
A Theory of \May" Testing

for Asynchronous Languages

Michele Boreale1 Rocco De Nicola2 Rosario Pugliese2

1Dipartimento di Scienze dell'Informazione, Universit�a di Roma \La Sapienza"
2Dipartimento di Sistemi e Informatica, Universit�a di Firenze

Abstract. Asynchronous communication mechanisms are usually a ba-
sic ingredient of distributed systems and protocols. For these systems,
asynchronous may-based testing seems to be exactly what is needed to
capture safety and certain security properties. We study may testing
equivalence focusing on the asynchronous versions of CCS and �-calculus.
We start from an operational testing preorder and provide �nitary and
fully abstract trace-based interpretations for it, together with complete
inequational axiomatizations. The results throw light on the di�erences
between synchronous and asynchronous systems and on the weaker test-
ing power of asynchronous observations.

1 Introduction

Distributed systems often rely on asynchronous communication primitives for
exchanging information. Many properties of these systems can be conveniently
expressed and veri�ed by means of behavioural equivalences. In particular, may

testing [11] seems to be exactly what is needed for reasoning about safety prop-
erties. In this respect, an assumption of asynchrony can often play a crucial
role.

As an example, consider a trivial communication protocol with two users A
and B sharing a private channel c. The protocol requires that A uses c to send
a bit of information m to B, then B receives two messages on channels a and
b, �nally B sends, on channel d, the message received on a. The ordering of the
inputs on a and b depends on the message received on c. In �-calculus we can
formulate this protocol as follows (the meaning of the various operators is the
usual one; in particular, (� c) stands for creation of a local channel c):

A = cm

B = c(x):([x = 0]a(y):b(z):dy + [x = 1]b(z):a(y):dy)
S = (� c)(A jB)

Secrecy, i.e. the ability to keep a datum secret, is an important property which
one might want to check of this protocol: externally, it should not be possible
to guess message m from the behaviour of the whole system S. Following [2],
this property can be formalized by requiring that the behaviour of the protocol
should not depend on the bit that A sends to B: in other words, processes
S[0=m] and S[1=m] should be equivalent. The intended equivalence is here the

W. Thomas (Ed.): FOSSACS’99, LNCS 1578, pp. 165-179, 1999.
c Springer-Verlag Berlin Heidelberg 1999

one induced by may testing: a process may pass a `test' performed by an external
observer if and only if the other process may. If one interprets `passing a test' as
`revealing a piece of information', then equivalent processesmay reveal externally
the same information. Now, it is easy to see that an observer could tell S[0=m]
and S[1=m] apart via synchronous communication on a and b (tra�c analysis).
However, S[0=m] and S[1=m] are equivalent in a truly asynchronous scenario, in
which no ordering on the arrival of outgoing messages is guaranteed.

It is therefore important to have a full understanding of may-semantics in
an asynchronous setting. We shall consider asynchronous variants of CCS and
�-calculus: in these models, the communication medium can be understood as
a bag of output actions (messages), waiting to be consumed by corresponding
input actions. This is reminiscent of the Linda approach [13]. In [7], we have
provided an observers-independent characterization of the asynchronous testing
preorders. Here, we use this characterization as a starting point for de�ning a
\�nitary" trace-based model and a complete axiomatization for the may testing
preorder.

When modelling asynchronous processes, the main source of complications is
the non-blocking nature of output primitives. It is demanded that processes be
receptive, i.e. that they be able to receive all messages sent by the environment at
any time. A simple approach to this problem leads to models where all possible
inputs (i.e. outputs from the environment) at any stage are explicitly described.
As a result, in�nitary descriptions are obtained even for simple, non{recursive,
processes. For example, according to [16], the operational description of the null
process 0 is the same as that of recX:a:(a j X), where a stands for any input
action, a is its complementary output and rec is the recursion operator. Similarly,
[5] presents a trace-based model that permits arbitrary \gaps" in traces to take
into account any external in
uence on processes behaviour.

Di�erently from [16], we build on the usual operational semantics of the
language, which just describes what the process intentions are at any stage, and
we take advantage of a preorder, �, between sequences of actions (traces). The
intuition behind � is that whenever a trace s may lead to a successful interaction
with the environment and s0 � s, then s0 may lead to success as well. It turns
out that, when comparing two processes, only their \minimal" traces need to
be taken into account. This leads to a model that assigns �nite denotations to
�nite processes. More precisely, the interpretation of the may preorder (<�

m

)

suggested by the model is as follows: P <�
m

Q if, consuming the same messages,

Q can produce at least the same messages as P .
Building on the above mentioned preorder over traces, we provide a complete

(in-)equational axiomatization for asynchronous CCS that relies on the laws:

(A1) a:b:P v b:a:P and (A2) a:(a j P) v P :

These two laws are speci�c to asynchronous testing and are not sound for the
synchronous may preorder [11]. The completeness proof relies on the existence
of canonical forms directly inspired by the �nitary trace{based model.

We develop both the model and the axiomatization �rst for asynchronous
CCS, and then for asynchronous �-calculus. The simpler calculus is su�cient to

166 Michele Boreale et al.

isolate the key issues of asynchrony. Indeed, both the trace interpretation and
the axiomatization for �-calculus are dictated by those for CCS.

