A m-calculus Process Semantics of Concurrent
Idealised ALGOL

Christine Rockl' and Davide Sangiorgi?

! Technische Universitit Miinchen, D-80290 Miinchen, roeck1@in.tum.de
2 INRIA-Sophia Antipolis, F-06902 Sophia Antipolis, davide.sangiorgi@inria.fr

Abstract. We study the use of the w-calculus for semantical descrip-
tions of languages such as Concurrent Idealised ALGOL (CIA), combin-
ing imperative, functional and concurrent features. We first present an
operational semantics for CTA, given by SOS rules and a contextual form
of behavioural equivalence; then a w-calculus semantics. As behavioural
equivalence on w-calculus processes we choose the standard (weak early)
bisimilarity. We compare the two semantics, demonstrating that there is a
close operational correspondence between them and that the w-calculus
semantics is sound. This allows for applying the mw-calculus theory in
proving behavioural properties of CTA phrases. We discuss laws and ex-
amples which have served as benchmarks to various semantics, and a
more complex example involving procedures of higher order.

1 Introduction

Reynolds formalised Idealised ALGOL (IA) as a simple imperative language en-
riched with a procedural mechanism provided by a typed call-by-name \-calculus
[Rey81]. TA combines in an elegant way imperative and functional features, and
since its introduction has been the object of extensive study (cf. [OT97]). Con-
current Idealised ALGOL (CIA) was introduced by Brookes as an extension of TA
with shared variable parallelism [Bro96]. CIA allows parallel composition of com-
mands and features an await operator for imposing atomicity. Brookes [Bro96]
has presented an elegant denotational model for CIA, extending a Kripke-style
Possible Worlds semantics. From a semantical point of view, CIA is a challenging
language, since it combines imperative, functional and concurrent features, and
possesses an atomicity construct.

In this paper we study semantics of CIA given by a translation into the -
calculus. The main reasons for using the w-calculus are the following. It offers a
well-developed theory that we wish to exploit, through the translation, to reason
on CIA terms. We also intend to profit from the w-calculus being, syntactically,
a first-order language, i.e., values only consist of names (in typed versions, there
may also be basic values such as integers and booleans). In contrast, CIA is
higher-order, thus values may be arbitrary terms. In higher-order languages,
defining satisfactory notions of behavioural equivalences—not to mention proof
techniques for them—may be hard. Proofs of process equivalences are compli-
cated by universal quantifications over terms. Further, it is in general hard to es-
tablish that a notion of bisimilarity is a congruence. (For higher-order languages,

W. Thomas (Ed.): FOSSACS’99, LNCS 1578, pp. 306-321, 1999.
(© Springer-Verlag Berlin Heidelberg 1999

A Pi-Calculus Process Semantics of Concurrent Idealised ALGOL 307

this is usually proved using Howe’s technique [How96]; attempts to extend this
technique to languages with local state, however, have been unsuccessful so far;
see discussions in [FHJ95].) A further advantage of the m-calculus semantics is
that, as states are represented by processes, no snapback effects (reversibility
of state changes, cf. [AM96,AM97,0T97]) can occur; models representing states
by functions—usually denotational models do so—suffer from snapback effects,
which are usually removed by means of logical relations [OT97].

Our study is also motivated by the question of how appropriate the m-calculus
is for giving semantics to languages such as CIA. Previous work gives evidence
that the m-calculus can model references, functions and various forms of (non
atomic) parallelism [Wal95,Jon93,KS98,Mil92], but so far only limited forms of
combinations of these have been considered. In the case of imperative languages,
little effort has been spent in comparing 7-calculus to operational semantics, and
in using m-calculus translations for proving properties of the source languages.
Denotational approaches indicate a strong similarity between local names in the
m-calculus and local references in imperative languages; note that the mathe-
matical techniques employed in modelling the w-calculus [Sta96,FMS96] were
originally developed for the semantic description of local references. Yet names
and references behave rather differently: receiving from a channel is destructive—
it consumes a value—whereas reading from a reference is not; a reference has a
unique location, whereas a channel may be used by several processes for both
reading and writing; etc. Hence it is unclear if and how interesting properties of
imperative languages can be proved via a translation into the w-calculus.
Section 2 briefly introduces an SOS-style operational semantics for CIA along
with a contextual form of behavioural equivalence. Then a w-calculus semantics
is presented, together with soundness results for the encoding (Sections 3 and 4).
The main part of this paper is devoted to the discussion of concrete examples
(Section 5). We prove laws and examples from [MS88,Bro96,MT90a,MT90b], as
well as a more complex example involving procedures of higher order, namely the
equivalence between two CIA descriptions of two-places buffers (n-place buffers
could be dealt with similarly). Then we show that our semantics is not fully ab-
stract (Section 6). We present equivalent CIA phrases, the translations of which
are not bisimilar. We show how to handle these examples using types, especially
I/O-types. It is unclear whether the type systems we propose already yield full
abstraction (we conjecture they do not). Yet introducing more and more so-
phisticated types deteriorates the applicability to concrete proofs. However, our
experiments have led us to the conclusion that in most cases I/O types suffice.

