
Archive ouverte UNIGE
https://archive-ouverte.unige.ch

Chapitre de livre 1999 Published version Open Access

This is the published version of the publication, made available in accordance with the publisher’s policy.

A Coordination Model for Agents based on Secure Spaces

Bryce, Ciaran; Oriol, Manuel; Vitek, Jan

How to cite

BRYCE, Ciaran, ORIOL, Manuel, VITEK, Jan. A Coordination Model for Agents based on Secure

Spaces. In: Trusted objects = Objets de confiance. Genève : Centre universitaire d’informatique, 1999.

p. 199–215.

This publication URL: https://archive-ouverte.unige.ch//unige:155914

© The author(s). This work is licensed under a Creative Commons Attribution (CC BY)

https://creativecommons.org/licenses/by/4.0

https://archive-ouverte.unige.ch
https://archive-ouverte.unige.ch//unige:155914
https://creativecommons.org/licenses/by/4.0

A Coordination Model for Agents
based on Secure Spaces

Ciaran Bryce
Manuel Oriol

Jan Vitek

Abstract
Shared space coordination models such as Linda are ill-suited for structuring applications
composed of erroneous or insecure components. This paper presents the Secure Object
Space model. In this model, a data element can be locked with a key and is only visible to
a process that presents a matching key to unlock the element. We give a precise semantics
for Secure Object Space operations and discuss an implementation in JAVA for a mobile
agent system. An implementation of the semantics that employs encryption is also outlined
for use in untrusted environments.

1 Introduction

Coordination languages based on shared data spaces have been around for over fifteen years.
Researchers have often advocated their use for structuring distributed and concurrent systems
because the mode of communication that they provide, sometimes called generative communi-
cation, is associative and uncoupled. Communication is associative in that processes do not
explicitly name their communication partners, but rather specify the kinds of messages that they
are interested in reading. Communication is uncoupled in that no links are established between
communicating partners; a message placed in the space may be read at any time and by any
process .interested in it. These properties make it straightforward to code resource discovery
protocols that match up clients with servers based on their respective offers [27], to program in
an event-driven style [23] and to dynamically configure running systems [17].

Our goal is to use shared data spaces to coordinate applications made up of potentially
erroneous and malicious components. In particular, we want to use shared data spaces as the
main communication model in a mobile agent system called JAVASEAL [29]. Mobile agents are
programs that carry out distributed computations by communicating locally with resources on a
site, and migrating to a remote site to gain access to resources there [24, 12, 30, 5]. A key issue
for agent programming is how to structure and regulate communication between agents. Our
experience with JAVASEAL has shown that a standard message passing model is cumbersome.
An agent that arrives in a foreign environment might not know the naming conventions of
that environment; it is more convenient for that agent to specify the attributes of the resources
that it needs rather than the actual names - hence the utility of associative communication.
Further, since agents might migrate in the midst of a protocol, communication must be strongly

•To appear in Proceedings of the 3rd Int. Conference on Coordination Models and Languages (COORDI-
NATION'99), Amsterdam, Netherlands, April 1999, Springer-Verlag, LNCS 1594.

200 Secure Spaces

uncoupled. We identified three design goals for agent communication in JAVASEAL which we
use for the model presented in this paper:

• Efficiency: Frequent communication patterns require low overhead.

• Controlled Communication: A message exchanged between agents is subject to a se-
curity policy that verifies whether the message is allowed.

• Privacy: The secrecy of messages sent between agents must be preserved.

These requirements highlight shortcomings of the shared space model. The model works well
when all processes with access to the shared space have been designed carefully and are well-
behaved. Unfortunately, mistakes are easily made - the simplest example being reading an
entry which is part of another protocol [27, 18] - and nothing prevents malicious processes
from spying or even corrupting the data exchanged over the common space. Moreover, denial
of service attacks can easily be mounted by fl.ooding the spai;t: with requests.

In this paper we present a coordination model, called the Secure Object Space model
(SECOS), that meets the above mentioned requirements. In a SEcOS, entries in the shared
space are locked using keys. These keys are used to query the data space and to hide the con-
tents of the data space entries: that is, the contents of the locked object remain hidden until
the correct key is presented. In Section 3, we give a precise semantics to SECOS operations in
the context of a small programming language derived from the 7r calculus. Locking is enforced
by dynamic typing. In Section 4, we give an overview of the implementation of SEcOS in
JAVA, and cite an example of its use within the JAVASEAL agent platform. Finally, since it is
not possible to rely on typing to protect space entries in untrusted or open environments, we
describe a cryptographic implementation of SEcOS in Section 5.

2 Shared Spaces

Linda is probably the most widely known shared space coordination model [13]. The model
is based on the concept of generative communication; two processes can communicate if one
process generates a message tuple, posts it to a Linda tuple space, from where it can be read
by the second process. The basic model consists of three primitive operations: out to write a
tuple, in to perform a destructive read, and read to perform a non-destructive read.

The Linda input operations are associative since the reader process need only provide a
partial description of the value to be retrieved. It can specify some of the tuple fields and leave
others blank. Using our syntax, in((?, 3), x) is a Linda operation that retrieves a two element
tuple with integer 3 in the second position, and any value in the first position(? represents the
wild card). In Linda, a template specifies the number of fields a matching tuple should have as
well as the value of each field when a wild card is not used.