The rest of the paper is organized as follows. Section 2 introduces asyn-
chronous CCS and the may{testing preorder. Section 3 and 4 present a fully
abstract trace{based interpretation of processes and a complete proof system
for �nite processes, respectively. In Section 5 the results of the previous sections
are extended to �-calculus. The �nal section contains a few concluding remarks
and a brief discussion of related work.

2 Asynchronous CCS

In this section we present syntax, operational and testing semantics of asyn-
chronous CCS (ACCS, for short) [7]. It di�ers from standard CCS because only
guarded choices are used and output guards are not allowed. The absence of
output guards \forces" asynchrony; it is not possible to de�ne processes that
causally depend on output actions.

Syntax We let N , ranged over by a; b; : : :, be an in�nite set of names used to
model input actions and N = fa j a 2 Ng, ranged over by a; b; : : :, be the set of
co{names that model outputs. N and N are disjoint and are in bijection via the
complementation function (�); we de�ne: (a) = a. We let L = N [N be the set
of visible actions, and let l; l0; : : : range over it. We let L� = L [f�g, where � is
a distinct action, for the set of all actions or labels, ranged over by �. We shall
use A;B;L; : : :, to range over subsets of L. We let X , ranged over by X;Y; : : :,
be a countable set of process variables.

De�nition 1. The set of ACCS terms is generated by the grammar:

E ::= a
�� P

i2I gi:Ei

�� E1 j E2

�� EnL �� Effg ��X �� recX:E
where gi 2 N [f�g, and f : N ! N , called relabelling function, is injective and
such that fl j f(l) 6= lg is �nite. We extend f to L by letting f(a) = f(a). We
let P , ranged over by P , Q, etc., denote the set of closed and guarded terms or
processes (i.e. those terms where every occurrence of any agent variable X lies
within the scope of some recX: and

P
operators).

In the sequel,
P

i2f1;2g gi:Ei will be abbreviated as g1:E1 + g2:E2,P
i2f1g gi:Ei as g1:E1 and

P
i2; gi:Ei as 0; we will also write g for g:0. As

usual, we write E[F=X] for the term obtained by replacing each free occurrence
of X in E by F (with possible renaming of bound process variables). We write
n(P) to denote the set of visible actions occurring in P .

Operational Semantics The labelled transition system (P ;L� ;
�
�!) in Figure

1 de�nes the operational semantics of the language.
As usual, we use =) or

�
=) to denote the re
exive and transitive closure

of
�
�! and use

s
=) (resp.

s
�!) for =)

l
�!

s0

=) (resp.
l
�!

s0

�!) when

167A Theory of "May" Testing for Asynchronous Languages

s = ls0. Moreover, we write P
s

=) for 9P 0 : P
s

=) P 0 (P
s
�! and P

�
�! will

be used similarly). We will call language generated by P the set L(P) = fs 2

L� j P
s

=)g. We say that a process P is stable if P 6
�
�! .

AR1

P
i2I

gi:Pi

gj
�! Pj j 2 I AR2 a

a
�! 0

AR3
P

�
�! P 0

Pffg
f(�)
�! P 0ffg

AR4
P

�
�! P 0

PnL
�
�! P 0nL

if � 62 L [L

AR5
P

�
�! P 0

P jQ
�
�! P 0 jQ

AR6
P [recX:P=X]

�
�! P 0

recX:P
�
�! P 0

AR7
P

l
�! P 0, Q

l
�! Q

P jQ
�
�! P 0 jQ0

Fig. 1. Operational semantics of ACCS (symmetric of rule AR5 omitted)

May Semantics We are now ready to instantiate on ACCS the general frame-
work of [11, 15] to obtain the may preorder and equivalence. In the sequel,
observers, ranged over by O, are ACCS processes that can additionally perform
a distinct success action !.

De�nition 2. P <�
m

Q i� for every observer O, P j O
!

=) implies Q jO
!

=) .

We will use '
m

to denote the equivalence obtained as the kernel of the

preorder <�
m

(i.e. '
m

= <
�
m

\ <
�
m

�1
).

Universal quanti�cation on observers makes it di�cult to work with the op-
erational de�nition of the may preorder; an alternative characterization is on
demand. In the synchronous case, this characterization is simply trace inclusion

(see, e.g., [11, 15]). In [7], by taking advantage of a preorder over single traces,
we proved that in case of asynchronous communication a weaker condition is
required; we summarize these results below.

De�nition 3. Let � be the least preorder over L� preserved under trace com-
position and satisfying the following laws

TO1 � � a TO2 la � al TO3 � � aa

The intuition behind the the laws in De�nition 3 is that, whenever a process
interacts with its environment by performing a sequence of actions s, an inter-
action is possible also if the process performs any s0 � s. To put it di�erently, if
the environment o�ers s, then it also o�ers any s0 s.t. s0 � s.