2 Concurrent Idealised ALGOL

Syntax, typing and notations for CIA closely follow [Rey81,Bro96]. Data types
consist of integers and booleans; phrase types are constructible from variables,
expressions and commands using arrow type (for simplicity we omit tupling):

T = int | bool Data Types
o == var[r] | exp[r] | comm | (¢ — o) Phrase Types

308 Christine Rockl and Davide Sangiorgi

Data and variable types are lifted up to expression types via the rules

I'F ¢ : var[7]
I'tl: explr]’

'rtov:r
I't v : explr] and
Variables can be declared on data types only, whereas procedure definition, recur-
sion and conditional are uniformly applicable to all phrase types. An environment
I' is a partial function from identifiers to types, with domain dom(I").
The syntax is defined according to [Bro96]. However, for defining behavioural
equivalences we find it convenient to have explicit constructs for input (on vari-
ables) and output (of expressions); alternatively, we could have allowed the ob-
server direct access to the variables (we shall come back to this in Section 7).
Further we allow for the use of conditionals in the body of await statements.
The body of an await statement therefore consists of assignments, sequential
composition and conditionals. Syntax and typing rules are presented in Table 1
at the end of this paper.
We define an SOS-style operational semantics of CIA, using small-step transi-
tion rules (as opposed to a big-step or natural semantics) in order to capture the
nondeterministic behaviour resulting from the interaction of phrases via shared
variables. The rules are quite standard, with the exception of those needed for
modelling the atomicity required by await. Let P and P’ be phrases of variable,
expression or command type which do not contain free identifiers; o and ¢’ are
assignments closing up on all free variables of P and P'. We call a pair (P, o)
a configuration, and, if P is a command, we call it a command configuration. In
the sublanguage without await (CIA-{await}), the SOS rules are of the form

P.o) " (P o), (Po) W (PLo'), (Po) D3 (Pd). (Po) Lo,

where out(v) is the output of value v, in{v) the input of value v; 7 is an invisible
(internal) action; and the tick 4/ denotes termination. If P is an expression, the
tick carries the value resulting from its evaluation.

The command await guarantees for an atomic execution of a sequential compo-
sition of assignments and conditionals once its guard has been evaluated to true
(an evaluation to false results in a repetition after some period of busy-waiting).
During the evaluation of the guard and the execution of the body of an await
statement, any other computation has to be stopped. We achieve this by in-
troducing locked configurations (P, o). The tag £ represents a lock. Whenever
an await statement is executed, the configuration is marked with the lock ¢,
and all but the await component are prevented from running (this component
is marked itself so to be distinguishable from its context). The lock is released
either if the guarding boolean expression has been evaluated to false, or other-
wise after the command has been completed. The rules for locked configurations
are of the form (P,a); — (P',0"); further there are rules for introducing and
eliminating the lock from the configurations. Relation == is the reflexive and
transitive closure of —, and == is given by ==-+=5 (arbitrarily many in-
visible steps before and after the u transition).

Behavioural equality is defined in two steps: We first apply the (standard) defi-
nition of bisimilarity in value-passing process calculi to CIA command configu-

A Pi-Calculus Process Semantics of Concurrent Idealised ALGOL 309

rations (Definition 1); then, by closing it under all (closing) contexts, we obtain
an observational congruence applicable to all phrase types (Definition 2).

Definition 1 (Configuration bisimulation). A binary relation R upon com-
mand configurations is a configuration bisimulation if it is symmetric, and F1 R E
implies,

1. if B4 i) o1 then there is g9 s.t. E» :\/> o9,
2. if By — E| then there is E} s.t. E; = E} and E}RE},
3. if By %5 E} and p is an output or an input, then there is E} s.t. By == E}
and E{RE).
We write Ey & FE, if there is a configuration bisimulation R with E;REs.

We say that a context Con is closed wrt. a phrase P if) - Con[P] : comm (i.e.,
Con]P] does not contain free identifiers nor variables).

Definition 2 (Observational congruence). Let Py, P, be arbitrary phrases.
Then P, and P» are observationally congruent, written Py =,. P», if for every
context Con which is closed wrt. P; and Py, (Con[Py],0) = (Con[Px], ().

Observational congruence is the notion of behavioural equality on CIA phrases
we are interested in. It is however hard to prove equalities following its definition,
due to the universal quantification over the contexts.

We conclude the section with a useful fact about locked configurations. The
behaviour of an await statement is deterministic, both due to the absence of
parallel composition within its body and the incapability of expressions to change
a given assignment.

Lemma 1. (C,0); — (C",0")¢ with ¢ € {€, €} implies (C,a); ~ (C',0')¢.

Corollary 1. For every configuration (C,c), the following holds: FEither it di-
verges (i.e., there is an infinite computation of silent steps starting from (C, o))
or there is another configuration (C' o'y such that (C,o); == (C',0') and
(C,o) = (C',0").

3 The w-calculus

We translate CIA into a w-calculus language supplied with a simple type system.
This type system provides integer, boolean, product and channel types; we omit
the typing rules which are quite standard, assuming that all processes and ex-
pressions we write are well-typed. Channels are used to transmit values; they are

ranged over by a, b, .. .; variables are ranged over by z,y, Together, channels
and variables constitute the names, p,q, Integer and boolean constants are
denoted by n,m,.... Channels and constants are the wvalues, ranged over by v.

