Equational Properties of Mobile Ambients

Andrew D. Gordon! and Luca Cardelli?

! Microsoft Research, http://research.microsoft.com/~adg
2 Microsoft Research, http://www.luca.demon.co.uk

Abstract. The ambient calculus is a process calculus for describing mo-
bile computation. We develop a theory of Morris-style contextual equiv-
alence for proving properties of mobile ambients. We prove a context
lemma that allows derivation of contextual equivalences by considering
contexts of a particular limited form, rather than all arbitrary contexts.
We give an activity lemma that characterizes the possible interactions
between a process and a context. We prove several examples of contex-
tual equivalence. The proofs depend on characterizing reductions in the
ambient calculus in terms of a labelled transition system.

1 DMotivation

This paper develops tools for proving equations in the ambient calculus.

In earlier work [6], we introduced the ambient calculus by adding ambients—
mobile, hierarchical protection domains—to a framework for concurrency ex-
tracted from the m-calculus [12]. The ambient calculus is an abstract model of
mobile computation, including both mobile software agents and mobile hardware
devices. The calculus models access control as well as mobility. For example, a
process may move into or out of a particular ambient only if it possesses the
appropriate capability.

This paper focuses on behavioural equivalence of mobile ambients. In par-
ticular, we study a form of Morris’ contextual equivalence [14] for ambients and
develop some proof techniques. Our motivation is to prove a variety of equations.
Some of these equations express and confirm some of the informal principles we
had in mind when designing the calculus. As in other recent work [1,2], some
of the equations establish security properties of systems modelled within the
calculus.

The inclusion of primitives for mobility makes the theory of the ambient
calculus more complex than that of its ancestor, the 7w-calculus. The main con-
tribution of this paper is to demonstrate that some standard tools—a labelled
transition system, a context lemma, and an activity lemma—may be recast
in the setting of the ambient calculus. Moreover, the paper introduces a new
technique—based on what we call the hardening relation—for factoring the def-
inition of the labelled transition system into a set of rules that identify the
individual processes participating in a transition, and a set of rules that express
how the participant processes interact.

W. Thomas (Ed.): FOSSACS 99, LNCS 1578, pp. 212-226, 1999.
[Springer-Verlag Berlin Heidelberg 1998

Equational Properties of Mobile Ambients 213

We begin, in Section 2, by reviewing the syntax and reduction semantics of
the ambient calculus. The semantics consists of a structural congruence relation
P = @ (which says that P may be structurally rearranged to yield @) and
a reduction relation P — @ (which says that P may evolve in one step of
computation to yield Q).

We introduce contextual equivalence P ~ () in Section 3. We define a pred-
icate, P | n, which means intuitively that an observer may eventually detect
an ambient named n at the top-level of the process P. Then we define P ~ @)
to mean that, whenever P and () are placed within an arbitrary context con-
structed from the syntax of the calculus, any observation made of P may also
be made of @), and vice versa. We give examples of pairs of processes that are
equivalent and examples of pairs that are inequivalent.

In Section 4, we describe some techniques for proving contextual equivalence.
We introduce a second operational semantics for the ambient calculus based on
a hardening relation and a labelled transition system. The hardening relation
identifies the subprocesses of a process that may participate in a computation
step. We use the hardening relation both for defining the labelled transition sys-
tem and for characterizing whether an ambient of a particular name is present at
the top-level of a process. Our first result, Theorem 1, asserts that the 7-labelled
transition relation and the reduction relation are the same, up to structural con-
gruence. So our two operational semantics are equivalent. The labelled transition
system is useful for analyzing the possible evolution of a process, since we may
read off the possible labelled transitions of a process by inspecting its syntactic
structure. Our second result, Theorem 2 is a context lemma that allows us to
prove contextual equivalence by considering a limited set of contexts, known
as harnesses, rather than all arbitrary contexts. A harness is a context with a
single hole that is enclosed only within parallel compositions, restrictions, and
ambients. The third result of this section, Theorem 3, is an activity lemma that
elaborates the ways in which a reduction may be derived when a process is in-
serted into a harness: either the process reduces by itself, or the harness reduces
by itself, or there is an interaction between the harness and the process.

We exercise these proof techniques on examples in Section 5, and conclude
in Section 6.

2 The Ambient Calculus (Review)

We briefly describe the syntax and semantics of the calculus. We assume there
are infinite sets of names and wvariables, ranged over by m, n, p, ¢, and z, vy,
z, respectively. The syntax of the ambient calculus is based on categories of
expressions and processes, ranged over by M, N, and P,), R, respectively.
The calculus inherits a core of concurrency primitives from the w-calculus: a
restriction (vn)P creates a fresh name n whose scope is P; a composition P | Q
behaves as P and () running in parallel; a replication ! P behaves as unboundedly
many replicas of P running in parallel; and the inactive process 0 does nothing.
We augment these m-calculus processes with primitives for mobility—ambients,

214 Andrew D. Gordon and Luca Cardelli

n[P], and the exercise of capabilities, M.P—and primitives for communication—
input, (z).P, and output, (M).