While Linda is adequate for coordinating closed parallel systems, coordinating potentially
erroneous or malicious components is more challenging. Consider the following two examples:

C Bryce, M Oriol and J. Vitek 201

1. Secure logical channels: In a client-server protocol, the reply channel used to send the
result of a query to the client must be protected from interference. In a Linda implemen-
tation there is no way to guarantee that a tuple containing a server's reply will not be
accidentally or willfully read by another process.

2. Secure garbage collection: In a long-lived agent environment, migration is frequent and
tuple spaces can be littered with "garbage" tuples. These are tuples that are no longer
needed, or worse, tuples that have been output as part of a denial of service attack. Thus
a garbage collector is needed. Since there can be no clear cut criteria for deciding which
tuples are garbage, the garbage collector will rely on heuristics coded at the user-level.
Privacy of data being one of the requirements for agent communication, a secure garbage
collector is defined as a plain process that is trusted to extract tuples from the space
according to some policy, but not to access the contents of the extracted tuples. Linda
does not distinguish the removal of a tuple from the reading of its fields.

Multiple data spaces have been used to address the access control problem [7, 13, 15, 26] by
fulfilling the role of protection domains. In this approach, agents are granted access to a space
if they are trusted to manipulate the data in that space and to interact with other agents that have
access to the same space. The problem with this approach is that it supposes that each domain
is independent. whereas some resources must be visible in several domains. Managing multiple
spaces where agents may appear in several spaces is complex. Moreover, this approach does
not protect the values stored in the data space, as is required for secure garbage collection. Our
model uses multiple data spaces for convenience, but they do not represent an essential part of
our proposal.

Another important issue in an agent environment is the treatment of distribution. We have
not considered distributed shared spaces on the grounds of efficiency and scalability. Agent
systems are meant to be distributed over the IntemeL The size and connectivity involved in large
scale networks render an efficient implementation of a shared space difficult, if not impossible.
From the viewpoint of security, distributed spaces require a trusted implementation (on all
nodes) which may be difficult. We therefore prefer to rely on mobile agents for distributed
interaction and to keep shared spaces for local, fast and secure communication.

3 Secure Object Spaces

Secure Object Spaces (SECOS) extends Linda in three respects. Firstly, an SEcOS system
consists of multiple, disjoint, shared object spaces. Secondly, SEcOS entries are sequences
of locked values. Finally, matching is performed on locked entries. We will introduce these
features by examples before giving their semantics.

A SEcOS entry is called an object. It consists of an unordered sequence of locked fields
- pairs of values and labels. Labels will be referred to as locks or keys. The following is an
example of a process that outputs an objects with two fields; we use SEcOS syntax.

out((a: "Tom's number is" , be: "233 349"} }@main (1)

202 Secure Spaces

Assuming that there is a SEcOS space named main, the tean (1) evaluates by depositing the
object (a: "Tom's number is" , be: "233 349") in main. We consider this to be an object com-
posed of values ''Tom's number is" and 233 349 locked under the keys a and be respectively.
Keys serve two purposes in SECOS. First, they filter entries from a SECOS space. When per-
forming an input operation, the template m,ust specify th.e keys of fields on which associative
matching is to be effected. A request for an object from the space main is written

in((a: ''Tom's number is", cb: "233 349"),x)@main (2)

The effect of evaluating this term is to retrieve an object matching template (a : "Tom's number
is" , cb : "233 349"), and to bind x to the result. The expression x.a denotes the value ''Tom's
number is" and x.cb denotes 233 349.

The second purpose of keys is to provide security. A key for a locked object must be
presented in order for a match on that field to succeed. There are two types of keys in SEcOS:
symmetric keys and asymmetric keys. A key is symmetric if it both locks and also unlocks an
object; in the example above, the key a is symmetric. A key is asymmetric if it belongs to an
asymmetric key pair, that is one of the keys of the pair is used to lock a field, and the other key
is used to unlock it. The keys (be, cb) form an asymmetric key pair: be is used to lock 233 349,
and only Cb can unlock it.

Keys modify the notion of matching. Instead of the positional matching of Linda, SEcOS
relies on key directed matching. We say that a template object matches a target if for every field
in the template, there is a matching field in the target. Two fields match if (I) they have been
locked with compatible keys, and (2) if their values are equal or ifthe template's value is"?".
Key compatibility is defined as follows. Two symmetric keys are compatible if they are equal
(e.g., a is compatible with a); two asymmetric keys are compatible if they belong to the same
pair (ab is compatible with ba).

The definition of matching we have just given differs from Linda in that matching does not
require the number of fields of the template and target to be equal. In SECOS, a shorter object
can match a longer object. To illustrate thls, the following table lists all of the templates that
match the object ofline (1).

out I (a: "Tom's number is" , be: "233 349")
a : - iom·s numoer 1s.. , cb :

(cb: "233 349", a: "Tom's number is"),
in I (a: "Tom's number is", cb: ?), (cb: "233 349" , a:?),

(a:? , cb: "233 349"), (cb:? , a: "Tom's number is"), (a:? , cb: ?),
(a: "Tom's number is"), (cb: "233 349"), (a:?), (cb: ?), ()

An implication of this approach is that an empty template, (), matches everything. A simple-
minded garbage collector whose goal is to match with any element can be written as follows:

! in((),x)@main (3)

The repetition operator, ! , indicates that the command will be executed in a loop. Line (3)
will repeatedly use the empty template to retrieve an arbitrary object fro.m the space main.

