to AP Raise in the C code) the event received as a parameter (line 35) when
the simplification transformation on the sub-list is done.

4. Repeat steps 1, 2, and 3 until deactivated by M UQE (line 94).

The M UQE manifold is implemented in the MANIFOLD language (line 42) and behaves as follows.
In its begin state, NPART workers are created (line 58) whose references (denoted by &) are

stored in an array named worker (line 54). Further, we activate in this state the already created
uqe (respectively on lines 60 and 46) and take out a unit from the input port, representing a term
pointer so that uqe can consume it (line 60). We remark here that the only reason why we store
the process references in an array is to use it in a “for loop” and other syntactic constructs of the
MANIFOLD language. With the dereference operator (denoted by $) we can always make a handle
back to the process instance as shown on line 70.

Sooner or later, UQE raises the divide event (see step 2 in the description of the UQE manifold)
which causes a state switch to the divide state (line 63). In that state, the pointers to the sub-lists
are transported to the workers (line 70) so that they can do their simplification transformations

6. Some Experiments 14

in parallel. When the workers are ready, they raise the ready event (see step 3 in the WORKER
manifold). These events are counted in the ready state (line 79). When there are NPART ready
events counted (line 82) all workers are done simplifying their sub-lists. In this way, we create a
synchronization point in the application. After this rendez-vous of workers, the event goon uqe is
raised (line 83) to signal UQE to merge (in shared memory) the sub-lists into one big list (step 5
in the UQE manifold). Thereafter, the wait event is posted (line 84) which causes a state switch
to that state (line 76). There, two things can happen: either another divide event is received,
in which case the sequence of actions just described starts again, or the mission accomplished
event is received, in which case we deactivate the workers (line 94).

Note that in the M UQE module (in principle this counts for every manager module) we only
discuss coordination issues. In this sense, it forms an isolated piece of code that we can consider
as the realization of a cooperation model (in this case a master/worker model). Therefore, it is
irrelevant what it coordinates. Our M UQE manifold can just as happily orchestrate the cooperation
of any pair of processes that have the same input/output and event behavior as UQE and WORKER
do, regardless of what computation they perform (see also [ABBE96] for this phenomena).

6. Some Experiments

In this section we describe a family of test assertions and show how we transform them into a
family of closed quantified propositions. We also give the general format of these propositions,
verify them, and give some performance results.

6.1 The Test Assertion
To verify the implementation of the proposition solver we use the following family of assertions
which are parameterized by n.

Each bit string of length n is a standard binary representation of an integer between 0 and
2n − 1.

The formal definition of this assertions is as follows:

∀~b ∈ Bn. (∃k ∈ N : 0 ≤ k < 2n). ~b = ~rn(k)

where Bn is the set of possible bit strings of length n and ~rn : N 7→ Bn is the standard represen-
tation of the integers on a bit string of length n.
We can transform each of these assertions to a closed quantified proposition. For convenience we
take n = 2. The predicate 0 ≤ k < 22 is equivalent to the logical formula

k = 0 ∨ k = 1 ∨ k = 2 ∨ k = 3.

Let [x0x1] be a bit string of length 2. The transformation of this formula to the bit string format
is now as follows:

[x1x0] = [00] ∨ [x1x0] = [01] ∨ [x1x0] = [10] ∨ [x1x0] = [11].

If we work it out, this is equal to

x1 = 0 ∧ x0 = 0 ∨ x1 = 0 ∧ x0 = 1 ∨ x1 = 1 ∧ x0 = 0 ∨ x1 = 1 ∧ x0 = 1.

The assertion (n=2) is that for all [x1 x0] ∈ { [00], [01], [10], [11] } this formula must be equal to
true. The last step is the transformation of this assertion to a closed quantified proposition. Let
1 represent true and 0 represent false, then

the formula “x1 = 1” becomes “x1 = true” which is the same as the proposition “x1”, and

the formula “x1 = 0” becomes “x1 = false” which is the same as the proposition “¬x1”.

With similar results for x0 instead of x1, the assertion (n=2) becomes the following closed quan-
tified proposition:

∀x1.∀x0. (¬x1 ∧ ¬x0 ∨ x1 ∧ ¬x0 ∨ ¬x1 ∧ x0 ∨ x1 ∧ x0).

7. Conclusions 15

6.2 The General Format of the Test Assertions
The general format of the test assertions φ(n) is as follows:

∀~x.
2n−1∨
i=0

n−1∧
j=0

¬ij ~x

where ∀~x stands for the row
∀xn−1 . . .∀x0

and
¬ij ~x = xj if bitj(i) = 1

¬xj if bitj(i) = 0.

bitj(i) returns the value of the jth bit of the binary representation of i on a bit string of length n.∨
and

∧
are, respectively, the generalized ∨ and ∧ operators. It is evident that the result of the

evaluation of φ(n) must be true.

6.3 Verification and Performance Results
We have verified the family of assertions for n = 1 up to 10. They all evaluate to “true”. We
did these experiments on SGI 16 processor machine of which only 5 processors were available for
general use (that is why we set NPART to 5, line 7). The results of our performance measurements
for the two cases (i.e., with and without the master/worker protocol) are summarized in table 1.

n approach I approach II
1 4.926 7.059
2 3.729 6.732
3 3.969 6.536
4 3.865 7.364
5 4.397 10.419
6 5.453 11.993
7 8.738 17.546
8 22.227 40.578
9 81.109 124.262
10 372.855 465.731

Table 1: Elapsed time (in seconds) for the 10 assertions for the two approaches (approaches I and
II are, the pipeline model without and with the master/worker protocol respectively).