Here is an example process that illustrates the new primitives for mobility
and communication:

m[plout m.in n.(M)]] | n[open p.(z).Q]

The effect of the mobility primitives in this example is to move the ambient p
out of m and into n, and then to open it up. The input (z).Q may then consume
the output (M) to leave the residue m[| | n[Q{x+M}]. We may regard the
ambients m and n in this example as modelling two machines on a network, and
the ambient p as modelling a packet sent from m to n. Next, we describe the
semantics of the new primitives in more detail.

An ambient n[P] is a boundary, named n, around the process P. The bound-
ary prevents direct interactions between P and any processes running in parallel
with n[P], but it does not prevent interactions within P. Ambients may be
nested, so they induce a hierarchy. For example, in the process displayed above,
the ambient named m is a parent of the ambient named p, and the ambients
named m and n are siblings.

An action M.P exercises the capabilities represented by M, and then behaves
as P. The action either affects an enclosing ambient or one running in parallel. A
capability is an expression derived from the name of an ambient. The three basic
capabilities are in n, out n, and open n. An action in n.P moves its enclosing
ambient into a sibling ambient named n. An action out n.P moves its enclosing
ambient out of its parent ambient, named n, to become a sibling of the former
parent. An action open n.P dissolves the boundary of an ambient n[Q] running
in parallel; the outcome is that the residue P of the action and the residue @
of the opened ambient run in parallel. In general, the expression M in M.P
may stand for a finite sequence of the basic capabilities, which are exercised one
by one. Finite sequences are built up using concatenation, written M.M'. The
empty sequence is written e.

The final two process primitives allow communication of expressions. Ex-
pressions include names, variables, and capabilities. An output (M) outputs the
expression M. An input (z).P blocks until it may consume an output running
in parallel. Then it binds the expression being output to the variable z, and
runs P. In (x).P, the variable x is bound; its scope is P. Inputs and outputs
are local to the enclosing ambient. Inputs and outputs may not interact directly
through an ambient boundary. Hence we may think of there being an implicit
input/output channel associated with each ambient.

We formally specify the syntax of the calculus as follows:

Expressions and processes:

I

M,N := expressions P,Q,R ::= processes
x variable (vn)P restriction
n name 0 inactivity

in M can enter M P|Q composition

Equational Properties of Mobile Ambients 215

out M can exit M \P replication
open M can open M MIP] ambient
€ null M.P action
M.M' path (z).P input

(M) output

In situations where a process is expected, we often write just M as a short-
hand for the process M.0. We often write just M| as a shorthand for the process
M]0]. We write (vp)P as a shorthand for (vpy)--- (vpg)P where 5= p1,...,pk.

We let fn(M) and fu(M) be the sets of free names and free variables, re-
spectively, of an expression M. Similarly, fn(P) and fv(P) are the sets of free
names and free variables of a process P. If a phrase ¢ is an expression or a
process, we write ¢p{z+ M} and ¢{n«+ M} for the outcomes of capture-avoiding
substitutions of the expression M for each free occurrence of the variable x and
the name n, respectively, in ¢. We identify processes up to consistent renaming
of bound names and variables.

We formally define the operational semantics of ambient calculus in the chem-
ical style, using structural congruence and reduction relations:

Structural Congruence: P = ()

PlQ=Q|P

pP=P
(P1Q) | R=P|(@Q]R) Q=P=P=Q
IP=P|!P P=Q,Q=R=P=R
(vn)(vm)P = (vm)(vn)P
n¢ fm(P)= (wn)(P|Q)=P]|(vn)Q P=Q= (vn)P = (vn)Q
n #m = (vn)m[P] = m[(vn)P] P=Q=P|R=Q|R
Plo=P P=Q=1P=1Q
(vn)0 =0 P=Q = M[P] = M[Q]
10=0 P=Q=MP=M.Q
eP=P P=Q= (z).P=(2)0Q

(M.M").P = M.M'.P
L

Reduction: P — @

nlinm.P | Q] | m[R] - m[n[P|Q]|R] P—-Q=P|R—-Q|R

m[nfout m.P | Q] | R] — n]]|m[R] P— Q= (vn)P = (vn)Q
openn.P|n[Q] — P |Q P — @ = n[P] = n[Q)]
(M) | (z).P = P{z<M} PP=PP-Q,Q=Q =P = Q'

E
.