® denotes basic operators like addition, subtraction, complement, etc.

et=v|z| ®el|le®e Expressions
m a=pe) | p@) | T Prefix
R:=0|n.R|R+R|RR|(vp)R|[z=n]R|[x#n]R|!p(§).P Processes.

310 Christine Rockl and Davide Sangiorgi

A process is closed if it does not contain free variables. Otherwise it is open. For
the semantics of the w-calculus we adopt a labelled transition system. In contrast
to reduction semantics [Mil91], this allows us to use labelled forms of bisimulation
and to use the associated proof techniques [MS92]. Process transitions (in the

early style) are of the form P - P’ where p is given by

= (b)) | alo) | .

(vb)a(s) denotes the output of the values & on the name a, where b are those
channels among the names of ¥ which are private to the sender process; a(v) is
the input of values © over the channel a; finally, 7 represents an internal action.
We use the standard SOS rules of the 7-calculus. As in typed m-calculi (such
as in [Wal95]), there are rules for evaluating an expression to a value, so to be

able to infer transitions like (2 + 3).P ﬂ P. Weak transitions can be obtained
by adding arbitrarily many silent steps before and after a strong transition. We
write == for the reflexive and transitive closure of —, adopting the standard

convention that 7 %' €, and i def u for all visible labels p.
Bisimilarity is defined in the usual way (cf. for instance [MPW89]):

Definition 3 (Early bisimulation). A binary relation R upon closed pro-
cesses is a (weak early) bisimulation if it is symmetric, and RR.S implies

if R s R’ then there is S’ s.t. S = S’ and R'RS'.

Two processes R and S are (weakly early) bisimilar, written R =, S, if there is
a (weak early) bisimulation R with RR.S.

The definition extends to open processes by closing over all substitutions. In the
case of channel variables, however, one can often establish syntactic conditions
to avoid the substitution of all channels for a variable, but simply substitute
one fresh channel for the variable instead [San95a]. This also holds for those
processes which we obtain by translating CTA, in Section 4 (we shall not discuss
this further in this extended abstract). Also, even though early bisimilarity is not
preserved by arbitrary summation, it is preserved by guarded summation, which
suffices in our case. The bisimulation proof technique can be made more powerful
by combining it with up-to techniques, like “up to expansion” and “up to injec-
tive substitutions” [Mil89,MS92,San95b] (expansion is an asymmetric variant of
bisimulation taking into account the number of internal steps performed by the
processes [AKH92]).

4 Interpreting CIA in the m-calculus

The w-calculus interpretation of CIA is given by the rules in Tables 2 and 3 at
the end of this paper. The storage is modelled by registers of the form (in the
m-calculus, recursive process definitions are derivable from replication [Mil91])

Reg,[v] ' get, (v).Reg, [v] + put, (w).Reg, [w].

A Pi-Calculus Process Semantics of Concurrent Idealised ALGOL 311

Processes in the scope of fn, < {get,, put, } are allowed to read and modify the
content of Reg,. Configurations (C, o), with I'(¢) = {;};, translate to

Ko, < i, i) ([Res,, [0(:)] [[CT,).

CIA-{await}

A m-calculus interpretation of CTA necessitates certain care even in the absence
of await, due to the language combining imperative features with higher order.
We translate all phrases P into parameterised processes [P] i the fresh name
p is used to signal the termination of the execution of [[P]]p. The sequential
composition of two commands, for instance, is written as

[Ci:Ca], & wa)([Cil, 1aIC0,)-

First only [C1], is able to execute because of name ¢ guarding [C-] . As soon

as [C1],, terminates, it signals so on 7 thus releasing [C>] . Yet another example
of sequentiality are declarations,

[new [7] := E in C], = (vq)([E], | a(x)-(vn,)(Reg, [+] | [C],)).

Here parameter ¢ does not only guard [[C']]p, but is also used to transmit the
result of the evaluation of [E], to register Reg,. Suppose E is a value v, then

[new [r]s:=vin (], () @w).0| g(@).(vfn,)(Reg, [2]| [€1,))
~x (vn,)(Reg,[v] [[P],),

where =, is an application of some simple w-calculus laws (precisely the law
(v @)(q(v).R| ¢(x).S) = (v q)(R| S{v/x}) and the garbage-collection law (v q)R
~. R if ¢ is not free in R). Identifiers are modelled by processes sending along
a specified channel which is used to invoke a copy of the argument they repre-
sent. Both procedural arguments and recursion are translated using replication,
so fresh copies are available at every call (recall that CIA is a call-by-name
language). For instance, if P is a free identifier, called zp in the m-calculus
translation, then

[new [int] . :=1in P(I)],
~- (vin,)(Reg,[1] | El/ q)(@p{q).0|qv). (vz)(W{z,p) .im(r).getL(z).F(z).O))l.