Note that the approach with the master/worker protocol does not improve the performance of
the application. This is no surprise when we recall that we only added a hierarchic coordination
layer to the application without the possibility to exploit its performance advantage through
parallelism. Due to the coarse-grain lock for the thread-unsafe term library, in fact nothing is done
in parallel. With a new thread-safe library we expect other results. For instance, we remark here
that MANIFOLD has been successfully used to implement a parallel version of a semi-coarsened
multi-grid Euler solver algorithm, using a similar master/worker protocol as the one described
here. In that case, all programs were thread-safe, and the performance was improved from almost
9 to over 2 hours on a 4 processor machine [EK98].

7. Conclusions

Our experiment using MANIFOLD to coordinate the interprocess communication in a proposition
solver indicates that this coordination language is well suited for this kind of tasks. The highly
modular structure of both MANIFOLD programs in our case study and the ability to use the
separately developed functional units is remarkable.

7. Conclusions 16

The unique property of MANIFOLD that enables such high degree of modularity is inherited from
its underlying IWIM (Idealized Worker Idealized Manager) model in which communication is set
up from the outside. The core relevant concept in the IWIM model of communication is isolation
of computation responsibilities from communication and coordination concerns, into separate pure
computation modules (as the functional units in the proposition solver written in C) and pure
coordination modules (as Main, CNF and M UQE).

The modularity of MANIFOLD also offers the possibility to introduce concurrency step by step.
We can therefore proceed as follows. We initially plug a block of code as a monolithic computing
process into a concurrent structure (as we did with UQE) to obtain a running parallel/distributed
application. As more experience is gained through running the new application, computation
bottlenecks may be identified (UQE). This may lead to replacing some such monolithic blocks of
code with more MANIFOLD modules (M UQE) that coordinate the activity of smaller blocks of
computation code (WORKER), in a new concurrent sub-structure.

Another important advantage of MANIFOLD is that it makes no distinction (from the language
point of view) between distributed and parallel environments: the same MANIFOLD code can run
in both as we show in our “toy” application in section 2.

All these features make MANIFOLD a suitable framework for construction of modular software
on parallel and/or distributed platforms.

Acknowledgments
We thank Farhad Arbab for his suggestions to improve this paper and Freek Burger for his pro-
gramming advice.

17

References

[ABBE96] F. Arbab, C.L. Blom, F.J. Burger, and C.T.H. Everaars. Reusable coordinator mod-
ules for massively concurrent applications. In L. Bouge, P. Fraigniaud, A. Mignotte,
and Y. Robert, editors, Proceedings of Euro-Par ’96, volume 1123 of Lecture Notes in
Computer Science, pages 664–677. Springer-Verlag, August 1996.

[Arb95] F. Arbab. Coordination of massively concurrent activities. Technical Re-
port CS–R9565, Centrum voor Wiskunde en Informatica, Kruislaan 413,
1098 SJ Amsterdam, The Netherlands, November 1995. Available on-line
http://www.cwi.nl/ftp/CWIreports/IS/CS-R9565.ps.Z.

[Arb96] F. Arbab. The IWIM model for coordination of concurrent activities. In Paolo Cian-
carini and Chris Hankin, editors, Coordination Languages and Models, volume 1061 of
Lecture Notes in Computer Science, pages 34–56. Springer-Verlag, April 1996.

[Arb97] F. Arbab. The influence of coordination on program structure. In Proceedings of the
30th Hawaii International Conference on System Sciences. IEEE, January 1997.

[BK96] Jan Aldert Bergstra and Paul Klint. The ToolBus coordination architecture. In P. Cian-
carani and C. Hankin, editors, Coordination Language and Models, number 1061 in
LNCS. Springer Verlag, 1996.

[EK98] C.T.H. Everaars and B. Koren. Using coordination to parallelize sparse-grid methods
for 3D CFD problems. Parallel Computing, 24(7):1081–1106, July 1998. special issue
on Coordination languages for parallel programming.

[GC92] D. Gelernter and N. Carriero. Coordination languages and their significance. Commu-
nication of the ACM, 35(2):97–107, February 1992.

[GKvV95] J.F. Groote, J.W.C. Koorn, and S.F.M van Vlijmen. The safety guaranteeing system
at station hoorn-kersenboogerd (extended abstract). In Proc. 10th Annual Conference
on Computer Assurance (COMPASS ’95), pages 57–68, 1995.

[Gro97] J.F. Groote. The propositional formula checker HeerHugo. Technical report, CWI,
1997. Unpublished note.

[LW98] B. Lisser and J.v. Wamel. Specification of components in a proposition solver. In
J.v. Wamel J.F. Groote, B. Luttik, editor, Proc. 3th International Conference on Formal
Methods for Industrial Systems, pages 271–298. CWI, 1998.

[NBF96] Bradford Nicols, Dick Buttlar, and Jacqueline Proulx Farrell. Pthreads Programming.
O’Reilly & Associates, Inc., Cebastopol, CA, 1996.

References 18

[NS93] A. Nerode and R. Shore. Logic for Applications. Texts and Monographs in Computer
Science. Springer-Verlag-Hall, 1993.