For example, the process displayed earlier has the following reductions:

m[plout m.in n.(M)]] | nlopen p.(z).P] = m][] | p[in n.(M)] | nlopen p.(z).P]
m[] [n[p[(M)] | open p.(z).P]

[] | n[(M) | (z).P]

[] | n[P{zDM}]

216 Andrew D. Gordon and Luca Cardelli

The syntax allows the formation of certain processes that may not participate
in any reductions, such as the action n.P and the ambient (inn)[P]. The presence
of these nonsensical processes is harmless as far as the purposes of this paper
are concerned. They may be ruled out by a simple type system [7].

This concludes our brief review of the calculus. An earlier paper [6] explains in
detail the motivation for our calculus, and gives several programming examples.

3 Contextual Equivalence

Morris-style contextual equivalence [14] (otherwise known as may-testing equiva-
lence [8]) is a standard way of saying that two processes have the same behaviour:
two processes are contextually equivalent if and only if they admit the same ele-
mentary observations whenever they are inserted inside any arbitrary enclosing
process. In the setting of the ambient calculus, we shall define contextual equiv-
alence in terms of observing the presence, at the top-level of a process, of an
ambient whose name is not restricted.

Let us say that a process P exhibits a name n just if P is a process with a
top-level ambient named n, that is not restricted:

Exhibition of a Name: P | n

I
P|n = thereare m, P', P" with n ¢ {im} and P = (vii)(n[P'] | P")
L

Let us say that a process P converges to a name n just if after some number
of reductions, P exhibits n:

Convergence to a Name: P | n
I 1

(Conv Exh) (Conv Red)
Pln P—-Q Qlin
Pln Pln

Next, let a context, C(), be a process containing zero or more holes. We write
a hole as (). We write C(P) for the outcome of filling each of the holes in the
context C with the process P. Variables and names free in P may become bound
in C(P). For example, if P = n[(z)] and C() = (vn)(z).(), the variable z and the
name n have become bound in C(P) = (vn)(x).n[(z)]. Hence, we do not identify
contexts up to renaming of bound variables and names.

Now, we can formally define contextual equivalence of processes:

Contextual Equivalence: P ~ ()

P~@Q = for all contexts C() and names n, C(P) |} n < C(Q) I n

The following two propositions state some basic properties enjoyed by con-
textual equivalence. Let a relation R be a precongruence if and only if, for all

Equational Properties of Mobile Ambients 217

P, Q, and C(), if P R @ then C(P) R C(Q). If, in addition, R is reflexive,
symmetric, and transitive, we say it is a congruence. For example, the structural
congruence relation has these properties. Moreover, by a standard argument, so
has contextual equivalence:

Proposition 1. Contertual equivalence is a congruence.

Structural congruence preserves exhibition of or convergence to a name, and
hence is included in contextual equivalence:

Lemma 1. Suppose P = Q. If P | n then @Q | n. Moreover, if P | n then
Q | n with the same depth of inference.

Proposition 2. If P = (Q then P ~ Q.

The following two examples illustrate that to show that two processes are
contextually inequivalent, it suffices to find a context that distinguishes them.

Ezample 1. If m # n then m[] # n|[].

Proof. Consider the context C() = (). Since C(m[]) = m[], we have C(m][]) |
m. By (Conv Exh), C(m[]) § m. On the other hand, the process n[] has no
reductions, and does not exhibit m. Hence, we cannot derive C(n[]) | m. O

Example 2. If m # n then open m.0 % open n.0.
Proof. Let C() = m[p[]] | (). Then C(openm.0) | p but not C(openn.0) | p. O

On the other hand, it is harder to show that two processes are contextually
equivalent, since one must consider their behaviour when placed in an arbitrary
context. For example, consider the following contextual equivalence:

Ezample 3. (vn)(n[] | open n.P) ~ P if n ¢ fn(P).

The restriction of the name n in the process (vn)(n[] | openn.P) implies that
no context may interact with this process until it has reduced to P. Therefore,
we would expect the equation to hold. But to prove this and other equations
formally we need some further techniques, which we develop in the next section.
We return to Example 3 in Section 5.

4 Tools for Proving Contextual Equivalence

The tools we introduce are relations and theorems that help prove contextual
equivalence.

218 Andrew D. Gordon and Luca Cardelli

4.1 A Hardening Relation

In this section, we define a relation that explicitly identifies the top-level sub-
processes of a process that may be involved in a reduction. This relation, the
hardening relation, takes the form,

P> (Vpla"'7pk)<P’>P”

where the phrase (vp,...,pr)(P)P" is called a concretion. We say that P’ is
the prime of the concretion, and that P’ is the residue of concretion. Both P’
and P” lie in the scope of the restricted names p1, ..., px. The intuition is that
the process P, which may have many top-level subprocesses, may harden to a
concretion that singles out a prime subprocess P’, leaving behind the residue
P". By saying that P’ has a top-level occurrence in P, we mean that P’ is a
subprocess of P not enclosed within any ambient boundaries. In the next section,
we use the hardening relation to define an operational semantics for the ambient
calculus in terms of interactions between top-level occurrences of processes.