~ v RN J

Declaration Invoking a copy Communicating Procedural
of procedure P argument and argument
termination
signal

There is a close operational correspondence between configurations (P,o) and
their encodings [(P,0)],. For the proof that the interpretation is sound, com-
mand configurations (C, o) are of particular interest (recall that a2 is defined
exactly upon these). Using >, for the expansion relation (cf. Section 3), we give

312 Christine Rockl and Davide Sangiorgi

some of the correspondences (the others are similar):

—(Cy0) L o' implies [(C,0)], = (B.0)7 ;
-G,)], 2R implies R > 0 and (C, o) Y, o';

out (v) —v
—(Co) 25 o'y implies [(C,)], 22 (¢, o")],

-[(C, o)1, -5 R implies either R >, [{C",a")], such that (C, o) = (C’,d"),
out (v) out(v)
or [(C,0)], ®x R — [(C',")], such that (C,0) —— (C’,d").

The operational correspondence relates every possible transition of a configura-
tion and of its encoding. A similar operational correspondence result holds for
weak transitions. Exploiting the congruence properties of =, the composition-
ality of the encoding, and the operational correspondence results, we can prove
that the encoding is sound. In the proof we also make use of an auxiliary encod-
ing C' which yields an even closer operational correspondence with CIA, and is
obtained from C by removing some “administrative” silent steps.

Let =, be the observational congruence on CIA-{await} defined analogously
to ~¢,c on full CIA.

Theorem 1 (Soundness). [Pi], ~. [P], implies Py ~7, P for arbitrary
CIA-{await} phrases P, and P;.

The converse (completeness) holds in the case of closed commands, but does not
extend to arbitrary phrases, as we shall discuss in Section 6.

Full CIA

The encoding |[]]p of phrases in full CIA follows the same compositional scheme
as for CIA-{await}, for instance

[C1:Cal, & wa) (Il |0 [C2D)).
What is different wrt. the encoding [.] is the use of a lock to impose mutual
exclusion on input, output, reading from and writing to a variable, and on await.
Before any of these commands can be executed, the lock has to be acquired; it
is released upon their termination. The lock is implemented by a process £.0.
At any time at most one copy of the lock is available to the whole program.
Acquiring the lock and continuing as R is modelled by £.R (the input “requires”
the lock); releasing the lock and continuing as R is translated by £.0 | R (a new
copy of the lock is released). Reading from a variable, for instance, now becomes:

¢ def ‘ i _
VI, = wa) V1, lagt,pt). _£_ -gt(z)(L0 |P(z).0))
Take lock Release lock
The command await is translated following a busy-wait strategy (cf. Table 3).
In fact, its encoding is similar to that of the while loop (modulo the lock, cf.

Table 2), only that a and p change their roles in the bodies of the conditionals.
Our previous example translates to

[new [int]::=1in P(!L)]]f; ~
~x (vin)(Reg,[1] | (vq)(Tr(9).0]q(v).(v2)(0(z, p).l2(r).L.get, (2).(£.0|7(2).0)))).

A Pi-Calculus Process Semantics of Concurrent Idealised ALGOL 313

The differing compilation rules are given in Table 3. The results of operational
correspondence and soundness are similar to those in CIA-{await} except that
now the m-calculus terms contain a lock /. So, instead of [P],, we now work with

processes of the form (v ¢)(£.0| |[P]]:;) (In the operational correspondence, the
configurations themselves are not locked, as Corollary 1 allows us to abstract
from those being locked.)

Theorem 2 (Soundness). (v ¢)(£.0] |[P1]]fj) (v €)(£.0] [[Pg]]f;) implies Py =,
Ps for arbitrary CIA phrases Py, and Ps.

The following result relates the two translations, [.] and [.]%, which allows us to
use the simpler encoding in the absence of await.

Theorem 3. [Pi], ~x [P2], implies (v0)((.0|[P1]}) ~x (v0)(£.0|[P2]}), and
thus Py &,c Pa, for arbitrary CIA-{await} phrases P, and P».

5 Examples of reasoning

Considering benchmark laws and examples from [MS88,Bro96,MT90a,MT90b],
we demonstrate that the m-calculus semantics yields simple proofs of these well-
known equalities. Further we show by a more complex example how to tackle
procedures of higher order.

¢ Basic properties of CTA operators, such as associativity of sequential compo-
sition, or associativity and commutativity of parallel composition, are straight-
forward consequences of analogous 7m-calculus laws (like associativity and com-
mutativity of parallel composition in the 7-calculus).

e Suppose that ¢ does not occur free in P’; and consider the following laws:

(L1) new [r]t:=vin P = P’

(L2) new [r]s:=vin (P;P') = (new [r]t:=vin P); P’
(L3) new [r]¢:=vin (P';P) = P';(new [r]::=v in P)
(L4) new [r]t:=vin (P || P') = (new[r]t:=wvin P)| P

The m-calculus proofs of these laws are all similar, and purely algebraic. As an ex-
ample, we present the proof of L2; recall from Section 4 that fn, ef {get,, put, }:

[new|[r]e:=v in (P; P)], ~x (vin,)(Reg,[v] | (v) ([P], |2[P],)) (1)
~x (vq)((vin)(Reg,[v]| (IP], |2.[P'],)) (2)
~x (v)((vin)(Reg,[v] | [P]) ¢ [P'],) (3)
~r [(new [r]i:=v in P); P')] .