C. Bryce, M Oriol and J. Vitek 203

Nevertheless, an important property of the model is that matching of objects happens without
the identity of any entry being revealed. The garbage collector must present a key to select a
value locked with the corresponding key. This shows that it is possible to implement a user-
level collector that cannot peek in other people's garbage; this was one of the requirements
outlined in Section 2.

Another feature of the model is that objects can be extended without revealing their con-
tents.

(a: "22") E9 b: "High" yields (a: "22", b: "High")

An implication of extension on a template, denoted by e, is that the template becomes more
specific, and can thus match wjth fewer objects. This technique can be used to implement
a security policy on data. For instance, a security policy may designate a process as being
low-level or high-level. All In and out requests from a process have the locked field (b:level)
appended to th.e template, where level is "high" or "low". This means that a process can only
match with objects of the same security group.

3.1 The SECOS programming language

The remainder of this section gives a semantics for the SECOS model. The SEcOS language is
a process calculus based on the asynchronous 11"-calcul.us (14, 4, 3) which is known to be very
expressive, supporting many programming idioms and Turing-complete. To 11 we add a notion
of objects and change the communication rules to use object spaces instead of channels.

Although we are interested in coordinating mobile agents, the language presented here does
not allow the exchange of code in object spaces. A treatment of mobility can be found in
[30, 6). The calculi could be merged at the cost of some complexity, but we prefer to leave this
as a topic of future investigation. The syntax of the calculus is now given.

Names and Labels We take an infinite setN of names ranged over by meta-variables a, b, c, .. .
(except e, k, t , 11). Object spaces and fields are named; names play the role of variables, as in the
71"-calculus. The infinite set .C of labels consists of names (symmetric keys), and pairs ofnames
(asymmetric keys) written ab. Labels are ranged over by e. We define the co-label function ;
as ab = b0 and a = a.

Objects Basic values are taken from the set of labels extended with a distinguished void
element, ?, and are ranged over by v . The values communicated amongst processes are objecrs,
ranged over by t . An object {f1 : Vi, .. . i i : Vi) is a possibly empty sequence of fields where field
labels are distinct.

Expressions The syntactic category of expressions, ranged over by e, includes basic values,
objects, selection expressions and extension expressions.

204 Secure Spaces

e .. - v basic value
t object
e.e selection
eE9e:e extension

Processes The syntactic category of processes, ranged over by P, Q, follows the asynchronous
7r up to the communication primitives. The empty process 0 has no behavior; it is the inert pro-
cess. Processes can be composed in parallel, P I Q, and replicated ! P.

P ::= 0 inactivity
P I Q composition
! P replication

There are two communication primitives: in(e, a)@e. P for input and out(e)@e for output.
in(e1 , a)@e2 • P tries to extract an object matching the template e1 from the object space e2
and binds the result to variable a. The operation is blocking, P cannot execute until the match
succeeds. out(e1)@e2 outputs the object denoted by e1 into object space e2·

p ::=
in(e, a)@e. P
out(e)@e

input
output

The restriction operator (new a) introduces a fresh name. In our case we also view it as key
generation; (new a)P means that a is valid only in P.

p ::= ...
(newa)P new name creation

We use alpha conversions of bound names in expression evaluation. The free name function is
denoted fn(-).

3.2 Matching, Keys and Dynamic Typing

We now turn to object types and matching. The notion of matching is somewhat similar to
standard n.otions of subtyping. Asymmetric key pairs introduce an asymmetry that leads to
the definition of the type-matching relation (:9) which is related to subtyping, but which bas
significantly different mathematical properties.

Definition 1 (SECOS object type) An objectt = (i1: V1 . .. 'en: Vn) is of type T = {ii, ... 'en}.
written t E 7. The co-type ofT is T = {£1, ... , En}·

Intuitively, T type-matches T' if each field£ ofT' is compatible with a field f ofT. Note that
T' may have more fields than 7.

C. Bryce, M Oriol and J. Vitek 205

Definition 2 (type-matching) The match relation ::::1 relates types, T ::::1 T' ifffor all l E
T there exists l ET'.

We now define the matching procedure which takes a template object t and a candidate object
t' and detennines whether t1 meets the specification oft.

Definition 3 (matching) Lett E T and t' E T', we say that t matches t!, written t ~ t', iff (1)
T ::::1 T' and (2) if£: v Et andl: v' Et' implies either v =?or v = v'.

Thus matching can be implemented by a combination of a dynamic type checks and a sequence
of field value tests.

3.3 Reduction semantics

The semantic definition of the calculus is a reduction semantics, a one-step reduction relation
P -+ P', indicating that P reduces in one step of internal computation to P'. We first define
two auxiliary notions: structural congruence and evaluation. Structural congruence, =:, is the
least congruence on processes satisfying the axioms and rules given in Figure 1. The evaluation
relation(..!.) yields the result of field selection and object extension expressions. The reduction
relation -+ is the least relation on processes that satisfies the axioms and rules defined in Figure
1.

Reduction does not proceed for nonsensical terms. While these terms can be avoided by
the introduction of a type system, there is little benefit in the present discussion to add one.
Trailing inert processes are elided; thus in(t, x)@e. 0 becomes in(t, x)@e. The notation for
capture avoiding substitution is P{t;,:}. We write£: x E (£: x, £1 : x1 , ... , Rn: xn)·

3.4 Examples of SECOS Programming

We now give some programming examples; we assume the presence of additional data types
and meaningful space names.

