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Abstract. This paper presents a mu-calculus-based modal logic for de-
scribing properties of probabilistic labeled transition systems (PLTSs)
and develops a model-checking algorithm for determining whether or
not states in �nite-state PLTSs satisfy formulas in the logic. The logic
is based on the distinction between (probabilistic) \systems" and (non-
probabilistic) \observations": using the modal mu-calculus, one may spec-
ify sets of observations, and the semantics of our logic then enable state-
ments to be made about the measures of such sets at various system
states. The logic may be used to encode a variety of probabilistic modal
and temporal logics; in addition, the model-checking problem for it may
be reduced to the calculation of solutions to systems of non-linear equa-
tions.

1 Introduction

Classical temporal-logic model checking [CES86, McM93] provides a basis for
automatically checking the correctness of �nite-state systems such as hardware
designs and communication protocols. In this framework, systems are modeled
as transition systems, and requirements are posed as formulas in temporal logic.
A model checker then accepts two inputs, a transition system and a tempo-
ral formula, and returns \true" if the system satis�es the formula and \false"
otherwise.

In traditional model checking, system models include information about the
possible choices of execution steps in any given state. The corresponding tempo-
ral logics then combine a language for describing properties of system \runs" with
quanti�ers for indicating when all/some of the runs of a system have a given prop-
erty [Koz83, EH86]. When system models include probabilistic information re-
garding their operational behavior, however, one frequently wishes to determine
not just whether or not all/some system behaviors have a given property, but
\howmany" of them do. Many important questions of design and performance in
distributed systems and communication protocols, such as \hot-spot" detection
or reliability information, can be addressed more appropriately in such a proba-
bilistic framework. Several examples of applying probabilistic model-checking to
practical situations have been reported by Hansson [Han94]. Such motivations
have led to the study of numerous probabilistic variants of temporal logic and
model checking [ASB+95, BdA95, CY88, Han94, HK97, LS91, PZ93, Var85].
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The goal of this paper is to develop a uniform framework for temporal log-
ics for probabilistic systems. To this end, we show how the unifying classical
temporal logic, the modal mu-calculus [Koz83, EL86], may be altered by adding
probabilistic quanti�ers constraining the \probability" with which probabilistic
systems satisfy mu-calculus formulas. We then show how a variety of existing
probabilistic logics may be represented in our framework and present a model-
checking algorithm.

2 Probabilistic Transition Systems and the Logic GPL

This section introduces the model of probabilistic computation used in this paper
and de�nes the syntax and semantics of our logic, Generalized Probabilistic
Logic.

2.1 Reactive Probabilistic Labeled Transition Systems

We use the reactive probabilistic labeled transition systems (PLTS for short)
of [vGSST90, LS91] as models of probabilistic computation. These are de�ned
with respect to �xed sets Act and Prop of atomic actions and propositions,
respectively. The former set records the interactions the system may engage in
with its environment, while the latter provides information about the states the
system may enter.

De�nition1. A PLTS L is a tuple (S; �; P; I), where

{ (s; s0; s1 2)S is a countable set of states;
{ � � S � Act� S is the transition relation;
{ P : � ! (0; 1], the transition probability distribution, satis�es:X

(s;a;s0)2�

P (s; a; s0) 2 f0; 1g

for all s 2 S, a 2 Act; and
{ I : S ! 2Prop is the interpretation function.

Intuitively, a PLTS records the operational behavior of a system, with S repre-
senting the possible system states and � the execution steps enabled in di�erent
system states; each such step is labeled with an action, and the intention is that
when the environment of the system enables the action, the system may engage
in a transition labeled by the action. When this is the case, P (s; a; s0) represents
the probability with which the transition (s; a; s0) is selected as opposed to other
transitions labeled by a emanating from state s. Note that the conditions on P
ensure that if (s; a; s0) 2 � for some s0, then

P
(s;a;s0)2� P (s; a; s

0) = 1. In what

follows we write s
a
! s0 if (s; a; s0) 2 �.

In this paper we wish to view a (state in a) PTLS as an \experiment" in
the probabilistic sense, with an \outcome", or \observation", representing a res-
olution of all the possible probabilistic choices of transitions the system might
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experience as it executes. More speci�cally, given a state in the PLTS we can
unroll the PLTS into an in�nite tree rooted at this state. An observation would
then be obtained from this tree by resolving all probabilistic choices, i.e. by
removing all but one edge for any given action from each node in the tree. Fig-
ure 1 presents a sample PLTS, its unrolling from a given state, and an associated
observation.
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Fig. 1. A PLTS, its unrolling from a state, and an observation.

2.2 Syntax of GPL

Generalized Probabilistic Logic (GPL) is parameterized with respect to a set
(X;Y 2)V ar of propositional variables, a set (a; b 2)Act of actions, and a set
(A 2)Prop of atomic propositions. The syntax of GPL may then be given using
the following BNF-like grammar, where 0 � p � 1.