Line (1) contains the encoding with v already written to Reg,; in Section 4 we
have shown that this process is bisimilar to the original encoding. In (2) the
restriction on ¢ is moved to an outer level, and in (3) the restriction on fn, is
removed from [P'] .

e The proof of the law (A\(z :). P)P' = P{P'/z} (validity of B-reduction) is an
extension of the proof of the validity of g-reduction in the w-calculus encoding
of the call-by-name A-calculus [Mil92]; it uses distributivity properties of private
replications, and structural induction (in this induction, there are more cases to

314 Christine Rockl and Davide Sangiorgi

consider wrt. the proof of the call-by-name A-calculus, but the structure of the
proof is similar).

e The law new [int]: := 1 in P(ls) = P(1) (where P is a free identifier of
appropriate type) is proved algebraically:

[new [int]e :=1in P(L)],

~x (vin)(Reg,[1]| (v q)(ZPr(q).0]q(v).(v x) (¥(z, p).!x(r).get, (2).7(2).0)))
~x (vq)(@r()-0|q(v).(vz)(W(z, p).(vn,)(Reg,[1] | 'z(r).get, (2).7(2).0)))
Rx (vq)(@r()-0|q(v).(v2)(W(z, p).l2(r).7(1).0))

[PMl,-
e Suppose again that P is a free identifier of appropriate type. Proving the law
new [inf]¢:= 0in P(.:=li +1) = P(skip)
essentially consists in showing that for arbitrary non-negative integer values v,

(vin,)(Reg,[v] | lz(r).[e :=le + 1],) =z lz(r).[skip],,

where z denotes the formal parameter of P (owing to P being a free identifier,
name z is provided by the observer).

e A simple m-calculus bisimulation relation can be used to prove that iteration
is expressible via recursion, i.e., if x is not free in B and C' then

while B do C = recuz.if B then (C; z) else skip.

e In our last, more substantial, example we show that two implementations
of a two-place buffer are equivalent (the example can be generalised to n-place
buffers). For simplicity we assume that all buffers store integer values. The exam-
ple involves both procedures of higher order and the await statement. Procedure
B below defines a one-place buffer; z), represents the clients, z,, a value stored
by a client, and z, is a client location, where a value retrieved from the buffer
is to be stored. We use sugared notation for the declarations and conditionals.

B f Xzp : 6.). new [bool] fl:=f, ¢t :== 0 in

(zdA(xy : int). await (Ifl = ff) then (ct := z,; fl:= tt))) /* put =/
(A(zr : var[int]). await (Ifl = tt) then (z, :=lct; fl:= ff)). /* get */

Analogously one can define buffers with two, or even more, places. Buffer B
below, e.g., is a two-place buffer. It possesses local variables ¢t; and cty, for
storing values, and a counter b to indicate how many values are currently stored.

B: = Azp:6:).new [int]ib:= 0, cty := 0, ¢ty :=01in
(zdA(xy : int). await (116 < 1) then
(if (146 = 0) then ct; := z, else cty := z,,);
b :=lib + 1))
(A(zr : var[inf]). await (10 > 1) then
T :=lcty;
if (140 = 2) then ct; :=!cty;
ib :=lib — 1)).

n-place buffers defined like B are single monolithic terms. Yet we can also define
n-place buffers in a modular way, by connecting n one-place buffers. In this case,

A Pi-Calculus Process Semantics of Concurrent Idealised ALGOL 315

however, it is necessary to distinguish the first n — 1 buffers from the last, which
acts as a barrier buffer. For the barrier buffer, we take the term B from above;
the head buffers HB are defined as follows:
HB « AMzp 1 0c). AM(zpt : int — comm). A\(xg: : var[ini] - comm).
new [bool] fi, :=f, [ind] ctp, := 0 in
(zp(A(zn : int). await (=!fl,) then (cty, 1= zn; fl, = tt)))
gt

|| rec z. (if (1f],) then (z,:(Ictn); fl, := 1, z) else z)

Again, z,, represents the clients; z,: and x4 represent the put and get procedures
of the server buffer which HB is connected to. The arguments for the clients z,
are a put procedure defined in HB itself, and the get procedure of the server
buffer. The boolean variable fi, indicates whether HB is full (in which case a
value is currently stored in ct,). Whenever HB is full, it attempts to transmit
its content to the server buffer, using the put procedure of the server. We can
then define a 2-place buffer by
B> & \(z,: 6.). B (HB z,).

For proving that By and By are observationally congruent, i.e., By =,. B2, we
translate them into the m-calculus so to be able to exploit the proof techniques
developed for it. First, however, applying the previously validated CIA law for
B-reduction (F1) we infer By a5, Bj, where

B, def AMzp : 6.).new [bool] fl =1, fl, .=, [int] ct:= 0, ctp :==0in
(a:;()\(a:n :int). await (-!f],) then (ct, := zn; fl, 1= tt)))
(Mz, : var[int]). await (Ifl) then (z, :=!ct; fl:=ff))
|| recz. (if (!f],) then ((await (=!f]) then (ct:=!ctn; fl:= tt)); fl, :=f); z).