More speci�cally, law TO1 (deletion) says that process inputs cannot be en-
forced. For example, we have bc � abc: if the environment o�ers the sequence
abc, then it also o�ers bc, as there can be no causal dependence of bc upon the
output a. Law TO2 (postponement) says that observations of process inputs can

168 Michele Boreale et al.

be delayed. For example, we have that bac � abc. Indeed, if the environment
o�ers abc then it also o�ers bac. Finally, law TO3 (annihilation) allows the envi-
ronment to internally consume of complementary actions, e.g. b � aab. Indeed,
if the environment o�ers aab it can internally consume a and a and o�er b.

De�nition 4. For processes P and Q, we write P �
m

Q i� whenever P
s

=)

then there exists s0 such that s0 � s and Q
s0

=) .

Theorem5. For all processes P and Q, P <�
m

Q i� P �
m

Q.

One can easily prove that <
�m

is a pre{congruence; the proof relies on the

coincidence between <
�
m

and �
m

(however, the case of parallel composition is

best dealt with by relying on the de�nition of <�
m

).

3 A Finitary Trace-based Model

A fully abstract set-theoretic interpretation for <�
m

can be obtained by inter-

preting each P as the set of traces [[P]]
m
= fs j there is s0 2 L(P) : s0 � sg and

then ordering interpretations by set inclusion. However, this naive interpreta-
tion is not satisfactory, because it includes in�nitely many traces even for �nite
processes; for instance, [[0]]

m
= f�; a; aa; aaa; : : : ; b; bb; : : :g.

To obtain a non{redundant interpretation, we shall \minimize" the language
of a process P , L(P), w.r.t. the trace preorder �. In the sequel, we use [s] to
denote the �-equivalence class of s, i.e. the set fs0 : s0 � s and s � s0g.

De�nition 6.

{ Consider a set D of �-equivalence classes. We say that D is a denotation

if whenever [s]; [s0] 2 D and s � s0 then [s] = [s0]. We call D the set of all
denotations.

{ D is ordered by setting: D1 � D2 i� for each [s] 2 D1 there is [s0] 2 D2

such that s0 � s.

In words, a denotation D is a set of �-equivalence classes which are minimal

elements of D.

Lemma7. (D;�) is a partial order.

De�nition 8. For each P , we interpret P as the denotation

[[P]]
m

def
= f[s] : s 2 L(P) and for each s0 2 L(P) : s0 � s implies [s] = [s0] g :

Example 1.

1. If P
def
= a:(a j b), we have L(P) = f�; a; aa; ab; aab; abag and that � is minimal

in L(P) (by TO1{TO3), hence [[a:(a j b)]]
m
= [[0]]

m
= f [�] g.

169A Theory of "May" Testing for Asynchronous Languages

2. If P
def
= a j b:c, then L(P) = f�; a; ab; abc; b; ba; bac; bc; bca g: The

set of �-minimal traces of L(P) is f �; a; bc; abc; bcag and [[P]]
m

=
f[�]; [a]; [bc]; [abc]; [bca]g.

3. If P
def
= a j b:c and Q

def
= a:P , then [[P]]

m
= f[�]; [a]; [bc]; [abc]; [bca]g and

[[Q]]
m
= f [�]; [abc]; [aabc]; [abca] g; hence [[Q]]

m
� [[P]]

m
.

Lemma9. Let C be a non{empty set of �-equivalence classes. Then C has
minimal elements (w.r.t. the obvious ordering [s0] � [s] i� s0 � s).

Theorem10. P <�
m

Q if and only if [[P]]
m
� [[Q]]

m
in D.

Proof: We use the alternative characterization �
m

of <�
m

. Suppose that

P �
m

Q; we show that [[P]]
m
� [[Q]]

m
in D. Let [s] 2 [[P]]

m
, with P

s
=) .

Then there is s0 s.t. Q
s0

=) and s0 � s. Choose now [s0] which is minimal for the
set f[s00] : s00 2 L(Q) and s00 � s0 g, and which exists by virtue of Lemma 9. By
de�nition of [[�]]

m
, [s0] 2 [[Q]]

m
, and moreover s0 � s. The converse implication

can be proven similarly. 2

It is possible to give a \concrete" representation of equivalence classes.

Proposition11. Let s1 = m1M1 � � �mnMn, n � 0, be any trace, where, for
1 � i � n, mi (resp Mi) is a trace containing only inputs (resp. outputs).
Suppose that s2 � s1 and s1 � s2. Then s2 is of the form m0

1M1 � � �m0
nMn,

where, for 1 � i � n, m0
i is a permutation of mi.

The above proposition allows one to consider equivalence classes of traces as
sequences where multisets of input actions alternate with sequences of output
actions. This model can be further optimized. For example, when de�ning [[�]]

m

it is possible to enrich the theory of � with a commutativity law for outputs
(ab � ba); this permits viewing sequences of outputs as multisets and yields
smaller denotations of processes. For instance, the denotation of process P in
Example 1 would reduce to f[�]; [a]; [bc]; [abc]g. A similar optimization will be
used in the de�nition of canonical traces, in the next section.

4 A Proof System for ACCS

In this section we de�ne a proof system for ACCS and prove that it is sound
and complete with respect to <�

m

for �nite (without recursion) processes.