Secure channels

One of the goals of SECOS is to support secure logical cbanne.ls between processes. Consider
an example in which Bob wants to speak with Alice and does not wi.sh anyone else to listen in on
their exchange, or even know that the exchange took place. We assume that Bob knows Alice's
public key Alice,.. The protocol is fairly standard: J3ob generates an object which contains his
public key (Bob11) locked under Alice's public key. When Alice retrieves the object, she may
select Bob's key. In this way, Alice can send private messages to Bob and vice versa.

Bob = out({Alice«: Boby, req : "let's talk"))@main I in({YBob: ?), z)@main. P
Alice = in((xAJice: ?, req: "let's talk"), z)@main. out((z.XAJice: "ok"))@main

When Bob and Alice are composed in parallel, the following reductions occur:

206 Secure Spaces

,-- --- ----- ----- --------,

Redu.ction

P-tQ
(new a)P -t (newa)Q

P-tQ
PIR-tQIR

P : P' P'-tQ' Q'=.Q
P-tQ

~ ! a e4 .j. a er .j. t e3 .j. t' t' 1'1. t
out(er)@~ I in(e3, b)@e4 . P -t P{%}

Evaluation

v .j. v
e.j.t' t=.t'

e.(. t

Structural congruence

PIQ=QIP
PIO=P
(PI Q) I R = p I (QI R)
!P=.Pj!P

t = (er: e2, ...) er .j. £ e2 .j. v e .j. f
t.e .j. v

(£: v, Er: Vi, ... ln: Vn) = (£1: Vi, ... ln: Vni £: x)
£<f.(£1 :V1, . .. £n:vn) =?

(£1: V1, ... ln: Vn) $ £: V =. (£ : V, £1: Vi, •· · ln: Vn)

(newa)(newb)P = (newb)(newa)P
a</. fn(P) =} (newa)(P IQ)= PI (newa)Q

Figure 1: SECOS reduction semantics.

out((Alice,,:Bob11 , req : "let'stalk")}@main I in((yBob:?) ,z)@main.P I
in((ZA!ice:?, req : "let's talk"), z)@main. out((z.ZA!ice : "ok"))@main

_ out((Alice,,: Bob11 , req: "let's talk"})@main I
in((:DA!lce : ?, req : "let's talk"), z)@main. out((z.XA!ice : "ok"))@main I
in((YBob: ?}, z)@main. P

-t out(((Allce,,: Bob11 , req: "let's talk").xAlice: "ok"))@main I
in((YBob : ?) , z)@main . P

-t P{(Bob,: "ok")/z}

Private Store

An agent may store private information in a SEcOS without having to be concerned about
this data being read by another agent. For instance, an agent that regularly visits a site may
leave partial results in a SECOS of the site; the matching semantics prevent the data from being
matched, accidentally or on purpose by other agents.

C Bryce, M Oriol and J. Vitek 207

The solution relies on creating a fresh symmetric key to lock an object. The process shown
below creates a new name a and deposits an object locked by a into space main.

(newa)(out((a:(name:"joe",cookie:l9990212184523)))@main IP) IQ

Since the name a is restricted, composition with an arbitrary Q is possible, and we know that
Q may not match on a. Thus if P = in((a: ?), x)@main. P' then a reduction can take place:

(new a)(out((a: (name: "joe", cookie: 19990212184523)))@main I
in({a:?), x)@main. P') I Q

-+ (new a) (P{(a: (name: "joe",cookie: 19990212184523))/,,}) I Q

Another way to obtain a similar result is to use a private SEcOS, that is, a space with a restricted
name.

Care must be taken when matching with the empty object,(), as it may retrieve any object
indiscriminately from a shared space.

Interposition

Untrusted agents should not be granted direct access to a shared space. The technique of inter-
position allows us to filter SECOS requests emitted by an agent without revealing the contents
of the objects being manipulated.

Interposition relies on mediating access to the main object space by filter processes that
implement an access control policy. We show one implementation of this idea below. A filter
is a process that reads requests deposited in a space called from-space and reroutes them to a
space called to-space. A client process deposits an object (i: t) in from-space to request that
the filter perform an input in to-space using t as a template. The result x of the input is then
deposited back into from-space as an object (r: x). An output can be requested by depositing
an object (o: t) into from-space. The filter process, parameterized over the two space names,
is defined as

Filter(from-space, to-space) =
! in((i: ?), x)@from-space.in(x.i, y)@to-space. out((r: y))@from-space
I ! in((o: ?), x)@from-space. out(x.o)@to-space

Thus, the following configuration will perform an output of object (a: 1) in space main,
and then an input of that object. Space but is used as the from-space.

out((o: (a: 1)))@but I out((i: (a:?)))@but I in((r: ?), x)@buf. P
I (new main)(Filter(buf, main))

This system will reduce to P{<r: (a: 1»/,J I (new main)(Filter(buf, main)).

Garbage collection

We can implement a time-based garbage coUector agent (GCA) as a process that mediates
access to an object space by interposition. Every output request is extended by the GCA with
some GC specific information before inserting the object into the space. For a time-based

208 Secure Spaces

garbage collector this information may simply be a time-to-live field. This is coded in the
calculus as

in((), x)@a. out(x $TTL: y)@b

assuming that a denotes a space in which insertion requests are placed and b denotes the actual
SECOS used for communication. Further, y is some time stamp. The evaluation rule decrees
that the extension expression x $ TTL: y returns an object with a TTL field, here TTL is a
shared key which we assume to be known only to the GCA.