� ::= A j :A j �1 ^ �2 j �1 _ �2 j�>p j��p 

 ::= � j X j  1 ^  2 j  1 _  2 j hai j [a] j �X: j �X: 

The operators � and � bind variables in the usual sense, and one may de�ne the
standard notions of free and bound variables. Also, we refer to an occurrence
of a bound variable X in a formula as a �-occurrence if the closest enclosing
binding operator for X is � and as a �-occurrence otherwise. GPL formulas are
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required to satisfy the following additional restrictions: they must contain no
free variables, and no sub-formula of the form �X: (� X: ) may contain a free
�-occurrence (�-occurrence) of a variable.3 In what follows we refer to formulas
generated from nonterminal � etc. as state formulas and those generated from  
as fuzzy formulas; the formulas of GPL are the state formulas. We use (�; �0 2)�
to represent the set of all state formulas and ( ;  0 2)	 for the set of all fuzzy
formulas. In the remainder of the paper we write 
[
0=X] to denote the the
simultaneous substitution of 
0 for all free occurrences of X in 
. We also note
that although the logic limits the application of : to atomic propositions, this
does not restrict the expressiveness of the logic, as we indicate later.

The next subsection de�nes the formal semantics of GPL, but the intuitive
meanings of the operators may be understood as follows. Fuzzy formulas are to
be interpreted as specifying sets of observations of PLTSs, which are themselves
non-probabilistic trees as discussed above. An observation is in the set corre-
sponding to the fuzzy formula if the root node of the observation satis�es the
formula interpreted as a traditional mu-calculus formula: so hai holds of an
observation if the root has an a-transition leading to the root of an an obser-
vation satisfying  , while it satis�es [a] if every a-transition leads to such an
observation. Conjunction and disjunction have their usual interpretation. �X: 
and � X: are �xpoint operators describing the \least" and \greatest" solutions,
respectively, to the \equation" X =  . It will turn out that any state in a given
PLTS de�nes a probability space over observations and that our syntactic re-
strictions ensure that the sets of observations de�ned by any fuzzy formula are
measurable in a precise sense. State formulas will then be interpreted with re-
spect to states in PLTSs, with a state satisfying a formula of the form ��p if
the measure of observations corresponding to the state is at least p.

2.3 Semantics of GPL

This subsection formalizes the notions described informally above. We �rst de�ne
observations of a PLTS and show how the observations from a given state in a
PLTS form a probability space. We then use these probability spaces to interpret
GPL formulas. In what follows we �x sets Act and Prop.

PLTSs and Measure Spaces of Observations To de�ne the observation
trees of a PLTS we introduce partial computations, which will form the nodes of
the trees.

De�nition2. Let L = (S; �; P; I) be a PLTS. Then a sequence of the form

s0
a1! s1 � � �

an! sn is a partial computation of L if n � 0 and for all 0 � i < n,

si
ai+1
! si+1.

Note that any s 2 S is a partial computation. If � = s0
a1! s1 � � �

an! sn is a
partial computation then we de�ne fst(�) to be s0 and lst(�) to be sn. We also

3 In other words, formulas must be alternation-free in the sense of [EL86].
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use (�; �0 2)CL to refer to the set of all partial computations of L and take
CL(s) = f� 2 CL j fst(�) = sg for s 2 S. We de�ne the following notations for
partial computations.

De�nition3. Let � = s0
a1! s1 � � �

an! sn and �0 = s00
a01! s01 � � �

a
n0! s0n0 be partial

computations of PLTS L = (S; �; P; I), and let a 2 Act.

1. If sn
a
! s00 then �

a
! �0 is the partial computation s0

a1! s1 � � �
an! sn

a
! s00

a01!

s02 � � �
an0! s0n0 .

2. �0 is a pre�x of � if �0 = s0
a1! s1 � � �

ai! si for some i � n.

We also introduce the following terminology for sets of partial computations.

De�nition4. Let L = (S; �; P; I) be a PLTS, and let C � CL be a set of
computations.

1. C is pre�x-closed if, for every � 2 C and �0 a pre�x of �, �0 2 C.
2. C is deterministic if for every �; �0 2 C with � = s0

a1! s1 � � �
an! sn

a
! s � � �

and �0 = s0
a1! s1 � � �

an! sn
a0

! s0 � � �, either a 6= a0 or s = s0.

The term pre�x-closed is standard, but the notion of determinacy of sets of
partial computations deserves some comment. Intuitively, if two computations
in a deterministic set of partial computations share a common pre�x, then the
�rst di�erence they can exhibit must involve transitions labeled by di�erent
actions; they cannot involve di�erent transitions with the same action label.

We can now de�ne the deterministic trees, or d-trees, of a PLTS L as follows.

De�nition5. Let L = (S; �; P; I) be a PLTS. Then ; 6= T � CL is a d-tree if
the following hold.

1. There exists an s 2 S such that T � CL(s).
2. T is pre�x-closed.
3. T is deterministic.

If C is a d-tree then we use root(C) to refer to the s such that C � CL(s) and

edges(C) to refer to the relation f(�; a; �0) j �; �0 2 C ^ 9s0 2 S:�0 = �
a
! sg.