Concretions were introduced by Milner in the context of the m-calculus [10].
For the ambient calculus, we specify them as follows, where the prime of the
concretion must be an action, an ambient, an input, or an output:

Concretions:
C,D ::= concretions
(vp)(M.P)Q action, M € {in n, out n, open n}
(vp)(n[P))Q ambient
(v)((x) P)Q input
(vp)((M))Q output

The order of the bound names py, ..., p in a concretion (vpy,...,pr){P')P"
does not matter and they may be renamed consistently. When & = 0, we may
write the concretion as (v)(P')P".

We now introduce the basic ideas of the hardening relation informally. If P
is an action in n.Q, out n.Q, open n.Q), an ambient n[Q], an input (z).Q), or an
output (M), then P hardens to (v)(P)0. Consider two processes P and Q. If
either of these hardens to a concretion, then their composition P |) may harden
to the same concretion, but with the other process included in the residue of the
concretion. For example, if P > (v)(P1)Ps then P | Q > (v)(P))(P, | Q). If
a process P hardens to a concretion, then the replication !P may harden to
the same concretion, but with !P included in the residue of the concretion—a
replication is not consumed by hardening. Finally, if a process P hardens to a
concretion C, then the restriction (vn)P hardens to a concretion written (vn)C,
which is the same as C' but with the restriction (vn) included either in the list
of bound names, the prime, or the residue of C. We define (vn)C by:

Restricting a concretion: (vn)C where C = (vp)(P)P, and n ¢ {p}

(1) If n € fn(Py) then:

Equational Properties of Mobile Ambients 219

(a) If Pr =m[P]], m #n, and n ¢ fn(P2), let (vn)C = (vp)(m[(vn)P}])Ps.

(b) Otherwise, let (vn)C' = (vn, §)(P1)Ps.
(2) I n ¢ fu(P) let (vn)C = (vp)(P,)(vn)Ps.

Next, we define the hardening relation by the following;:

Hardening: P > C

(Harden Action) (Harden €) (Harden .)

M € {inn, out n, open n} P>C M.(N.P)>C
M.P > (v)(M.P)0 eP>C (MN).P>C

(Harden Amb) (Harden Input) (Harden Output)

n[P] > (@)(n[P)O (z).P > (v){(z).P)0 (M) > (v)((M))0

(Harden Par 1) (for {p} N fn(Q) = @) (Harden Par 2) (for {¢} N fn(P) = @)

P> (wp)(P")P" Q> (vq)(Q")Q"
PlQ> wp)(P)P"[Q) PlQ> @) P[Q")
(Harden Repl) (Harden Res)

P > (vp)(P")P" P>C

P> (vp)(P'Y(P" | 'P) (vn)P > (vn)C

For example, the process P = (vp)(vq)(n[p[]] | ¢[]) may harden in two ways:

P> (v){n[(vp)p[I))(»q)(0 | 4f])
P> (vq){qll)(vp)(npll] | 0)
The next two results relate hardening and structural congruence.
Lemma 2. If P > (vp)(P')P" then P = (vp)(P' | P").

Proposition 3. If P = Q and Q > (vi){Q")YQ" and then there are P' and P"
with P > (vi)(P")P", P' = ', and P" = Q"

These results follow from inductions on the derivations of P > (vp)(P')P"
and P = @, respectively. Using them, we may characterize exhibition of a name
independently of structural congruence:

Proposition 4. P | n if and only if P > (vp)(n[P'])P" and n ¢ {p}.
Now, we can show that the hardening relation is image-finite:
Lemma 3. For all P, {C : P > C} is finite.

The proof of this lemma is by induction on the structure of P, and suggests
a procedure for the enumerating the set {C' : P > C}. Given Proposition 4, it
follows that the predicate P | n is decidable.

220 Andrew D. Gordon and Luca Cardelli

4.2 A Labelled Transition System

The labelled transition system presented in this section allows for an analysis
of the possible reductions from a process P in terms of the syntactic structure
of P. The definition of the reduction relation does not directly support such an
analysis, because of the rule P’ = P,P — Q,Q = Q' = P' — @', which allows
for arbitrary structural rearrangements of a process during the derivation of a
reduction.

We define a family of transition relations P — (Q, indexed by a set of labels,

ranged over by « == 7 | in n | out n | open n. An M-transition P 2%, Q means
that the process P has a top-level process exercising the capability M; these
transitions are defined by the rule (Trans Cap) below. A 7-transition P — @
means that P evolves in one step to (); these transitions are defined by the other
rules below.