When a time stamp ceases to be valid, the following process collects the garbage

! in((TTL: y), x)@b

using the rule that only objects stamped at time y are extracted.
This examples reiterates the main properties of SECOS. The GCA is a user level agent

which doc.-s not gain any knowledge about the content of the objects it manipulates. Secondly,
we may have several different GCAs with different policies mediating the sam.e space. Thirdly,
GC information is not visible in normal communication; processes may retrieve time stamped
objects as before but will not see the GC information.

Linda

It is straightforward to model Linda in SEcOS. Linda uses positional notation for matching
and does not have any equivalent to our locking primitives. A Linda tuple (x, y, z) is repre-
sented as an object (1: x, 2: y, 3: z) where 1, 2 and 3 are globally scoped names that stand for
positions in the obvious way. A Linda output operation out((x, y))@a is translated in SEcOS
to out((1: x, 2 : y))@a. A Linda in((?v, y), a)@. P is translated to in((1: ?, 2: y), u)@a. P'
where all occurrences of v in P are replaced by u. l.

4 SECOSinJAVA

We implemented SECOS over JAVA for the JAVASEAL agent system [29). As was the case with
the programming language proposal, typing is used to implement tuple locking. Encryption of
objects is not necessary for protection so long as the objects remain with the confines of the
JAVA virtual machine.

Implementing SECOS within an object-oriented language required careful treatment of two
points: inheritance and aliasing. Regarding inheritance, SECOS matching requires that the
value fields be compared. In an object-oriented language we may either use a default hard-wired
comparison operation or allow objects to customize this code by inheritance. The advantage of
inheritance is that the meaning of matc/1 can be adapted to the application. Th.e problem is that
extensions introduce security risks. An attacker could program a match method of an object
that loops, thereby blocking the thread of the SEcOS and subjecting the system to a denial of
service attack.

C. Bryce, M Oriol and J. Vitek 209

In Jada [9] the match can be extended. In JavaSpaces [23] an object written to the shared
space is first transformed to a serialized java.rmi.MarshalledObject; the equals method of
MarshalledObject is used for the match, which the user has no possibility of overwriting. In
SEcOS we also chose a fixed match.

Aliasing occurs when an object can be reached by following different sequences of refer-
ences. Aliasing is the key to dynamic information sharing, and is pretty much unavoidable as
JAVA uses references for parameter passing. The problem with aliasing is that it undermines
the role of the space as the sole communication mechanism between communicating agents.
Objects placed within an SEcOS must not introduce aliases between agents. We use JAVA
serialization - the JAVA deep object copy mechanism - in the implementation of the in and out
operations to satisfy this constraint.

4.1 Classes

We briefly look at the main classes needed to implement SEcOS; helper classes are not de-
scribed. We model SEcOS labels with three classes: an abstract Key class, and two final
subclasses AsymKey and Syml<ey which represent the asymmetric and symmetric keys re-
spectively.

The Key class defines the common attributes of keys. The match method compares two
key instances.

The class SymKey represents shared keys. Its match method expects its argument to be
this, i.e., the same key is used in actual encryption and decryption.

The class ASymKey represents asymmetric keys. This class contains the dual key that
is needed to match with it. Its constructor is protected since an asymmetric key is created
indirectly. A user first creates a KeyPair helper class, which creates the two asymmetric keys.
In this way, one is sure that each asymmetric key has a dual.

The SecOSObject class implements the object space entries. Recall that the notion of
subtyping and type matching defined relied on the notion of structural subtyping. This differs
from the JAVA type system since structural subtyping does not require an explicit type hierarchy
(such as the hierarchy in JAVA explicitly defined using extends in declarations), and structural
subtyping naturally allows for multiple supertypes for any given type. The implementation
of matching is thus done dynamically in the match() method which is a final method. For the
purpose of matching, null (the "empty" value for pointers) plays the role of?. A SecOSObject
instance is created with a set ofkey-value pairs. Keys are checked to be either of type SymKey
or AsymKey; a user-defined key type is automatically rejected. The select operation has a
method that takes a key as parameter and returns the object ifthe key is the correct key, or null
if no matching object is found in the SecOSObject. The extend method returns a new object
obtained by extending the target with a key-value pair. The operation fails ifthe pair is already
present in the SecOSObject. The match method returns true if the argument SecOSObject
matches. This requires that the keys of both SecOSObjects match, and that the values match.

The SecureObjectSpace class represents the SEcOS itself. It provides associative ad-
dressing and the methods in, out and read. The latter is a non-destructive version of in (mod-

210 Secure Spaces

eled as the atomic execution of an in followed by an out). Both of these are blocking. The out
operation is synchronized to guarantee mutual exclusion .. The SECOS represents an object in
serialized fonn within the space; thus out se.rializes the value component of each SecOSOb-
ject, in and read deserialize it.

4.2 Coordinating Agents

Our implementation platform for SEcOS is the JAVASEAL agent platform [29, 28]. The main
characteristic of JAVASEAL is that each agent executes within a protection domain, meaning
that the agent cannot directly view or modify the data of another agent; communication between
agents must use the system provided cha1111els. Protection domains are structured in a hierarchy;
the root of the hierarchy is the JVM. An agent protection domain can only send a message to
its parent domain or to its direct children. Hence, a message sent between two domains must
be routed through the common ancestor of the domains.