We use TL to refer to all the d-trees of L and set TL(s) = fT 2 TL j root(T ) =

sg. We call T 0 a pre�x of T if T 0 � T . We write T
a
! T 0 if froot(T )

a
! �0 j �0 2

T 0g � T ; intuitively, T 0 is then the subtree of T pointed to by an a-labeled edge.
A d-tree T is �nite if jT j <1. Finally, we say that a d-tree is maximal if there
exists no d-tree T 0 with T � T 0 and use ML and ML(s) to refer to the set of
all maximal d-trees of L and all maximal d-trees of L rooted at s, respectively.

We wish to view the maximal deterministic d-trees of a PLTS as the \out-
comes" of the PLTS and to talk about the likelihoods of di�erent sets of out-
comes. In order to do this, we de�ne a probability space over maximal d-trees
rooted at a given state of L. The construction of this space is very similar in
spirit to the standard sequence space construction for Markov chains [KSK66]:
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we de�ne a collection of \basic cylindrical sets" of maximal trees and use them
to build a probability space over sets of maximal trees. The technical details
appear below; in what follows, �x L = (S; �; P; I).

A basic cylindrical subset of ML(s) contains all trees sharing a given �nite
pre�x.

De�nition6. Let s 2 S, and let T 2 TL(s) be �nite. Then BT � ML(s) is
de�ned as: BT = f T 0 2ML j T � T 0g:

We can also de�ne the measure of a basic cylindrical set as follows.

De�nition7. Let T 2 TL(s) be �nite, and let BT be the associated basic cylin-
drical set. Then the measure, m(BT ), of BT is given by:

m(BT ) = �(�;a;�0)2edges(T )P (lst(�); a; lst(�
0)):

Intuitively, m(BT ) represents the proportion of all maximal d-trees emanating
from the root of BT that have BT as a pre�x.

For any given state s in L we can form the associated collection of basic
cylindrical sets B�s consisting of sets of the formBT for �nite T with root(T ) = s.
We can then de�ne a probability space (ML(s);Bs;ms) as follows.

De�nition8. Let s 2 S. Then Bs is the smallest �eld of sets containing B�s and
closed with respect to denumerable unions and complementation. ms : Bs !
[0; 1] is then de�ned inductively as follows.

ms(BT ) = m(BT )

ms(
[
i2I

Bi) =
X
i2I

ms(Bi) for pairwise disjoint Bi

ms(B
c) = 1�ms(B)

It is easy to show that for any s, ms is a probability measure over Bs. Conse-
quently, (ML(s);Bs;ms) is indeed a probability space. We refer to a set M �
ML(s) as measurable if M 2 Bs.

Semantics of Fuzzy Formulas In the remainder of this section we de�ne the
semantics of GPL formulas with respect to a �xed PLTS L = (S; �; P; I) by
giving mutually recursive de�nitions of a relation j=L� S � � and a function
�L : 	 ! 2ML . The former indicates when a state satis�es a state formula, while
the latter returns the set of maximal d-trees satisfying a given fuzzy formula. In
this subsection we present �L; the next subsection then considers j=L. In what
follows we �x L = (S; �; P; I).

Our intention in de�ning �L( ) is that it return trees that, interpreted as
(non-probabilistic) labeled transition systems, satisfy  interpreted as a mu-
calculus formula. To this end, we augment �L with an extra environment pa-
rameter e : V ar ! 2ML that is used to interpret free variables. The formal
de�nition of �L is the following.
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De�nition9. The function �L is de�ned inductively as follows.

{ �L(�)e = [sj=L�ML(s)
{ �L(X)e = e(X)

{ �L(hai )e = fT j 9T 0 : T
a
�! T 0 ^ T 0 2 �L( )eg

{ �L([a] )e = fT j (T
a
�! T 0)) T 0 2 �L( )eg

{ �L( 1 ^  2)e = �L( 1)e \�L( 2)e
{ �L( 1 _  2)e = �L( 1)e [�L( 2)e
{ �L(�X: )e = [1i=0Mi, where M0 = ; and Mi+1 = �L( )e[X 7!Mi].
{ �L(�X: )e = \1i=0Ni, where N0 =ML and Ni+1 = �L( )e[X 7! Ni].

When  has no free variables, �( )e = �( )e0 for any environments e; e0. In
this case we drop the environment e and write �L( ).

Some comments about this de�nition are in order. Firstly, it is straight-
forward to show that the semantics of all the operators except � and � are
those that would be obtained by interpreting maximal deterministic trees as
labeled transition systems and fuzzy formulas as mu-calculus formulas in the
usual style [Koz83]. Secondly, because d-trees are deterministic it follows that if
T 2 �L(hai ) then T 2 �L([a] ). Finally, the de�nitions we have given for �
and � di�er from the more general accounts that rely on the Tarski-Knaster �x-
point theorem. However, because of the \alternation-free" restriction we impose
on our logic and the fact that d-trees are deterministic, the meanings of �X: 
and �X: are still least and greatest �xpoints in the usual sense.