Labelled transitions: P — P’ where o == 7 | inn | outn | openn
I 1
(Trans Amb) (Trans Cap)
P> wp)(n[@)P Q" Q P>wp)(MP)P" fo(M)N{p} =2
P = (vp)(nl@] | P) P =5 (vp)(P' | P")

(Trans In) (where {7} ﬂfn(n[Q]) =@ and {F} N {p} = @)
P> wp)nQDR Q=2 Q" R > (vi)(m[R'])R"
P = (vp, M) (mm[Q'] | R | R")

(Trans Out) (where n ¢ {q})
P> (p)(nlQ)P' Q > (v)(m[R)Q' R ™' R
P = (vp)((v®)(m[R'] | n[Q']) | P')

(Trans Open) (Trans I/0O) (where {¢} N fn({M)) = @)
P> wp)(n[@)P' P 5" P P> wp)((M)P' P> (vq){(z).P")P"
P — (vp)(Q | P") P — (vp)(P' | (v)(P"{wM} | P™))

The rules (Trans In), (Trans Out), and (Trans Open) derive a 7-transition
from an M-transition. We introduced the M-transitions to simplify the state-
ment of these three rules. (Trans I/O) allows for exchange of messages. (Trans
Amb) is a congruence rule for 7-transitions within ambients.

Given its definition in terms of the hardening relation, we may analyze the
transitions derivable from any process by inspection of its syntactic structure.
This allows a structural analysis of the possible reductions from a process, since
the 7-transition relation corresponds to the reduction relation as in the following
theorem, where P —»= () means there is R with P — R and R = Q.

Theorem 1. P — Q if and only if P ——= Q.
As corollaries of Theorem 1 and Lemma 4, we get that the transition system

is image-finite, and that the reduction relation is image-finite up to structural
congruence:

Equational Properties of Mobile Ambients 221

Lemma 4. For all P and «, the set {R: P - R} is finite.

Lemma 5. For all P, the set {{R:Q = R} : P — Q} is finite.

4.3 A Context Lemma

The context lemma presented in this section is a tool for proving contextual
equivalence by considering only a limited set of contexts, rather than all contexts.
Many context lemmas have been proved for a wide range of calculi, starting with
Milner’s context lemma for the combinatory logic form of PCF [9].

Our context lemma is stated in terms of a notion of a harness:

Harnesses
I 1
H := harnesses

— process variable

(vn)H restriction

P|H left composition

H|Q right composition

n[H| ambient

Harnesses are analogous to the evaluation contexts found in context lemmas
for some other calculi. Unlike the contexts of Section 3, harnesses are identified
up to consistent renaming of bound names. We let fn(H) and fu(H) be the
sets of names and variables, respectively, occurring free in a harness H. There
is exactly one occurrence of the process variable — in any harness. If H is an
harness, we write H{P} for the outcome of substituting the process P for the
single occurrence of the process variable —. Names restricted in H are renamed
to avoid capture of free names of P. For example, if H = (vn)(— | open n) then
H{n[]} = (vn')(n[] | open n') for some n' # n.

Let a substitution, o, be a list 1< My, ...,z <+ M}y, where the variables 1,

.., xp are pairwise distinct, and fv(M;) = & for each i € 1..k. Let dom(c) =
{z1,...,z}. Let Po be the process P{z1<M;}---{xzp+M}. Let a process or
a harness be closed if and only if it has no free variables (though it may have
free names).

Here is our context lemma:

Theorem 2 (Context). For all processes P and), P ~ Q if and only if for
all substitutions o with dom (o) = fu(P)U fo(Q), and for all closed harnesses H
and names n, that H{Po} | n < H{Qo} | n.

A corollary is that for all closed processes P and @, P ~ @ if and only if for
all closed harnesses H and names n, that H{P} | n & H{Q} | n.

In general, however, we need to consider the arbitrary closing substitution o
when using Theorem 2. This is because a variable free in a process may become
bound to an expression once the process is placed in a context. For example, let
P = z[n[]] | open y.0 and @ = 0. Consider the context C() = (m,m) | (z,y).().

222 Andrew D. Gordon and Luca Cardelli

We have C(P) | n but not C(Q) | n. So P and @ are not contextually equivalent
but they do satisfy H{P} | n & H{Q} | n for all closed H and n.

Some process calculi enjoy stronger context lemmas. Let processes P and @
be parallel testing equivalent if and only if for all processes R and names n, that
P|R{yn< Q| R n We might like to show that any two closed processes are
contextually equivalent if and only if they are parallel testing equivalent. This
would be a stronger result than Theorem 2 because it would avoid considering
contexts that include ambients. Such a result is true for CCS [8], for example,
but it is false for the ambient calculus. To see this, let P = out p.0 and @ = 0.
We may show that P | Ry n < @ | R n for all n and R. Now, consider the
context C() = p[m[()]]. We have C(P) | m but not C(0) | m. So P and Q are
parallel testing equivalent but not contextually equivalent.