HyperNews [19J is an agent-based newspaper application that runs over JAVASEAL. Arti-
cles are downloaded in the form of agents to client sites; these agents contain code that verify
receipt of payment and which only decrypts articles when payment is made. A client site con-
tains an area allocated for each newspaper provider; article agents belonging to that provider
reside in the provider's area. A basic security requirement is that a provider may not interfere
with the articles of another provider. In the JAVA SEAL implementation ofHyperNews, the root
seal of the hierarchy contains the core oftbe application. A child protection domain is allocated
for each provider proxy; within each proxy, a child domain is allocated to each article of that
provider.

In JAVASEAL, the SECOS is implemented within the root domain of the hierarchy. An in
or out message generated by an agent is sent to the root seal via channels. A mes.sage can be
treated at each level of the hierarchy. For instance, an article can publish its contents by sending
an out message to the SEcOS. To protect articles from other providers, the root domain which
intercepts all messages enforces a security policy. It does this by appending a password fie ld
to each out and in request. The password varies for each proxy; the extension of each request
is transparent to tile agent that generates tb.e message and it implements the e operator of
Section 3. In JAVASEAL, this is implemented with the following code segment.

SymKey AgentKey = new SymKey() ;
String password= new String("KeepMeSecretTimes"); II Password for Times

public SecOSObject in(SecOSObject request) { II Request on Times Channel
SecOSObject extRequest = request.extend(AgentKey , password);
return sos.in(extRequest);

}
public SecOSObject out(SecOSObject request) {II Request on Times Channel

SecOSObject extRequest = request.extend(AgentKey , password);
return sos.out(extRequest);

}

C. Bryce, M Oriol and J. Vitek 211

5 A Cryptographic Implementation

It should be obvious that keys and locks in SEcO~ are analogous to cryptographic keys. The
crucial difference is that cryptography is based on the transformation of data from clear-text to
cipher-text, and involves heavy-weight mathematical ,procedures. SEcOS locking on the other
hand is enforced by dynamic typing, thus making protected communication cheap. However,
the protection afforded by types breaks down as soon as values leave the trusted runtime of
the SECOS system. This can happen whenever an object is stored on disk, transferred on the
network, or used on malicious platforms.

In this section, we consider how to retain the semantics of SECOS in a hostile environment.
We begin with a look at some relevant facts about cryptography, and then explain how the
locking primitives can be implemented.

5.1 Cryptography

There are two fundamental cryptography schemes. Symmetric schemes use shared keys: the
same key encrypts and decrypts data from clear-text to cipher-text and back [20]. Asymmetric
schemes, or public-key cryptography, use key pairs [22]; one key is used to encrypt data, the
other to decrypt. The syntax for cryptographic operations is summarized in the following table:

Scheme I Encryption l Decryption
symmetric I Ka(v) I K;1(Ka(v))

asymmetric PKab(v) PKb;,1(PKab(v))
In the remainder we make some standard assumptions about cryptography (c.j, [2]): (1) The
only way to decrypt a value is to know the corresponding key. (2) An encrypted packet does
not reveal the key under which it was encrypted. (3) There is sufficient redundancy in messages
so that the decryption algorithm can detect whether the cipher-text was encrypted with a given
key.

5.2 Implementing Locking in Open Environments

An implementation of locking in open environments is subject to the following requirements:
(R 1) Locked values should remain protected while in transit, on secondary media, or while in a
third-party shared space. By protection we mean that only a process possessing a matching key
may access fields. (R2) Matching should not reveal actual values or keys. (R3) It should not be
possible to falsify entries.

In other words, (R1) implies that values should be, and remain, encrypted until fields are
selected with the appropriate keys. (R2) implies that matching is perfonned on encrypted val-
ues. (R3) implies that if malicious s.ite sees a request, it should n.ot be possible for it to fabricate
an object that matches it. This requirement is the hardest to satisfy.

212 Secure Spaces

We outline the proposed solution. Each symmetric lock key e is represented by a pair {a, r)
in wbich a is a symmetric cryptographic key and r is a random number. A compatible key e is
the pair (a, T) . A field e : v locked under e. is represented as the pair Ka (v)) r. Each asymmetric
lock key e is represented by a triple (ab , cd, e) in which ab and CJ are asymmetric cryptographic
keys and e is a symmetric cryptographic key. The matching key e is (ba, d0 , e). A field t: v
locked under asymmetric key e is represented as the triple (cd, P Kc.i(ab) , P Kab(Ke(v))). Con-
versely, the value locked by l is (d0 ,PKdc(ba). P Kb. (K.(v))). We require that Ke(?) = null
so that the server can recognize a request containing ? , but P K 6• (null) :/:- null so that we can
hide the fact that a request contains ? and thus prevent a replay attack by someone who sees the
request and tries to reuse the key to fake further requests.

Fields are only decrypted during field selection, when a matching key is presented, e.g., o.l.
Otherwise objects are cryptographically protected. ·

Matching is performed on ciphertext values, the matching rules differ only on the deter-
mination of compatible fields. Here we say that fie.Ids are compatible if (1) in the case of
symmetric Jocks: (I a) the encrypted fields are equal, (I h) the template fa (null, r) 11nn the t11rge.t
is (/(4 (v) , r) . (2) For asymmetric keys, {2a) if the template is (c4, PK..,(ab) , P K0 b(K. (t1))}
and the target is (d01 P f(.t.,(ba) , P Kb.(I<0 (v))) or (2b) if the template is (cd, P Kc,,(ab}, null)
and the target is (de, PK11,,(ba). P Kb. (K. (v))).