We close this section by remarking on an important property of �L. For
a given s 2 S let �L;s( ) = �L( ) \ ML(s) be the maximal d-trees from s
\satisfying"  . We have the following.

Theorem10. For any s 2 S and  2 	 , �L;s( ) is measurable4.

Semantics of State Formulas We now de�ne the semantics of state formulas
by de�ning the relation j=L.

De�nition11. Let L = (S; �; P; I) be a PLTS. Then j=L is de�ned inductively
as follows.

{ s j=eL A i� A 2 I(s).
{ s j=eL :A i� A 62 I(s).
{ s j=eL �1 ^ �2 i� s j= �1 and s j= �2.
{ s j=eL �1 _ �2 i� s j= �1 or s j= �2.
{ s j=eL �>p i� ms(�L;s( )e) > p.
{ s j=eL ��p i� ms(�L;s( )e) � p.

An atomic proposition is satis�ed by a state if the proposition is a mem-
ber of the propositional labeling of the state. Conjunction and disjunction are
interpreted in the usual manner, while a state satis�es a formula �>p i� the
measure of the observations of  rooted at s exceeds p, and similarly for ��p .

4 The question of whether the observations of non-alternation free formula are mea-
surable is still open
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Properties of the Semantics We close this section by remarking on some of
the properties of GPL. The �rst shows that the modal operators for fuzzy formu-
las enjoy certain distributivity laws with respect to the propositional operators.

Lemma12. For a PLTS L, fuzzy formulas  1 and  2 and a 2 Act, we have:

1. �L(hai( 1 _  2)) = �L(hai 1 _ hai 2)
2. �L([a]( 1 _  2)) = �L([a] 1 _ [a] 2)
3. �L(hai( 1 ^  2)) = �L(hai 1 ^ hai 2)
4. �L([a]( 1 ^  2)) = �L([a] 1 ^ [a] 2)
5. �L([a] 1 ^ hai 2) = �L(hai( 1 ^  2))

That [a] distributes over _ and hai over ^ is due to the determinacy of d-trees.
Based on Theorem 10 and the de�nition of �L, the next lemma also holds.

Lemma13. Let s 2 S, a 2 Act and  ;  1;  2 2 	 . Then we have the following.

ms(�L( 1 _  2)) = ms(�L( 1)) +ms(�L( 2))�ms(�L( 1 ^  2)) (1)

ms(�L(hai )) =
X

(s;a;s0)2�

P (s; a; s0) �ms0(�L( )) (2)

ms(�L([a] )) =

�
ms(�L(hai )) if (s; a; s0) 2 � for some s0

1 otherwise
(3)

Finally, although our logic only allows a restricted form of negation, we do have
the following.

Lemma14. Let L = (S; �; P; I) be a PLTS with s 2 S, and let  and � be fuzzy

and state formulas, respectively. Then there exist formulas neg( ) and neg(�)
such that:

�L;s(neg( )) =ML(s) � �L;s( ) and s j=L neg(�), s 6j=L �:

Proof. Follows from the duality of ^/_, [a]/hai, �/�, and �>p/��1�p.

3 Expressiveness of GPL

In this section we illustrate the expressive power of GPL by showing how three
quite di�erent probabilistic logics may be encoded within it.

3.1 Encoding Probabilistic Modal Logic

Probabilistic Modal Logic (PML) [LS91] is a probabilistic version of Hennessy-
Milner logic [HM85] that has been shown to characterize probabilistic bisimu-
lation equivalence over PLTSs. The formulas of the logic are generated by the
following grammar:

� ::= A j �1 ^ �2 j :� j haip�
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where 0 � p � 1, A 2 Prop and a 2 Act. Formulas are interpreted with respect
to states in a given PLTS L = (S; �; P; I) via a relation j=PML

L � S � �. The
de�nition appears below; the cases for : and ^ have been omitted.

s j=PML
L A i� A 2 I(s)

s j=PML
L haip� i�

P
fs0 j (s;a;s0)2� ^ s0j=PML

L
�g P (s; a; s

0) � p

Note that a state s satis�es haip� provided that the probability of taking
an a-transition to a state satisfying � is at least p. This observation suggests
the following encoding function EPML for translating PML formulas into GPL
formulas.

EPML(�) =

8>><
>>:

� if � 2 Prop
EPML(�1) ^ EPML(�2) if � = �1 ^ �2
neg(EPML(�

0)) if � = :�0

��phaiEPML(�
0) if � = haip�

0

In essence, the translation e�ectively replaces all occurrences of haip by ��p.
We have the following.

Theorem15. Let � be a PML formula and s be a state of PLTS L. Then

s j=PML
L � i� s j= EPML(�).