The proof system, that we callA, is based on the in-equational laws in Table 1
plus the usual inference rules for re
exivity, transitivity and substitutivity in
any context. We use G to range over guarded sums. Given two guarded sums
G =

P
i2I gi:Pi and G0 =

P
j2J gj :Pj , we de�ne G+G0 as

P
k2I[J gk:Pk . Each

equation P = Q is an abbreviation for the pair of inequations P v Q and Q v P .
We write P v

A
Q (P =

A
Q) to indicate that P v Q (P = Q) can be derived

within the proof system A.

170 Michele Boreale et al.

C1 G +G = G

P1 P j 0 = P
P2 P jQ = Q j P
P3 P j (Q j R) = (P jQ) jR

EXP Let G =
P

i2I
gi:Pi and G0 =

P
j2J

g0j :P
0
j ; then:

G jG0 =
P

i2I
gi:(Pi jG

0) +
P

j2J
g0j :(G j P 0

j)

R1 (
P

i2I
gi:Pi)ffg =

P
i2I

f(gi):Piffg
R2 (P jQ)ffg = Pffg jQffg
R3 affg = f(a)

H1 (
P

i2I
gi:Pi)nL =

P
i2I^gi 62L[L

gi:PinL

H2 (P jQ)nL = P jQnL L \ n(P) = ;
H3 (PnL1)nL2 = PnL1 [L2

H4 (a j g:P)na = g:(a j P)na g 6= a
H5 (a j g:P)na = Pna g = a

T1 a j
P

i2I
gi:Pi =

P
i2I

�:(a j gi:Pi)

T2 g:
P

i2I
gi:Pi =

P
i2I

g:gi:Pi

T3 P = �:P
T4 G v G+G0

T5 a:(b j P) v b j a:P
T6 P v a j a:P

A1 a:b:P v b:a:P
A2 a:(a j P) v P

Table 1. Laws for ACCS

Laws A1 and A2 di�erentiate asynchronous from synchronous may testing:
they are not sound for the synchronous may preorder [11]. In particular, law
A1 states that processes are insensitive to the arrival ordering of messages from
the environment, while law A2 states that any execution of P that depends on
the availability of a message a is worse than P itself, even if a is immediately
re-issued. The other laws in Table 1 are sound also for the synchronous may
testing [11]. The laws in Table 1 can be easily proven sound by taking advantage
of the preorder �

m
.

Let us now consider some derived laws, among which (D1) a:P v
A
P and

(D2) 0 v
A
a. Law D2 follows immediately from law T4. The inequality D1 can

be derived by �rst noting that from D2 it follows P v
A
a j P , which implies

a:P v
A
a:(a j P); now apply A2. In particular, we have that a v

A
0. From

0 v
A
P , for any P (a consequence of T4), and a:a =

A
a:(a j 0) v

A
0 (law A2),

we get a:a =
A
0.

For proving completeness of the proof system, we shall rely on the exis-
tence of canonical forms for processes, which are unique up to associativity and

171A Theory of "May" Testing for Asynchronous Languages

commutativity of summation and parallel composition and up to permutation of
consecutive input actions. Uniqueness is a result of independent interest, because
it leads to unique (and rather compact) representatives for equivalence classes
of processes. The canonical form of a process will be obtained by minimizing its
set of traces via a trace preorder, that extends � with a commutativity law for
output actions.

De�nition 12. Let �j be the least preorder over traces induced by the laws

TO1{TO3 plus law: (TO4) ab � ba.

Of course, � is included in �j.

De�nition 13 (canonical forms).

{ Given s 2 Act�, the process t(s) is de�ned by induction on s as follows:

t(�)
def
= 0, t(as0)

def
= a:t(s0) and t(as0)

def
= a j t(s0).

{ Consider A ��n L�. We say that A is:
� complete if whenever t(r)

s
=) , for r 2 A, then there is s0 2 A s.t. s0 �j s;

� minimal if whenever s; s0 2 A and s0 �j s then s0 = s.
{ A canonical form is a process of the form

P
s2A�f�g �:t(s), for some A ��n L�

which is both complete and minimal.

Note that a complete set of traces always contains the empty trace �. The
proof of uniqueness of canonical forms can be decomposed into three simple
lemmata.

Lemma14. If t(s)
s0

=) then t(s0) v
A
t(s).

Proof: The proof proceeds by induction on the length of s. The most interesting
case is when s = as0, for some s0; hence t(s) = a jt(s0). Then there are two cases

for s0: either t(s0)
s0

=) , and then the thesis follows from P v
A
a jP (by D2) and

induction hypothesis, or s0 = �a�, with t(s0)
��
=) , for some traces � and �. In

the latter case, we get from the induction hypothesis that t(��) v
A
t(s0); hence

a j t(��) v
A
a j t(s0) = t(s); from repeated applications of P2) and T5, we get

t(s0) = t(�a�) v
A
a j t(��), and hence the thesis. 2

Lemma15. Let C1
def
=
P

s2A�f�g �:t(s) and C2
def
=
P

r2B�f�g �:t(r) be canonical

forms such that C1
<
�
m

C2. Then for each s 2 A there is r 2 B such that r �j s.