Clearly {Rl) and (R2) are respected, but (R3) is only partially met. For a symmetric key, any
process that sees a request may Ka(v), r may create a false request null, r that matches every-
thing. For asymmetric keys we fare a little better, as seeing (cd , P I<..,(ab), PK0 .(I<.(v))) does
not suffice for an attacker to guess (de , P Kdcba, P I<b.(K.(v))), (de, PI<dc(ba), PKdnull)) or
(cd, P I<.Aab), P Kab(null)). But, seeing two different requests (c4 1 P K.,,(ab) , P Ka. (K.(v1)))

and {de, PKik(ba), P Kb. (K. (v-i))) is sufficient to be able to generate (d0 1 P Kd0 (b0), P Kb. (null))
which represents an entry with a ? argument.

The solution means that we can give a cryptographic interpretation SECOS primitive, but
their semantics is slightly weaker than in the typed interpretation. Of course, it is costly, since
for evecy match at least one encryption and one decryption can take place. However, opti-
mizations are possible. One does not program an internet application in the same way that one
programs a local system. The programmer is likely to impose conventions on his use of remote
spaces. For instance, he may decide to only send objects to sites that are trusted. Alternatively,
he might only send requests when the destination space is statically known; in this situ-ation
he encrypts each request with the publlc key of the destination host for that request [31]; this
makes the need for the second pair of asymmetric keys (c,.i, de) redundant since one can no
longer identify requests containing ?. Fundamentally though, preventing replay attacks and
thus avoiding the need for the extra encryption means employing mechanisms for protecting
agent data from malicious hosts; this is still an open research area.

6 Related Work

The work of Gordon and Abadi has inspired some aspects of the theoretical treatment of
SECOS. In the spi calculus, they extend the 7r-calculus to employ cryptography for messages

C. Bryce, M Oriol and J. Vitek 213

sent over named channels [2]. Abadi also equates the security of a protocol to its type cor-
rectness [l]. While this is clearly applicable to protocols that consists ofa predefined set of
message exchanges, we do not see a direct relation to dynamic communication environments
such as SECOS.

The Klaim language takes another approach to security. There, a process requires access
rights (read or write) to use a tuple space (I I]. Access rights are represented as types, and
a static type analysis is sufficient to determine if a process attempts to read or write a tuple
space without possessing the right. This approach complements our proposal. While dynamic
checking is necessacy in a mobile agent context, it is also important to Investigate the class of
security properties that can be verified in SEcOS using a static approach such as K.laim 's.

The role of typing in the matching process has received much attention recently. The Laura
system, for instance, is a WAN service architecture based on the shared space model [27]. One
reason why the shared space paradigm is exploited is that it allows services to join and leave
the system dynamically. Services place offers in the space which are matched with requests.
An offer or request is an interface form that matches if the type of the service is a subtype of
the requestor's. Alice is the type system employed for matching these interfaces [25]. Dami
also investigates type inference for generative communication [l O].

As regards implementing the shared object paradigm in JAVA, we have already cited JavaS-
paces (23] and Jada [9]. Jada is one example of the shared space paradigm being used to
coordinate mobile agents: it is employed in the PageSpace agent architecture. More generally,
neither Jada nor JavaSpaces were designed with security issues in mind. Though keys can be
employed to protect items in the tuple from agents, this can only be done using encryption algo-
rithms, even for age.nts executing within the same .JVM which is too inefficient for generalized
use.

Apart from JAVA, the shared space paradigm, usually in its Linda variant, has been inte-
grated into several languages, C, Prolog [8], C++ [21], SmallTalk (18] and Eiffel [16]. Inter-
estingly, the papers that treat object-oriented languages have not considered the security issues
posed by inheritance and user defined matching.

7 Conclusions

In this paper, we have considered coordination support for independent and mistrusting soft-
ware components that cooperate by means of shared object spaces. To this end, we presented
a model that integrates the notion of keys into the shared space model. Security is enforced
through typing. Further, the model can be implemented in JAVA provided that some care is
taken with respect to aliasing and inheritance. Finally, we discussed the implementation of
SECOS semantics using encryption for objects that leave a trusted SEcOS environment, for
instance, when they are transferred over a network or stored on disk.

214 Secure Spaces

References

[l] M. Abadi. Secrecy by Typing in Security Protocols. Theoretical aspects of Computer Software,
September 1998.

[2] M. Abadi and A. D. Gordon. A calculus for cryptographic protocols: The Spi calculus. In Pro-
ceedings of the Fourth ACM Conference on Computer and Communications Security. Zurich, April
1997, 1997.

[3] R. M. Amadio, I. Castellani, and D. Sangiorgi. On bisimulations for the asynchronous 11"-calculus.
In U. Montanari and V. Sassone, editors, CONCUR '96, volume 1119 of LNCS, pages 147-162.
Springer-Verlag, Berlin, 1996.

[4] G. Boudol. Asynchrony and the 11"-calculus (note). Rapport de Recherche 1702, INRIA Sofia-
Antipolis, May 1992.