3.2 Encoding pCTL�

pCTL� [ASB+95] represents a probabilistic variant of the temporal logic CTL� [EH86].
The latter logic is interpreted with respect to Kripke structures; the former is
interpreted with respect to structures referred to in [ASB+95] as Markov pro-

cesses (MP), which may be viewed as probabilistic Kripke structures. It turns
out that MPs form a subclass of PLTSs. This section will show that pCTL� has
a uniform encoding in GPL.

A Markov process may be seen as a PLTS having only one action and in
which every state has at least one outgoing transition.

De�nition16. Let Act = fag. Then a Markov process (MP) is a PLTS (S; �; P; I)
such that for any s 2 S,

P
fs0 j (s;a;s0)2�g P (s; a; s

0) = 1.

It is straightforward to see that the d-trees of a MP are in fact isomorphic
to sequences of states from the MP: a sequence � = s0s1 : : : coincides with the
d-tree f�0; �1; : : :g, where �0 = s0 and �i+1 = �i

a
! si+1. It then turns out that

the measure space of d-trees for a state in a MP coincides with the standard
sequence space construction for Markov chains [KSK66]. Consequently, in the
following we will use the function ms to refer to the measure of both sets of
sequences and sets of d-trees. We also use the following notations on in�nite
sequences � = s0s1 : : :: �[i] = si, and �

i = sisi+1 : : :.
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Interpreting GPL over Markov Processes As every state in a MP has an
outgoing transition, the semantics of the GPL constructs hai and [a] coincide.
That is, when M is a MP following from De�nition 9 implies that �M(hai ) =
�M ([a] ):

In the rest of this subsection we will show that pCTL� can be encoded in
GPL. What makes the encoding possible are that:

{ The logic GPL is a two-level logic, much like CTL� and pCTL�. Conse-
quently, probabilistic quanti�ers in pCTL� formulae can be translated to
probabilistic quanti�er of GPL formulae.

{ The semantics of fuzzy formulae are sets of sequences, when the model is
a Markov chain, and thus, fuzzy formulae play the role of linear-time �-
calculus formulae. Given that alternation-free linear time modal �-calculus
is as expressive as linear time temporal logic (LTL) [Sti92], the LTL portion
of pCTL� (i.e., the path formulae of pCTL�) can be embedded into fuzzy
formulae.

This encoding contrasts with the encoding of CTL� intomodal �-calculus [EL86],
where alternation is needed in the translation; the reason being that, unlike GPL,
modal �-calculus does not have path quanti�ers.

pCTL� Let (A 2)Prop be a set of atomic propositions. The grammar below
summarizes the syntax of pCTL�, which has two levels|state formulas (�) and
path formulas ( ). State formulas specify properties that hold in states of a MP
while path formulae specify properties of execution sequences.

� ::= A j :� j �1 _ �2 j Pr<p j Pr>p 

 ::= � j : j  1 _  2 j X j  1U 2

Here Pr>p and Pr<p are probabilistic quanti�ers, while X denotes the next-state
and U the until operator, respectively

The semantics of pCTL� formulas is given with respect to a MP M =
(S; �; P; I) via a relation j=M relating states in M to state formulas, and paths
(in�nite state sequences) in M to path formulas. The interpretations of : and _
are standard, and we omit them; what follows de�nes the meanings of the other
operators.

s j=pCTL
�

M A i� A 2 I(s)

s j=pCTL
�

M Pr<p i� ms(f� j � j=pCTL
�

M  g) < p

s j=pCTL
�

M Pr>p i� ms(f� j � j=pCTL
�

M  g) > p

� j=pCTL
�

M � i� �[0] j=pCTL
�

M �

� j=pCTL
�

M X i� �1 j=pCTL
�

M  

� j=pCTL
�

M  1 U 2 i� 9k � 0 : �k j=pCTL
�

M  2 ^ 8j : 0 � j < k : �k j=pCTL
�

M  1

Our encoding of pCTL� in GPL translates state formulas into state formulas and
path formulas into fuzzy ones. Our approach relies on the following recursive
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characterization of U: � j=M  1U 2 i� � j=M  2 _ ( 1 ^ X( 1 U 2)): The
encoding may now be given as a function EpCTL� as follows, where 
 is either a
state formula or a path formula.

EpCTL�(
) =

8>>>>>>>><
>>>>>>>>:


 if 
 2 Prop
neg(EpCTL�(
0)) if 
 = :
0

EpCTL�(
1) _ EpCTL�(
2) if 
 = 
1 _ 
2
��pneg(EpCTL�( )) if 
 = Pr<p 
�>pEpCTL�( ) if 
 = Pr>p 
haiEpCTL�( ) if 
 = X 
�X:(EpCTL�( 2) _ (EpCTL�( 1) ^ haiX)) if 
 =  1U 2

We now have the following.

Theorem17. Let M be a MP, let s be a state in M , and let � be a path in M .

Then:

1. For any pCTL� state formula �, s j=pCTL
�

M � i� s j=M EpCTL�(�).