Proof: Let s 2 A. Then C1
s

=) , thus, since C1 �m
C2, there is s

0 s.t. C2
s0

=)
and s0 � s. This implies, by completeness of B, that there is r 2 B such that
r �j s

0. Since s0 � s, we obtain that r �j s. 2

We write P1 =AC P2 if P1 =A
P2 can be derived using only the laws C2{C3,

P2{P3 and A1. For the proof of the following lemma, just note that whenever
s1 and s2 are �j-equivalent, then only laws T02 and TO4 can be used to derive
s1 �j s2 and s2 �j s1.

172 Michele Boreale et al.

Lemma16. If s1 �j s2 and s2 �j s1 then t(s1) =AC t(s2).

Theorem17 (uniqueness). Let C1 and C2 be canonical forms such that
C1 'm

C2. Then C1 =AC C2.

Proof: Suppose C1 =
P

s2A�f�g �:t(s) and C2 =
P

r2B�f�g �:t(r). We prove
that for each s 2 A there is r 2 B s.t. s �j r and r �j s, by which the result

will follow by Lemma 16 and by symmetry. Suppose that s 2 A. Since C1
<
�
m

C2,

by Lemma 15, we deduce that there is r 2 B s.t. r �j s. But since C2
<
�
m

C1

as well, we deduce the existence of s0 2 A with s0 �j r, hence s
0 �j r �j s. By

minimality of A we deduce that s = s0 �j r. 2

Example 2. Consider P
def
= �:(a j b:b) + �:b:(a j b). To get the canonical form

of P , we �rst compute the language of P and obtain the complete set
f�; a; b; ab; ba; bb; abb; bab; bbag. Then we minimize, thus �nding the minimal set
f�; ag, which is also complete. Thus �:a is the canonical form of P .

We proceed now to prove completeness of the proof system.

Lemma18 (absorption). If s0 �j s then t(s) v
A
t(s0).

Proof: We prove the thesis by induction on the number n of times the laws
TO1{TO4 are used to derive s0 �j s. The proof relies on the laws D1, D2, A2 and
P2. As an example, we analyze the base case (n = 1), when s0 �j s is derived with
one application of T03. This means that s0 = �aa� and s = ��, for some a and
some traces � and �. Now, note that whenever s = s1s2 then t(s) = t(s1)[t(s2)],
where the latter term is obtained by replacing the single occurrence of 0 in t(s1)
with t(s2). Therefore, by congruence of v

A
and law A2, we get:

t(s) = t(�)[a:(a j t(�))] v
A
t(�)[t(�)] = t(s0) : 2

Lemma19. For each P there exists a canonical form C s.t. P =
A
C.

Proof: By induction on P and using the laws in Table 1 it is easy to show that
P is provably equivalent to some process C1 =

P
s2A1�f�g

�:t(s), for some set
A1. Consider now the following two facts:

1. Whenever t(s)
s0

=) then t(s) =
A
�:t(s) + �:t(s0).

2. Let A be a complete set. Suppose that there are s; s0 2 A s.t. s �j s0

and s 6= s0. Then: (a) A � fs0g is complete, and (b)
P

r2A�f�g �:t(r) =
AP

r2A�f�;s0g �:t(r).

(1 is a consequence of Lemma 14; 2 derives from the de�nition of complete set
and, for part (b), of Lemma 18 and law C1).

By repeatedly applying 1, we can `saturate' A1, thus proving C1 equivalent
to a summation C2 over a complete set A2. Then, by repeatedly applying 2, we
can remove redundant traces in A2, thus proving C2 equivalent to a summation
over a complete and minimal set of traces. 2

173A Theory of "May" Testing for Asynchronous Languages

Theorem20 (completeness). For �nite ACCS processes P and Q, P <�
m

Q

implies P v
A
Q.

Proof: Lemma 19 allows us to assume that both P and Q are in canonical

form: P
def
=
P

s2A�f�g �:t(s) and Q
def
=
P

r2B�f�g �:t(r). It is su�cient to show

that for each s 2 A there is r 2 B s.t. t(s) v
A
t(r), by which the thesis will

follows thanks to the law T4. But this fact follows by Lemmata 15 and 18. 2

5 The �-calculus

In this section we discuss the extensions of our theory to the asynchronous
variant of �-calculus [16, 8, 14, 1].

Syntax and semantics We assume existence of a countable set N of names

ranged over by a; b; : : : ; x; : : :. Processes are ranged over by P , Q and R. The syn-
tax of asynchronous �{calculus contains the operators of inaction, output action,
guarded summation, restriction, parallel composition, matching and replication:

P ::= ab j
P

i2I �i:Pi j � aP j P1 j P2 j [a = b]P j !P

where � is an input action a(b) or a silent action � . We adopt for the sum
operator the same shorthands as for ACCS. Free names and bound names of a
process P , written fn(P), and bn(P) respectively, arise as expected; the names

of P , written n(P) are fn(P) [bn(P). We shall consider processes up to �-
equivalence. Thus �-equivalent processes have the same transitions and all bound
names are always assumed to be di�erent from each other and from the free
names. The tilde e� will be used to denote tuples of names; when convenient,
we shall regard a tuple simply as a set. We omit the de�nition of operational
semantics (see e.g. [1]), but remind that labels on transitions (actions), ranged
over by �, can be of four forms: � (interaction), ab (input at a of b), ab (output
at a of b) or a(b) (bound output at a of b). Functions bn(�), fn(�) and n(�)
are extended to actions as expected: in particular, bn(�) = b if � = a(b) and
bn(�) = ; otherwise.