It remains to show that By ~,. Bj. Let B?Ody and Bg(’dy be the bodies of the
procedures B; and Bj; they are obtained by stripping off the leading . It suffices
to prove, by “bisimulation up to expansion” (cf. Section 3), that the encodings
of B and B5°Y are bisimilar. Due to the presence of await we have to use

locks, hence the encoding [[.]]l, and, as required by Theorem 2, close the encoding
processes under the lock £. Roughly, the bisimulation up to expansion R which
we use for the proof is of the following form (we omit those processes resulting
from calls from clients that have not been served immediately):

R {(wOEO0[[BYT,), (v (£0] [B°V]))), empty buffers
(w00 [BY° @)]), (v)(£0] [[Bb"dy(0,), one value stored
|((y 0)(2.0| }|[B§’°dY(u,w)]]‘f), (v O)(€0[[B5°¥ (v,w)]})) two values stored

v,w : int},

where (informally) BY°% (v) (resp. BY°% (v, w)) is like BY°Y but with a value v
(resp. values v, w) stored in it; similarly for B2°® (v) (resp. BY°Y (v, w)).

Consider for instance the first pair of the relation; here the buffers are empty,
i, lib = 0 in BY°Y and !/l =!fi, = ff in B°Y. In that state the values of
cty, cty, ct and ctp do not matter, as they cannot be read. With corresponding

316 Christine Rockl and Davide Sangiorgi

sequences of transitions, s, the buffers accept a value v from their client and,
after storing it, signal the termination of that activity, thus

(v O(L0[[BY*VT,) == (v) (L0 [BY* (v)],)
(v O)(£.0][B5*VT,) == (vO)(£0][B5°¥ (v)],).

Precisely s is a sequence of visible actions consisting of: the client requesting
that a value be stored (z,: (r), where r will be used to signal the termination, see
below); the buffers asking for a value (action (v q)T,{q), where z,, is a previously
agreed channel to be used for invoking get, and ¢ is a newly created one); the
client providing a value (action ¢{v)); and, finally, the buffer signalling that v
has been stored (action 7). During this execution, the buffers hold the lock; it is
released at the same time the client is informed of the termination.

Now lib = 1 in BY°Y and !fil = tt in BY°Y; value v is assigned to ct; and ¢,
respectively. We can assume this, despite B;)Ody first storing v in cty, as

(v O)(£.0|[BL°Y (cty, := v)]]i) = (V00| [BSY (et := v)]]i)

(>~ denotes expansion as introduced in Section 3). Note that this application
of the “up to” techniques is vital to the proof of the example (otherwise the
relation would yield an extremely large number of pairs).

We do not know how to prove this or the previous examples directly in the op-
erational semantics of ALGOL without going through a universal quantification
over contexts (recall the problems with reasoning directly within the ALGOL
semantics, discussed in the Introduction).

6 Refinements

For certain open CIA phrases, the ordinary w-calculus (weak early) bisimilarity
turns out to be too discriminating, i.e., there exist observationally congruent
CTA phrases whose translations into the m-calculus yield processes which are
not bisimilar. Refining types, however, makes behavioural equivalences coarser
(more process equivalences can be established), simply because the number of
well-typed observers decreases.

In CIA, reading from a global variable does not influence the overall behaviour
of a term as long as the value is not used in future interactions. This is not
captured by the usual 7-calculus bisimilarity, where all visible actions are treated
identically. As a consequence, the equality (where x is an integer variable)

new [int]¢:= 0in (¢ :=!k || output5) = output 5, (1)

which is operationally true in CIA, does not yield bisimilar w-calculus encodings;
only the translation of the left-hand term may perform a get, transition.

To overcome this problem, we have adopted two measures. If A and B are
open CIA phrases with free variables {z;};, then instead of requiring that [A]
and [B] be bisimilar, we demand bisimilarity between [] Reg;[o(z;)]|[A4] and
[I1Reg;[o(x;)] | [B] (notice that in contrast to Section 4 the registers are not
made local by a restriction), where o is a function mapping all z;’s to some
fixed initial value, e.g., 0 and “false”. (Using some fixed initial value is possible
because, intuitively, both program and observer have unlimited access to regis-
ters.) To ensure that—apart from input and output—communication between

A Pi-Calculus Process Semantics of Concurrent Idealised ALGOL 317

program and observer is only possible via these registers, we use a type system
distinguishing between the capabilities of using a channel in input and output
(I/0 types, cf. [PS93,BS98]). So, if ¢ is a free register, we can assign an external
observer only the input capability on get, and the output capability on put,.

The corresponding equivalence on w-calculus processes, for which soundness the-
orems similar to Theorems 1 and 2 hold, is closer to the observational congruence
in CIA than the ordinary bisimilarity; it allows us to prove (1), as well as, e.g.,

while tt do (¢ :=0; 1 :=1) = while tt do (¢ :=1; ¢ := 0).
Again, this equality is valid in CTA but not in the w-calculus applying its ordi-
nary bisimilarity.
Yet full abstraction is not gained by introducing I/O types. Consider the follow-
ing example, where P is a free identifier:

new [int]::=0in new [int]¢:=0in
P(u); _ PQ)y
if (!:=0) then skip - if (t=0) then (if (l.=1) then diverge else skip)
else diverge else diverge.