[5] L. Cardelli. Abstractions for mobile computations. Manuscript, Microsoft Research, 1998.

[6] L. Cardelli and A. D. Gordon. Mobile ambients. In Proc. of Foundations of Software Science and
Computation Structures (FoSSaCS), ETAPS'98, LNCS 1378, Mar. 1998.

[7] N. Carriero, D. Gelemter, and L. Zuck. Bauhaus Linda. In P. Ciancarini, 0. Nierstrasz, and
A. Yonezawa, editors, Object-Based Models and Languages for Concu"ent Systems, volume 924
of LNCS, pages 66--76. Springer-Verlag, Berlin, 1995.

[8] P. Ciancarini. Distribued Programming with Logic Tuple Spaces. Technical Report UBLCS-93-7,
The Technical University ofBerlin, April 1993.

[9] P. Ciancarini and D. Rossi. Jada: Coordination and Communication for Java Agents. In J. Vitek
and C. Tschudin, editors, Mobile Agent Systems: Towards the Programmable Internet, volume
1222 of LNCS, 1997.

[10] L. Dami. Type Inference and Subtyping in Higher-Order Generative Communication. In
D. Tsichritzis, editor, Object Applications. University of Geneva, 1996.

[11] R. DeNicola, G. Ferrari, and R. Pugliese. Coordinating Mobile Agents via Blackboards and Access
Rights. In Proc. 2nd Int. Conf. on Coordination Models and Languages, volume 1282 of LNCS,
September 1997.

[12] C. Fournet, G. Gonthier, J.-J. Levy, L. Maranget, and D. Remy. A calculus of mobile agents. In
CONCVR96, 1996.

[13] D. Gelemter. Multiple Tuple Spaces in Linda. In E.. Odijk, M Rem, and J. Syre, editors, Proc. Con/.
on Parallel A.rchitecrures and languages Europe (PARLE 89), volume 365 of LNCS. Springer-
Verlag, Berlin, 1989.

[14] K. Honda and M. Tokoro. On asynchronous communication semantics. In M. Tokoro, 0. Nier-
strasz, and P. Wegner, editors, Object-Based Concu"ent Computing. LNCS 612, pages 21-51,
1992.

[15] S. Hupfer. Melinda: Linda with multiple tuple spaces. Technical Report RR YALEU/DCS/R-766,
Dept. of Computer Science, Yale University, New Haven, CT, 1990.

C. Bryce, M Oriol and J. Vitek 215

[16) R. Jellinghaus. Eiffel Linda: an Object Oriented Linda Dialect. ACM Sigplan Notices, 25(12),
December 1990.

[17) G. Matos and J. Purtilo. Reconfiguration of hierarchical tuple spaces: Experiments with Linda-
polylith. Technical report, University of Maryland.

[18) S. Matsouka and S. Kawai. Using Tuple Space Communication in Distributed Object Ori.ented
Languages. In Proc. ACM Object Oriented Programming. Systems, Languages and Applications
(OOPSLA 88), 1988.

[19] J.-H. Morin and D. Konstantas. Hypemews: A MEDIA application for the commercialization
of an electronic newspape.r. In Proceesings of SAC '98 - The 1998 ACM Symposi11111 on Applied
Computing, Marriott Marquis, Atlanta, Georgia, U.S.A, Feb. 27 - Mar. 1 1998.

[20) N. B. of Standards. The Data Encryption Standard. Technical Report Publication 46, Federal
Information Processing Standards, January 1977.

[21) A. Polze. The Object Space Approach: Decoupled Communication in C++. In Proc. Technology
of Object-Oriented Languages and Systems (TOOLS 93), 1993.

[22) R. Rivest, A. Shamir, and L. Aldeman. A Method for Obtaining Digital Signatures and Public-Key
Cryptosystems. CACM, 21(2), 1978.

[23) Sun Microsystems. JavaSpaces Specification. Technical report, Sun Microsystems Inc., July 1998.

[24] D. Tennenhouse. Active networks. In USENIX, editor, 2nd Symposium on Operating Systems
Design and Implementation (OSDI '96), October 28- 31, 1996. Seattle, WA, 1996.

[25] R. Tolksdorf. Alice - Basic Model and Subtyping Agents. Technical Report 199317, The Technical
University of Berlin, 1993.

[26) R. Tolksdorf. Coordinating Java Agents with Multiple Coordinalio.n Langoages on the Berlinda
PlatfoIID. In IEEE Workshops on Enabling Technologies: lnfrastrocture for Collaborative Enter-
prises (WETICE}, 1997.

[27) R. Tolksdorf. Laura: A Service-Based Coordination Language. Science of Computer Program-
ming, 31, 1998.

[28] J. Vitek and C. Bryce. Secure Mobile Code: The JavaSeal experiment. In submitted for publication,
1999.

[29) J. Vitek, C. Bryce, and W. Binder. Designing JavaSeal: or How to make Java safe for agents. In
D. Tsichritzis, editor, Electronic Commerce Objects. University of Geneva, 1998.

[30) J. Vitek and G. Castagna. A calculus of secure mobile computations. In Proceedings of the IEEE
Workshop on Internet Programming Languages, (.VIPL}. Chicago, ill., 1998.

[31] B. S. Yee. A sanctuary for mobile agents. Technical Report CS97-537, UC San Diego, Department
of Computer Science and Engineering, Apr. 1997.