The de�nition of the may preorder over the �-calculus, <�
m

, is formally the

same as for ACCS. Due to the presence of matching (see e.g. [1]), <�
m

is not

preserved by input pre�x.

The trace preorder We extend the operational semantics of the �-calculus

with the following rule: if P
ab
�! P 0 and b =2 fn(P) then P

a(b)
�! P 0. The new

kind of action a(b) is called bound input; we extend bn(�) to bound inputs by
letting bn(a(b)) = fbg. Below, we shall use L� to denote the set of all visible
(non-�) actions, including bound inputs, and let � range over it. Given a trace
s 2 L��, we say that s is normal if, whenever s = s0:�:s00 (the dot : stands
for trace composition), for some s0, � and s00, then bn(�) does not occur in s0

and bn(�) is di�erent from any other bound name occurring in s00. Functions

174 Michele Boreale et al.

bn(�) and fn(�) are extended to normal traces as expected. We consider normal
traces up to �-equivalence. The set of normal traces over L� is denoted by T
and ranged over by s. From now on, we shall work with normal traces only. A

complementation function on T is de�ned by setting a(b)
def
= a(b), ab

def
= ab,

ab
def
= ab and a(b)

def
= a(b); note that s = s.

P1 s:s0 � s:�:s0 if � is an input action and bn(�) \ n(s0) = ;
P2 s:�0:�:s0 � s:�:�0s0 if � is an input action and bn(�) \ n(�0) = ;
P3 s:s0 � s:�:ab:s0 if � = ab or (� = a(b) and b =2 n(s0))
P4 s:ac:(s0fc=bg) � s:a(b):s0

Fig. 2. Trace ordering laws over T .

The presence of bound names requires a slightly di�erent de�nition of the
trace preorder �, which is given below.

De�nition 21. Let �0 the least binary relation induced by the laws in Figure 2:
� is the re
exive and transitive closure of �0.

Rules P1, P2, P3 are the natural extensions to asynchronous �-calculus of
the rules for ACCS. Here, some extra attention has to be paid to bound names:
an output action declaring a new name (bound output) cannot be postponed
after those actions that use that name. As an example, action a(b) cannot be
postponed after b(c), in any execution of the observer � b (ab j b(c):O). Accord-
ingly, in the observed process, an input action receiving the new name, a(b),
cannot be postponed after output actions at b.

Rule P4 is speci�c to �-calculus, and is linked to the impossibility for ob-
servers to fully discriminate between free and bound outputs. Informally, rule
P4 states that if a bound (hence new) name is \acceptable" for an observer, then
any public name is acceptable as well. Rule P4 would disappear if we extended
the language with the mismatch ([a 6= b]P) operator, considered e.g. in [6], which
permits a full discrimination between free and bound outputs.

The de�nition of �
m

for the �-calculus relies on the trace preorder � and
remains formally unchanged w.r.t. ACCS. In [7], we prove that �

m
and <

�
m

coincide for the �-calculus. All the results obtained for ACCS about the trace{
based model carry over smoothly to the �-calculus.

The proof system A sound and complete proof system for <�
m

over the �nite

(without replication) part of the language can be obtained by \translating" the
proof system for ACCS into �-calculus, and then adding four new laws, as done
in Table 2. I1 replaces the substitutivity rule for input pre�x, M1 and M2 are
concerned with matching, and S1 is related to the law P4 for �.

We write P v
�
Q if the inequality P v Q is derivable within the system of

Table 2. Soundness of the system is straightforward. Completeness requires an

175A Theory of "May" Testing for Asynchronous Languages

I1 if for each b 2 fn(P;Q) Pfb=xg v Qfb=xg then a(x):P v a(x):Q

M1 [a = b]P = 0 a 6= b
M2 [a = a]P = P

C1 G+G = G

P1 P j 0 = P
P2 P jQ = Q j P
P3 P j (Q j R) = (P jQ) j R

EXP Let G =
P

i2I
�i:Pi and G0 =

P
j2J

�0j :P
0
j , where each

�i (resp. �
0
j) does not bind free names of G0 (resp. G). Then:

G jG0 =
P

i2I
�i:(Pi jG

0) +
P

j2J
�0j :(G j P 0

j)

H1 (�eb)(P
i2I

�i:Pi) =
P

i2I^n(�i)\eb=; �i:(�eb)Pi

H2 (�eb)(P jQ) = P j (�eb)Q eb \ n(P) = ;
H3 (� a)(ab j �:P) = �:(� a)(ab j P) a =2 n(�)

H4 (� a)(ab j a(c):P) = (� a)(Pfb=cg)

T1 ab j
P

i2I
�i:Pi =

P
i2I

�:(ab j �i:Pi)

T2 �:
P

i2I
�i:Pi =

P
i2I

�:�i:Pi

T3 P = �:P
T4 G v G+G0

T5 a(c):(bd j P) v bd j a(c):P c 6= b; c 6= d

T6 Pfb=cg v ab j a(c):P

A1 a(c):b(d):P v b(d):a(c):P c 6= b; c 6= d
A2 a(c):(ac j P) v P c =2 n(P)

S1 (� c)P v Pfb=cg

Table 2. Laws for the asynchronous �-calculus

appropriate de�nition of canonical form. This implies extending � via commu-
tativity for output actions.