This example hinges on the unlimited access the observer has on fn,, in the
m-calculus, once ¢ has been exported by calling P: Suppose the phrases have
been signalled the termination of P, and ¢ is assigned a 0. One would naturally
conclude that both phrases should terminate. Yet, the access the observer has
gained on ¢ at the time P was called, does not cease with the termination of the
procedure (recall that in the 7-calculus encoding, P is a free identifier). Hence,
the observer can write on ¢ even after having signalled the termination of P.
Now, suppose the variable has already positively been tested for 0. In this case
the left-hand phrase is bound to terminate, whereas the right-hand one may still
diverge (if the observer sets ¢ to 1 before the second test).

For validating this example, a refined typing would be necessary, which allows
one to express linearity (the observer could use certain names only once) and
sequentiality (the observer could use a given name only as long he/she does not
use another given name) constraints on the use of names. Such a type system
could also be used to force the observer to respect the atomicity of await state-
ments (before accessing a register, the observer should grab the lock; and release
it afterwards). This would allow us to validate equivalences like

await tt then (k :=!x + 1; 5 :=!k + 1) = await tt then (k :=!x + 2).

We see no technical difficulties in adopting such a type system, as we have done
with the I/O types. Indeed, type systems for the w-calculus of this kind already
exist [Hon96,KPT96,Kob97]; bisimilarity-based equivalences for them, as well
as related algebraic properties, can be given by developing those for I/O types.
However, even this further type refinement might not yield completeness of the
interpretation. Moreover, our experiments have led us to the conviction that the
1/0 types are usually sufficient for reasoning, and that further typing would just
make concrete proofs too complex.

7 Further results and discussion

The approach presented in this paper is applicable to other languages with state.
We have, e.g., modelled a variation of CIA by using call-by-value, instead of call-

318 Christine Rockl and Davide Sangiorgi

by-name, and by extending variables to higher order (this implies that not only
values but also references and commands are stored in the registers); some of
these modifications have been made following the languages in [MT90a,MT90b].
During the execution of an await statement, only one thread of computation is
active (cf. Section 2 and [Bro96]), yielding a purely sequential behaviour. The
degree of parallelism in the presence of an active (i.e., currently running) await
statement can be increased by, e.g., a simultaneous execution of phrases which
do not access variables affected by the await statement. This can be modelled,
in the SOS semantics, by locks carrying along information about the concerned
variables; in the m-calculus semantics, multiple locks can be introduced. The
necessary information on the access to variables can be gained by some simple
preliminary static analysis. Of course, such an increase in parallelism changes the
overall semantics; nevertheless there are behavioural correspondences between
the more sequential and the more parallel version: First, if two phrases are bisim-
ilar in the more parallel version, then they are also bisimilar in the sequential one
(cutting off branches from the transition systems). Second, a phrase may yield a
divergent computation (transition trace) in the sequential semantics if and only
if it does so in the parallel one (transitions occurring interleaved in the parallel
semantics are causally independent, so they can be interchanged resulting in a
computation of the sequential semantics). We have proved both these results by
reasoning on the m-calculus translations.

We have considered as closed only such programs that do not possess open iden-
tifiers nor variables, using explicit input and output constructs An alternative
approach is to provide the observer with direct access to the global variables:

read, (v
(P, o) T()) (P, o) if I'(1) = var[r] and o(1) = v,
(P, o) e (P,o{i + v}) if I'() = var[r].

To obtain operational correspondence and soundness (cf. Section 4), the transla-
tion into the m-calculus would have to take into account I/0 types (cf. Section 6).
Semantics given to IA and CIA by O’Hearn and Tennent [OT95], Pitts [Pit96]
and Brookes [Bro96], make use of relational parametricity. Comparing proofs
conducted in these theories, with bisimulation-based proofs carried out in the
m-calculus might clarify the relationship between these two notions.

Acknowledgements

We thank J. Esparza, P. W. O’Hearn and U. S. Reddy for helpful discussions.

This work was partly supported by Teilprojekt A3 SAM of SFB 342 “Werkzeuge und
Methoden fiir die Nutzung paralleler Rechnerarchitekturen”, and by the PROCOPE
project 9723064.

References

[AKH92] S. Arun-Kumar and M. Hennessy. An efficiency preorder for processes. Acta
Informatica, 29:737-760, 1992.

[AM96] S. Abramsky and G. McCusker. Linearity, sharing and state: a fully abstract
game semantics for idealized algol with active expressions. Electronic Notes
in Theoretical Computer Science, 3, 1996.

[AMO7]
[Bro96]
(BS9S]

[FHJ95]

[FMS96]

[Hon96]
[How96]

[Jon93]

[Kob97]
[KPT6]
[KS98]
[Mil89]
[Mil91]

[Mil92]

A Pi-Calculus Process Semantics of Concurrent Idealised ALGOL 319

S. Abramsky and G. McCusker. Full abstraction for idealized algol with
passive expressions. Submitted for Publication, 1997.

S. Brookes. The essence of parallel algol. In Proc. LICS’96. IEEE, 1996.
App. in vol. 2 of [OT97].

M. Boreale and D. Sangiorgi. Bisimulation in name-passing calculi without
matching. In thirteen LICS Conf. IEEE Computer Society Press, 1998.

W. Ferreira, M. Hennessy, and A. Jeffrey. A theory of weak bisimulation for
core CML. Technical report, School of Cognitive and Computing Sciences,
University of Sussex, 1995.