2. For any pCTL� path formula  , � j=pCTL
�

M  i� � 2 �M (EpCTL�( ))

3.3 Reconstructing the Logic of Huth and Kwiatkowska

Huth and Kwiatkowska develop a notion of quantitative model checking [HK97] in
which one calculates the likelihood with which a system state satis�es a formula.
The basis for their approach lies in a semantics for the modal mu-calculus that
assigns \probabilities", rather than truth values, to assertions about states in
a PLTS. In this section we brie
y review their approach, o�er a criticism of it,
and show how GPL provides a principled means of remedying the criticism.

The syntax of their logic coincides with the semantics of our fuzzy formu-
las with the following exceptions: (1) they allow negation (although in such
a way that negations can be eliminated in the usual manner); (2) the only
atomic propositions are tt (\true") and � (\false"); (3) no use of the proba-
bilistic quanti�ers ��p and �>p is allowed. They then present three semantics
for the logic that di�er only in their interpretation of conjunction. Each inter-
prets formulas as functions mapping states to numbers in [0; 1]; formally, given
PLTS L, [[ ]]L : S ! [0; 1] represents the interpretation of formula  . What
follows presents the relevant portions of these semantics.

[[tt]]L(s) = 1

[[hai ]]L(s) =
X

s02�(s;a)

P (s; a; s0) � [[ ]]L(s
0)

[[ 1 ^  2]]L(s) = f([[ 1]]L(s); [[ 2]]L(s))

The meanings of the other boolean and modal operators may be obtained using
dualities (e.g. [[[a] ]]L(s) = 1 � ([[hai: ]]), while the meanings of �xed points
may be obtained using the usual Tarski-Knaster construction. The semantics of
^ contains a parameter f ; [HK97] provides three di�erent instantiations of f .
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1. f(x; y) = min(x; y)
2. f(x; y) = x � y
3. f(x; y) = max(x+ y � 1; 0)

Each unfortunately has its drawbacks. The �rst two fail to validate some ex-
pected logical equivalences; for example it not the case that tt is equivalent to
 _ : . The authors refer to the third as a \fuzzy" interpretation and indicate
that it is intended only to provide a \lower approximation" on probabilities;
\real" probabilities are therefore not calculated.

GPL permits a similar interpretation to be attached to the mu-calculus, but
in such a way that exact probabilities may be assigned to formulas. Consider the
function [[ ]]GPLL given by:

[[ ]]GPLL (s) = ms(�L( )):

One can show that this interpretation preserves much of the semantics of Huth
and Kwiatkowska; in particular, Lemmas 13 and 14 show that this de�nition at-
taches the same interpretations to the modalities. It is also the case that expected
logical equivalences hold, and that this interpretation yields a probability with
a precise, measure-theoretic interpretation. Finally, it should be easy to observe
that our logic coincides with probabilistic bisimulation [LS91] { a property not
true of Huth and Kwiatkowska's interpretation.

4 Model Checking

This section now describes a procedure for determining whether or not a given
state in a �nite-state PLTS satis�es a GPL formula. We present the algorithm
in two stages. The �rst shows how to calculate the measure of observations that
are rooted at a given PLTS state and satisfy a fuzzy formula; the second then
shows how this routine may be used to implement full GPL model checking.
We assume that the formulas to be considered have no unguarded occurrences
of bound variables. That is, in every sub-formula of the form �X: , where � is
either � or �, each occurrence of X in  falls within the scope of a hai or a [a]
operator. Any mu-calculus formula may be transformed into one satisfying this
restriction. In the remainder of this section we �x a speci�c PLTS L = (S; �; P; I).

4.1 Computing the Measure of Fuzzy Formulas

This subsection sketches a procedure modchk-fuzzy whose task is to compute
ms0(�L( )) for a given fuzzy formula  and a state s0 of the PLTS. The algo-
rithm consists of the following steps.

1. From L, s0 and  , construct a dependency graph.
2. From the graph, extract a system of (non-linear) measure equations.
3. Calculate a speci�c solution to these equations; one of the results will be

ms0(�L( )).

The remainder of this subsection describes each of these steps in more detail,
with intuitive explanations for why the constructions work.
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A graph construction. The �rst step in modchk-fuzzy involves constructing a
graph that describes the relationship between the quantity ms0(�L( )) that we
wish to compute and quantities of the formms(�L( 0)), where s is a derivative of
s0 and  0 a formula derived appropriately from  . This graph will have vertices
of the form (s; F ), where s 2 S and F is a set of fuzzy formulas. The edges from
(s; F ) then provide \local" information regarding ms(�L(^F )).

In order to de�ne the graph formally we need the following notions.

De�nition18. For a closed fuzzy formula de�ne the closure, written asCl( ),
as the smallest set of formulae satisfying the following rules:

{  2 Cl( )
{ if  0 =  1 ^  2 or  1 _  2 then  1;  2 2 Cl( )
{ if  0 = hai 00 or [a] 00 for some a 2 Act, then  00 2 Cl( )
{ if  0 = �X: 00 then  00[�X: 00=X] 2 Cl( ) (� is either � or �)

One may easily show that Cl( ) contains no more elements than  contains
sub-formulas.