4.4 An Activity Lemma

When we come to apply Theorem 2 we need to analyze judgments of the form
H{P} | nor H{P} — Q. In this section we formalize these analyses.

We begin by extending the structural congruence, hardening, and reduction
relations to harnesses as follows:

— Let H = H' hold if and only if H{P} = H'{P} for all P.

— Let H > (vp)(H")Q hold if and only if H{P} > (vp)(H'{P})Q for all P
such that {p} N fn(P) = 2.

Let H > (vp)(Q)H' hold if and only if H{P} > (vp)(Q)(H'{P}) for all P
such that {p} N fn(P) = 2.

Let H — H' hold if and only if, for all P, H{P} — H'{P}.

We need the following lemma about hardening:
Lemma 6. If H{P} > C then either:

(1) H > (vi)(HYR and C = (vi)(H'{P})R, or
(2) H > (vi){(RYH' and C = (vP){R)(H'{P}), or
(3) H > (vi){—)R, P > (vp)(P")P", C = (v, p)(P')R' with R' = P" | R,

where in each case {7} N fn(P) =

Proposition 5. If H{P} | n then either (1) H{Q} | n for all Q, or (2) P | n,
and for all Q, Q | n implies that H{Q} | n.

Proof. By Proposition 4, H{P} | n means there are g, P', P such that H{P} >
(vP)(n[P'])P" with n ¢ {p}. Hence, the proposition follows from Lemma 6. O

Intuitively, there are two ways in which H{P} | n can arise: either the
process P exhibits the name by itself, or the harness H exhibits the name n
by itself. Proposition 5 formalizes this analysis. Similarly, there are three ways
in which a reduction H{P} — @ may arise: either (1) the process P reduces
by itself, or (2) the harness H reduces by itself, or (3) there is an interaction
between the process and the harness. Theorem 3 formalizes this analysis. Such
a result is sometimes known as an activity lemma [15].

Equational Properties of Mobile Ambients 223

Theorem 3 (Activity). H{P} — R if and only if:

(Act Proc) there is a reduction P — P’ with R = H{P'}, or
(Act Har) there is a reduction H — H' with R = H'{P}, or
(Act Inter) there are H' and 7 with {F} N fn(P) = &, and one of the following
holds:
(Inter In) H = (v7)H'{m[— | R'] | n[R"]}, P Ay
and R = (vi)H'{n[m[P' | R'] | R"]}
(Inter Out) H = (vi)H'{n[m[- | R'] | R"]}, P — iy pr
and R = (vi)H'{m[P' | R'] | n[R"]} o
(Inter Open) H = (vi)H'{- | n[R']}, P 5" P,
and R = (vP)H'{P' | R'}
(Inter Input) H = (vi)H'{— | (M)}, P > (vp){(x).P")P",
and R = (vi)H'{(vp)(P'{z<M} | P")}, with {p} N fn(M) = &
(Inter Output) H = (vi)H'{— | (z).R'}, P > (vp)((M))P',
and R = (vi)H'{(vp)(P' | R'{z+M})}, with {p} N fn(R') = &
(Inter Amb) P > (vp)(n[Q])P’ and one of the following holds:
(1) Q@ =% Q', H = (v H'{~ | m[R']}, {p} N fa(m[R]) = 2,
and R = (vP)H'{(vp)(P" | m[n[Q"] | B])}
(2) Q ™' Q', H = (vi)H'{m[~ | R}, m ¢ {p},
and R = (vP)H'{(vp)(n[Q"] | m[P" | R])}
(3) H = (vi)H'{m[R' | inn.R"]| =}, {p} N fa(m[R" | inn.R"]) = 2,
and R = (vi)H'{(vp)(n]Q | m[R" | R"]] | P')}
(4) H = () H{~ | openn.R'}, n ¢ {7},
and R = A H'{(v)(Q | P') | R'}

!

5 Examples of Contextual Equivalence

In this section, two examples demonstrate how we may apply Theorem 2 and
Theorem 3 to establish contextual equivalence.

5.1 Opening an Ambient

We can now return to and prove Example 3 from Section 3.

Lemma 7. If H{(vn)(n[] | open n.P)} } m and n ¢ fn(P) then H{P} | m.

Proof. By induction on the derivation of H{(vn)(n[] | open n.P)} | m, with
appeal to Propositions 4 and 5, and Theorems 1 and 3. o

Proof of Example 3 (vn)(n[] | openn.P) ~ P if n ¢ fn(P).