De�nition 22. Let �j be the trace preorder over T induced by laws P1{P4 plus

the laws:

{ (P5) s:�:�0:s0 � s:�0:�:s0 if bn(�) \ fn(�0) = ; and bn(�0) \ fn(�) = ; ;
{ (P6) s:a(b):cb:s0 � s0:c(b):ab:s if c 6= b.

De�nition 23 (canonical forms). Let s be a normal trace. The process t(s)

is de�ned by induction on s as follows: t(�)
def
= 0, t(a(b):s0)

def
= � b (ab j t(s0)),

t(ab:s0)
def
= ab j t(s0), t(a(c):s0)

def
= a(c):t(s0) and t(ab:s0)

def
= a(x):[x = b]t(s0) (x

fresh).

176 Michele Boreale et al.

Modulo the new de�nitions of t(s) and of �j, the de�nitions of complete set, of
minimal set and of canonical form remain formally as in De�nition 13.

Lemma24. If t(s)
s0

=) then t(s0) v
�
t(s).

Proof: The proof parallels that of Lemma 14. We analyze only the case when
s = a(b):s0, hence t(s) = � b (ab j t(s0)). There are four possible cases for s0

depending on how the execution of actions in t(s0) and action ab are interleaved.

1. t(s0)
s0

=) (action ab is not �red at all);

2. s0 = �:a0(b):� and t(s0)
�:a0b:�
=) ;

3. s0 = �:a(b):� and t(s0)
�:�
=) ;

4. s0 = �1:a0(b):�2:ab:� and t(s0)
�1:a0b:�2:�

=) .

For case 1, the thesis follows from induction hypothesis. We analyze now case
4, because 2 and 3 are easier. By induction hypothesis, t(�1:a0b:�2:�) vA

t(s0),
hence

T
def
= � b (ab j t(�1:a0b:�2:�)) v�

� b (ab j t(s0)) = t(s):

On the other hand, by repeatedly applying T5 and P2, we can push ab rightward
inside T and get � b t(�1:a0b:�2:ab:�) v�

T . Finally, since b =2 n(�1), we can push
� b rightward (using H1 and H2) until it reaches a0b, to get t(s0) v

�
T , and the

thesis. 2

Lemma25. If s0 �j s then t(s) v
A
t(s0).

Proof: The thesis is proven by induction on the number n of times the laws P1{
P6 are used to derive s0 �j s. As an example, we analyze the base case (n = 1),
when s0 �j s is derived with one application of P3. In particular, consider the
case s0 = �:ab:ab:� and s = ��, for some a, b and some traces � and �. For any
P and fresh x, we have that a(x):[x = b](ab j P) v

A
a(x):(ax j P) (use rule I1

and laws M1 and M2). This inequality can be proven under any substitution � for
the names in fn(P)[fa; bg, hence under any context. From this and A2, we get:

t(s) = t(�)[a(x):[x = b](ab j t(�))] v
A
t(�)[a(x):(ax j t(�))] v

A
t(�)[t(�)] = t(s0) :

2

The proof of uniqueness of canonical forms remains essentially unchanged.
The proof of existence of provably equivalent canonical forms requires the fol-
lowing derived laws:

(1) a(y):[b = c]P =
�
�:[b = c]a(y):P + �:a(y) if y =2 fb; cg, and

(2) a(b):[b = c]P =
�
a(b):[b = c]Pfc=bg.

These are used to accommodate matching, when initially proving that P is
equivalent to a summation of t(s)'s; then, the proof proceeds formally unchanged.
Given the existence and the uniqueness of canonical forms, the actual proof of
completeness remains essentially unchanged.

Theorem26 (completeness). For �nite �-calculus processes P and Q,
P <�

m

Q implies P v
�
Q.

177A Theory of "May" Testing for Asynchronous Languages

6 Conclusions and Related Works

In this paper, we have studied a may testing semantics for two asynchronous
variants of CCS and �-calculus. For both calculi we have proposed a �nitary
trace{based interpretation of processes and a complete inequational proof sys-
tem.

Recently, there have been various proposals of models of asynchronous pro-
cesses. Two main approaches have been followed to this purpose. They di�er in
the way (non{blocking) output actions are modelled. The asynchronous variants
of ACP [4], CSP [17] and LOTOS [21] introduce external bu�ers in correspon-
dence of output channels. This makes outputs non{blocking and immediately ex-
ecutable, while preserving the orderings between di�erent output actions. Within
the same group we can place the work on the actors foundation [3]. Di�erently,
the asynchronous variants of �-calculus [16, 8, 14, 1] and CCS [20, 12, 9] model
output pre�x a:P as a parallel composition a jP , i.e. output actions are indepen-
dent processes. The communication medium is rendered as a bag of messages,
which is directly represented within the syntax as a parallel composition of out-
put actions.