The node set N in the graph is the set S � 2Cl( ); that is,nodes have form
(s; F ), where s 2 S and F � Cl( ). We further introduce the following classi�-
cation on nodes.

{ (s; F ) is a true node if F = ; or if every element of F has form [a] 0 and for
every such a, s is incapable of an a-transition.

{ (s; F ) is a false node if there exists a state formula � 2 F with s 6j=L � or if
there exists a formula of the form hai 0 and s is incapable of an a-transition.

{ (s; F ) is an and-node if there exists a formula  1 ^  2 2 F .
{ (s; F ) is an action-node if every formula in F has form hai 0 or [a] 0.
{ (s; F ) is a �-node if there exists a formula  0 2 F containing a top-level
�xpoint sub-formula of form �X: 00; it is a �-node otherwise.

Note that these categories overlap one another.
The edges in the graph are labeled by elements drawn from the set Act [

f�+; ��g (where it is assumed that �+; �� 62 Act). The edge set E � N � (Act [
f�+; ��g)� N is de�ned as follows.

1. If n = (s; F ) is a true node or a false node,5 then n is a sink node;
2. else if (s; F ) contains state formulas then ((s; F ); �+; (s; F 0)) 2 E, where F 0

is F with all state formulas deleted;
3. else if (s; F ) contains a �xpoint formula  0 = �X: 00 (where � is � or �)

then ((s; F ); �+; (s; F � f 0g [ f 00[ 0=X]g)) 2 E;
4. else if  =  1 ^  2 2 F then ((s; F ); �+; (s; F � f g [ f 1;  2g)) 2 E;
5. else if (s; F ) is not an and-node and  =  1_ 2 2 F then ((s; F ); �+; (s; F�
f g[f 1g) 2 E, ((s; F ); �+; (s; F �f g[f 2g) 2 E, and ((s; F ); ��; (s; F �
f g [ f 1;  2g)) 2 E;

5 Determining whether a node is false may require determining if s j=L � for some state
formula. This can be done by (recursively) invoking the model-checking procedure
described in the next section.
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6. else if (s; F ) is an action node, let Fa = f 0 j hai 0 2 F or [a] 0 2 Fg.
Then for any a 2 Act with Fa 6= ; and s0 2 S such that (s; a; s0) 2 �,
((s; F ); a; (s0; Fa)) 2 E.

Intuitively, an edge ((s; F ); `; (s0; F 0)) indicates a \local relationship" between
ms(�L(^F )) and ms0(�L(^F 0)). To see this, �rst note that if (s; F ) is a true
node (false node) then ms(�L(^F )) = 1(0). Now suppose that (s; F ) is an or-
node to which case 5 applies. This means that F = F 0 [ f 1 _  2g, and the
semantics of the logic entails that ^F and (^F 0 ^ 1) _ (^F 0 ^ 2) are logically
equivalent. From Lemma 13 we may therefore conclude the following.

ms(�L(^F )) = ms(�L(^F
0^ 1))+ms(�L(^F

0^ 2))�ms(�L(^(F
0[f 1;  2g)))

This observation is encoded in the �+ and �� edges emanating from (s; F ).
Similar observations hold for the other nodes, with the exception of action nodes,
which we discuss in more detail below.

Generating equations from the graph. We now explain how to generate a system
of equations from the graph described above. The system will contain one vari-
able, Xn, for each node n in the graph and one equation containing this variable
as its left-hand side. The right-hand side of the equation for Xn is generated as
follows, based on the edges emanating from n.

1. If n is a true node then the equation for Xn is Xn = 1; if n is a false node,
the equation for Xn is Xn = 0.

2. If there is an edge of the form (n; �+; n0) then the equation for Xn is

Xn =
X

(n;�+;n0)2E

Xn0 �
X

((n;��;n0)2E

Xn0 :

3. If n = (s; F ) is an action node, let An = fa j (n; a; n0) 2 Eg. Then the
equation for Xn is

Xn =
Y
a2An

X
(n;a;(s0;F 0))2E

(P (s; a; s0) �X(s0;F 0)):

Intuitively, these equations are intended to re
ect relationships among the mea-
sures associated with each vertex. The right-hand side of in the equation associ-
ated with an action node re
ects this intuition. A small example illustrates why.
Suppose that action node (s; F ) is such that F = fhai 1; hbi 2g. Since this is not
a false node, it follows that s has both a- and b-transitions. The question is, what
is the measure of observations rooted at s and satisfying ^F? Each such obser-
vation would select one a-transition and one b-transition from s, with the target
of the a-transition then being the root of an observation satisfying  1 and simi-
larly for the target of the b-transition. For a given combination of single a- and
b-transitions with target states sa and sb, the measure of observations using these
transitions and satisfying ^F is P (s; a; sa)�msa(�L( 1))�P (s; b; sb)�msb(�L( 2)).
Using simple symbol pushing, it is then easy to show that the total measure of

301Probabilistic Temporal Logics via the Modal Mu-Calculus     



observations emanating from s and satisfying ^F is characterized by the right-
hand side of the equation above.