Proof. By Theorem 2, it suffices to prove H{((vn)(n[] | open n.P))o} | m <
H{Po} | m for all closed harnesses H and names m and for all substitutions
o with dom (o) = fu(P). Since the name n is bound, we may assume that n ¢

224 Andrew D. Gordon and Luca Cardelli

fn(o(z)) for all x € dom(c). Therefore, we are to prove that: H{(vn)(n[] |
openn.Po} | m & H{Po} | m where n ¢ fn(Po).

We prove each direction separately. First, suppose that H{Po} || m. Since
(vn)(n[] | open n.Po) — Po, we get H{(vn)(n[] | open n.Po)} — H{Po}.
By (Exh Red), we get H{(vn)(n[] | open n.Po)} | m. Second, suppose that
H{(vn)(n[] | open n.Po)} | m. By Lemma 7, we get H{Pco} | m. O

5.2 The Perfect Firewall Equation

Consider a process (vn)n[P], where n is not free in P. Since the name n is known
neither inside the ambient n[P], nor outside it, the ambient n[P] is a “perfect
firewall” that neither allows another ambient to enter nor to exit. The following
two lemmas allow us to prove that (vn)n[P] is contextually equivalent to 0, when
n ¢ fn(P), which is to say that no context can detect the presence of (vn)n[P].

Lemma 8. If H{(vn)n[P]} } m and n ¢ fn(P) then H{0} | m.
Proof. By induction on the derivation of H{(vn)n[P]} | m.

(Conv Exh) Here H{(vn)n[P]} | m. By Proposition 5, either (1), for all @,
H{Q} | m, or (2), (vn)n[P] | m. In case (1), we have, in particular, that
H{0} | m. Hence, H{0} || m, by (Conv Exh). Case (2) cannot arise, since,
by Proposition 4, (vn)n[P] | m implies that (vn)n[P] > (vp)(m[P'])P" with
m ¢ {p}, which is impossible.

(Conv Red) Here H{(vn)n[P|} - R and R | m. By Theorem 3, one of three
cases pertains:

(Act Proc) Then (vn)n[P] — P" with R = H{P"}. By Theorem 1, there
is Q with (vn)n[P] —— @ and Q = P". Since (vn)n[P] > (vn)(n[P])0 is
the only hardening derivable from (vn)n[P], the transition (vn)n[P] —
@ can only be derived using (Trans Amb), with P — P’ and Q
(vn)(n[P'] | 0). Therefore, there is a reduction P — P’ and P"
(vn)n[P']. We may show that P — P’ implies fn(P') C fn(P), and so
n ¢ fn(P'). We have R = H{(vn)n[P']} with n ¢ fn(P'). By Lemma 1,
we may derive H{(vn)n[P']} § m by the same depth of inference as
R || m. By induction hypothesis, H{0} | m.

(Act Har) Then H — H' with R = H'{(vn)n[P]}. By Lemma 1, we may
derive H'{(vn)n[P]} | m by the same depth of inference as R || m. By
induction hypothesis, H'{0} | m. From H — H' we obtain H{0} —
H'{0} in particular. By (Conv Red), we get H{0} { m.

Equational Properties of Mobile Ambients 225

(Act Inter) Then there are H' and # with {} N fn(P) = @ and one of
several conditions must hold. Since the only hardening or transition from
(vn)n[P] is (vn)n[P] > (vn)(n[P])0, only the rule (Inter Amb) applies.
According to Theorem 3, there are four possibilities to consider.

(1) Here, P ™% P', H = (v#)H'{— | m[R]}, {n} N fn(m[R']) = @, and
R = (vP)H'{(vn)(0 | m[n[P'] | R'])}. We have R = (vi)H'{m[R' |
(vn)n|P']]} and that n ¢ fn(P'). By Lemma 1, we get (vF)H'{m[R' |
(vn)n[P')]} ¥ m with the same depth of inference as R || m. By
induction hypothesis, (v#¥)H'{m[R' | 0]} { m. Moreover, H{0} =
(viF)H'{m[R' | 0]}, and therefore H{0} | m.

(2) Here, P 5" P/, H = (w@)H'{m[— | R']}, m ¢ {n}, and also
R = (vi)H'{(vn)(n[P'] | m[0 | R'])}. We have R = (v¥)H'{m[R'] |
(vn)n[P'l} and that n ¢ fn(P'). By Lemma 1, we get (vi¥)H'{m[R'] |
(vn)n|P']} § m with the same depth of inference as R | m. By
induction hypothesis, (v#)H'{m[R'] | 0} { m. Moreover, H{0} =
(viF)H'{m[R'] | 0} and therefore H{0} | m.