In the past, all these formalisms have been equipped with observational se-
mantics based on bisimulation or failures, but very few denotational or equa-
tional characterizations have been studied. A notable exception is the work by
de Boer, Palamidessi and their collaborators. On one hand, in [5], they propose
a trace-based model for a variant of failure semantics, on the other, in [4], they
provide axiomatizations that rely on state operators and explicitly model evo-
lution of bu�ers. Other studies deal with languages that fall in the �rst group
of asynchronous formalisms and propose set of laws that help to understand
the proposed semantics, but do not o�er complete axiomatizations [21, 3]. For
those languages that model outputs by means of processes creation, the only
paper that presents an axiomatization is [1]. There, a complete axiomatization
of strong bisimilarity for asynchronous �-calculus is proposed, but the problem
of axiomatizing weak (� -forgetful) variants of the equivalence is left open.

A paper closely related to ours is the recent [10]. There, for a variant of asyn-
chronous CCS, the authors present a complete axiomatization of must testing
semantics, which is more appropriate for reasoning about liveness properties.
No �nitary model is presented and the problem of extending the results to the
asynchronous �-calculus is left open.

Acknowledgments. Five anonymous referees provided valuable suggestions;
Istituto di Elaborazione dell'Informazione in Pisa made our collaboration possi-
ble.

References

1. R.M. Amadio, I. Castellani, D. Sangiorgi. On Bisimulations for the Asynchronous
�{calculus. CONCUR'96, LNCS 1119, pp.147-162, Springer, 1996.

178 Michele Boreale et al.

2. M. Abadi, A.D. Gordon: A calculus for cryptographic protocols: The Spi calculus.
Proc. 4th ACM Confeence on Computer and Communication Security, ACM Press,
1997.

3. G.A. Agha, I.A. Mason, S.F. Smith, C.L. Talcott. A foundation for actor compu-
tation. Journal of Functional Programming, 7:1-72, 1997.

4. F.S. de Boer, J.W. Klop, C. Palamidessi. Asynchronous Communication in Process
Algebra. LICS'92, IEEE Computer Society Press, pp. 137-147, 1992.

5. F.S. de Boer, J.N. Kok, C. Palamidessi, J.J.M.M. Rutten. The Failure of Failures
in a Paradigm for Asynchronous Communication. CONCUR'91, LNCS 527, pages
111-126, Springer, 1991.

6. M. Boreale, R. De Nicola. Testing Equivalence for Mobile Systems. Information

and Computation, 120: 279-303, 1995.
7. M. Boreale, R. De Nicola, R. Pugliese. Asynchronous Observations of Processes.

FoSSaCS'98, LNCS , Springer, 1998.
8. G. Boudol. Asynchrony in the �{calculus (note). Rapport de Recherche 1702, IN-

RIA Sophia{Antipolis, 1992.
9. N. Busi, R. Gorrieri, G-L. Zavattaro. A process algebraic view of Linda coordina-

tion primitives. Technical Report UBLCS-97-05, University of Bologna, 1997.
10. I. Castellani, M. Hennesy. Testing Theories for Asynchronous Languages. Proc.

FSTTCS, LNCS , to appear Dec. 1998.
11. R. De Nicola, M.C.B. Hennessy. Testing Equivalence for Processes. Theoretical

Computers Science, 34:83-133, 1984.
12. R. De Nicola, R. Pugliese. A Process Algebra based on Linda. COORDINA-

TION'96, LNCS 1061, pp.160-178, Springer, 1996.
13. D. Gelernter. Generative Communication in Linda. ACM Transactions on Pro-

gramming Languages and Systems, 7(1):80-112, 1985.
14. M. Hansen, H. Huttel, J. Kleist. Bisimulations for Asynchronous Mobile Processes.

In Proc. of the Tblisi Symposium on Language, Logic, and Computation, 1995.
15. M.C.B. Hennessy. Algebraic Theory of Processes. The MIT Press, 1988.
16. K. Honda, M. Tokoro. An Object Calculus for Asynchronous Communication.

ECOOP'91, LNCS 512, pp.133-147, Springer, 1991.
17. H. Jifeng, M.B. Josephs, C.A.R. Hoare. A Theory of Synchrony and Asynchrony.

Proc. of the IFIP Working Conf. on Programming Concepts and Methods, pp.446-
465, 1990.

18. R. Milner. The Polyadic �-calculus: A Tutorial. Technical Report, University of
Edinburgh, 1991.

19. J. Parrow, D. Sangiorgi. Algebraic theories for name-passing calculi. Information

and Computation, 120(2):174{197, 1995.
20. R. Pugliese. A Process Calculus with Asynchronous Communications. 5th Ital-

ian Conference on Theoretical Computer Science, (A. De Santis, ed.), pp.295-310,
World Scienti�c, 1996.

21. J. Tretmans. A formal approach to conformance testing. Ph.D. Thesis, University
of Twente, 1992.

179A Theory of "May" Testing for Asynchronous Languages

	Introduction
	Asynchronous CCS
	A Finitary Trace-based Model
	A Proof System for ACCS
	The pi-calculus
	Conclusions and Related Works