We now have the following.

Lemma19. Let E = fXn = Eng be the equations generated above, and let A

be the \vector" fXn = ms(�L(^F ))g, where n = (s; F ). Then A is a solution to

E.

Solving the equations. The previous lemma indicates that the equations we gen-
erate are \faithful" to the measures we wish to calculate in the sense that they
are indeed a solution to the equations. However, in general there will be many
such solutions, and the question then arises as to how we determine which solu-
tion indeed corresponds to the measures we want. The procedure modchk-fuzzy

does so as follows.

1. Compute the strongly connected components of the graph from which the
equations are constructed and topologically sort them.

2. Propagate solutions as far as possible: If a solution has been computed for
a variable, replace all occurrences of the variable in the right-hand sides by
the variable.

3. Beginning at the end of the strongly connected component list, process each
component C as follows.
(a) If C contains a �-node, assign each variable corresponding to a node in

C the value 0; otherwise, assign each variable the value 1.
(b) Repeatedly calculate new values for the variables of C by evaluating each

right-hand side using the old values. Stop when values don't change (or
fall within a tolerance � that is a parameter to the algorithm).

(c) Propagate these values.

In general, this algorithm requires the speci�cation of an \error tolerance" �
because the quantities being manipulated are real numbers. So the algorithm
is approximation-based. However, all the functions being used are continuous,
and hence the iteration process described above converges. We now have the
following.

Lemma20. Let s 2 S and  be a fuzzy formula. Then the quantity calculated

for X(s;f g) converges to ms(�L( )).

4.2 Model Checking and GPL

The procedure modchk-fuzzy may now be used to build a model-checker for GPL.
This model checker engages in a case analysis on the formula � and performs
the obvious operations if the formula is not of the form ��p or �>p . In these
latter two cases, modchk-fuzzy is called to calculate ms(�L( )), and the answer
compared to p appropriately. As modchk-fuzzy is an approximation-based nu-
merical algorithm, the usual numerical issues must be confronted in performing
these comparisons. In particular, if the computed answer is close enough to p to
fall within the margin of error, then only indeterminate answers can be given.

302 Murali Narasimha  et al.



4.3 Discussion about complexity

The algorithm just described relies on the use of numerical approximation tech-
niques. However, in certain cases exact solutions can be calculated. For example,
if the PLTS is in fact a MP then the equation system generated is linear. In ad-
dition, results of [CY88] suggest that this linear system can be converted into
one that has a unique solution. In this case, the equations can be solved exactly.

The non-linearity of the equations we consider, for model-checking PLTS,
is a direct consequence of the program model (which allows di�erent kinds of
actions, i.e., when jActj > 1) and our semantics (where observations are deter-
ministic trees). Consequently, non-linearity in the measure equations is a fact
that any solution technique, we adopt, will have to contend with. Furthermore,
since there can be no direct technique for solving arbitrary polynomial equations
(due to a result of Galois) we will have to depend upon iterative techniques. A
characteristic of iterative techniques, shared by our work, is that the complexity
depends upon the precision of answers demanded. We have been investigating the
use of symbol algebra tools, such as Maple, in implementing our model-checking
procedure and hope to report our experiences in the near future.

5 Concluding Remarks

We have presented a uniform framework for de�ning temporal logics on reactive
probabilistic transition systems. Our approach is based on using the modal mu-
calculus to de�ne measurable sets of observations of such systems. We have shown
that our logic is expressive enough to encode two di�erent existing temporal
logics, and we have also demonstrated that it may be used to rectify an infelicity
in a third. A model-checking procedure for the logic was also presented.

As for future work, we believe that we can improve on the algorithm pre-
sented here by using results similar to those in [CY88] to transform our equation
systems into ones having unique solutions. If this is the case, then we can use
traditional solution techniques for nonlinear equations to compute measures in a
numerically robust manner. We would also like to implement these algorithms.
Another important issue for future work is that of applying our logic to more
general transition systems (for example, the transition systems of [Seg95]) and es-
tablishing its relation to probabilistic automata[Paz71]. Such an extension would
allow translation of pCTL� interpreted over probabilistic non-deterministic sys-
tems into our framework, much like the translation we have shown in this paper,
and provide an e�cient model-checking procedure for the same. It would also be
useful to investigate the adaptation of our techniques to models of distributed
computation in which resources may probabilistically fail, such as the one pre-
sented in [PSC+98].

The work being presented here also has applications to edge-pro�le-driven
data 
ow-analysis [Ram96, BGS98], where the likelihood with which program
properties hold is calculated; such calculation can then be used to perform
pro�le-driven optimization [BL92]. Recent work [Ste91, Sch98] on reducing tradi-
tional data 
ow analysis problems to a model-checking problem can be extended
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to reduce pro�le driven DFA to probabilistic model-checking, and we propose to
investigate this further.

Acknowledgments: Murali Narasimha would like to thank S. Arun-Kumar and
E. Kaltofen for several helpful discussions on this topic.
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