The other possibilities, (3) and (4), are ruled out because the name n is

restricted in the concretion (vn)(n[P])0. O

By a similar induction, we can also prove:
Lemma 9. If H{0} § m then H{P} | m.

By combining Theorem 2, Lemmas 8 and 9, we get:
Ezample 4. If n ¢ fn(P) then (vn)n[P] ~ 0.

Our first proof of this equation (which was stated in an earlier paper [6]) was
by a direct quantification over all contexts. The proof above using the context
lemma is simpler.

6 Conclusions

We developed a theory of Morris-style contextual equivalence for the ambient
calculus. We showed that standard tools such as a labelled transition system, a
context lemma, and an activity lemma, may be adapted to the ambient calculus.
We introduced a new technique, based on a hardening relation, for defining
the labelled transition system. We employed these tools to prove equational
properties of mobile ambients.

Our use of concretions to highlight those subprocesses of a process that may
participate in a computation follows Milner [10,11], and is an alternative to the
use of membranes and airlocks in the chemical abstract machine of Berry and
Boudol [5]. Unlike these authors, in the definition of our transition relation we
use the hardening relation, rather than the full structural congruence relation, to
choose subprocesses to participate in a transition. Hardening is more convenient
in some proofs, such as the proof that the labelled transition system is image-
finite, Lemma 4.

226 Andrew D. Gordon and Luca Cardelli

In the future, it would be of interest to study bisimulation of ambients.
Various techniques adopted for higher-order [13,17] and distributed [4, 3, 16]
variants of the m-calculus may be applicable to the ambient calculus.

Acknowledgement Comments by Cédric Fournet, Georges Gonthier, and Tony
Hoare were helpful.

References

1. M. Abadi, C. Fournet, and G. Gonthier. Secure implementation of channel ab-
stractions. In Proceedings LICS’98, pages 105-116, 1998.

2. M. Abadi and A. D. Gordon. A calculus for cryptographic protocols: The spi cal-
culus. Information and Computation. To appear. An extended version appears as
Digital Equipment Corporation Systems Research Center report No. 149, January
1998.

3. R. M. Amadio. An asynchronous model of locality, failure, and process mobility.
In Proceedings COORDINATION 97, volume 1282 of Lecture Notes in Computer
Science. Springer-Verlag, 1997.

4. R. M. Amadio and S. Prasad. Localities and failures. In Proceedings FSTETCS’94,
volume 880 of Lecture Notes in Computer Science, pages 205—216. Springer-Verlag,
1994.

5. G. Berry and G. Boudol. The chemical abstract machine. Theoretical Computer
Science, 96(1):217-248, April 1992.

6. L. Cardelli and A. D. Gordon. Mobile ambients. In Proceedings FoSSaCS’98, vol-
ume 1378 of Lecture Notes in Computer Science, pages 140-155. Springer-Verlag,
1998.

7. L. Cardelli and A. D. Gordon. Types for mobile ambients. In Proceedings POPL’99,
1999. To appear.

8. R. De Nicola and M. C. B. Hennessy. Testing equivalences for processes. Theoretical
Computer Science, 34:83-133, 1984.

9. R. Milner. Fully abstract models of typed lambda-calculi. Theoretical Computer
Science, 4:1-23, 1977.

10. R. Milner. The polyadic w-calculus: A tutorial. Technical Report ECS-LFCS-91-
180, Laboratory for Foundations of Computer Science, Department of Computer
Science, University of Edinburgh, October 1991.

11. R. Milner. The m-calculus. Undergraduate lecture notes, Cambridge University,
1995.

12. R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, parts I and
II. Information and Computation, 100:1-40 and 41-77, 1992.

13. R. Milner and D. Sangiorgi. Barbed bisimulation. In Proceedings ICALP’92,
volume 623 of Lecture Notes in Computer Science. Springer-Verlag, 1992.

14. J. H. Morris. Lambda-Calculus Models of Programming Languages. PhD thesis,
MIT, December 1968.

15. G. D. Plotkin. LCF considered as a programming language. Theoretical Computer
Science, 5:223-255, 1977.

16. J. Riely and M. Hennessy. A typed language for distributed mobile processes. In
Proceedings POPL’98, pages 378-390, 1998.

17. D. Sangiorgi. FEzpressing Mobility in Process Algebras: First-Order and Higher-
Order Paradigms. PhD thesis, University of Edinburgh, 1992. Available as Techni-
cal Report CST-99-93, Computer Science Department, University of Edinburgh.

	Motivation
	The Ambient Calculus (Review)
	Contextual Equivalence
	Tools for Proving Contextual Equivalence
	A Hardening Relation
	A Labelled Transition System
	A Context Lemma
	An Activity Lemma

	Examples of Contextual Equivalence
	Opening an Ambient
	The Perfect Firewall Equation

	Conclusions
	References