M. Fiore, E. Moggi, and D. Sangiorgi. A fully-abstract model for the =-
calculus. In 11th LICS. IEEE Computer Society Press, 1996.

K. Honda. Composing processes. In Proc. 28rd POPL. ACM Press, 1996.
D. J. Howe. Proving congruence of bisimulation in functional programming
languages. Information and Computation, 124(2):103-112, 1996.

C. B. Jones. A m-calculus semantics for an object-based design notation. In
E. Best, editor, Proc. CONCUR ’93, volume 715 of LNCS, pages 158-172.
Springer Verlag, 1993.

N. Kobayashi. A partially deadlock-free typed process calculus. In Proc.
12th LICS Conf. IEEE Computer Society Press., 1997.

N. Kobayashi, B. C. Pierce, and D. N. Turner. Linearity and the 7-calculus.
In Proc. 23rd POPL. ACM Press, 1996.

J. Kleist and D. Sangiorgi. Imperative objects and mobile processes. In Proc.
IFIP Working Conference on Programming Concepts and Methods (PRO-
COMET’98). North-Holland, 1998.

R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

R. Milner. The polyadic w-calculus: a tutorial. Technical Report ECS-LFCS—
91-180, LFCS, 1991.

R. Milner. Functions as processes. J. of Math. Struct. in Computer Science,
17:119-141, 1992.

[MPW89] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes. Report

[MS88]

[MS92]
[MT90a]
[MT90b)
[0T95]
[0T97]
[Pit96]

[PS93]

ECS-LFCS-89-85,86, Dept. of Computer Science, University of Edinburgh,
1989. Two volumes, also appeared in Information and Computation 100:1—
77,1992.

A. R. Meyer and K. Sieber. Towards fully abstract semantics for local vari-
ables: preliminary report. In Proc. 15th POPL, 1988. Also appeared in vol.
2 of [OT97].

R. Milner and D. Sangiorgi. The problem of weak bisimulation up-to. In
Proc. CONCUR’92, volume 630 of LNCS. Springer, 1992.

I. A. Mason and C. L. Talcott. Equivalence in functional languages with
effects. Technical report, University of Stanford, 1990.

I. A. Mason and C. L. Talcott. References, local variables and operational
reasoning. Technical report, University of Stanford, 1990.

P. W. O’Hearn and R. D. Tennent. Parametricity and local variables. J.
ACM, 42(3):658-709, 1995. Also appeared in [OT97].

P. W. O’Hearn and R. D. Tennent, editors. ALGOL-like Languages. Progress
in Theoretical Computer Science. Birkhauser, 1997. Two volumes.

A. M. Pitts. Reasoning about local variables with operationally-based logical
relations. In Proc. LICS’96. IEEE, 1996. Also appeared in vol. 2 of [OT97].
B. Pierce and D. Sangiorgi. Typing and subtyping for mobile processes. In
Proc. LICS’93. IEEE, 1993. Also appeared in Mathematical Structures in
Computer Science 6:5(1996) pp. 409-453.

320
[Rey81]

[San95a]

[San95b]

[Sta96]

[Wal95)]

Christine Rockl and Davide Sangiorgi

J. C. Reynolds. The essence of ALGOL. In Algorithmic Languages, pages
345-372. North-Holland, 1981. Also appeared in vol. 1 of [OT97].

D. Sangiorgi. Lazy functions and mobile processes. Technical Report RR-
2515, INRIA-Sophia Antipolis, 1995. To appear in “Festschrift volume in
honor of Robin Milner’s 60th birthday”, MIT Press.

Davide Sangiorgi. On the proof method for bisimulation (extended abstract).
In Proc. MFCS’95, volume 969 of LNCS, pages 479-488. Springer Verlag,
1995. Full version available electronically.

Tan Stark. A fully abstract domain model for the m-calculus. In Proc.
LICS’96, pages 36-42. IEEE Computer Society Press, 1996.

D. Walker. Objects in the w-calculus. Information and Computation,
116:253-271, 1995.

I'Fov:r
I't ¢ :var[r] when I'() = var|r]
I'-E, :exp[r] I'+ E>: exp|7]
I'F E1 ® Es : exp[7]
I' + skip : comm
I't E : exp|7]
I'F output £ : comm

I'F . : var[r]
I''Finput:: comm
I'-V:var[r] I'F E:exp|7]
I'FV:=F:comm

I'FCi:comm I'F(Cs:comm
I'F C;Cy : comm

I'FCi:comm I'F(C5:comm
I'C || C2: comm

I'B:explbooll] 'FP:0 I'EP: 6
I'+if B then P; else P, : 6

I'+ B :explbool] I'C : comm
I' + while B do C' : comm

I'F B :explbool] I'F C: comm
I'F await B then C : comm

I'E:exp[r] Iv:var[r]F C:comm
I'new [r]t:= Ein C : comm
I'tz:0 whenI'(z)=20
x:0FP:6
I'Frecz.P:6
rz:0-P:¢
T'FXz:6).P: (00"
I'-Pi:(0—6) TFP:6
T'FP(P): ¢

R:TXT—=T

C seq. comp. of ass., cond.

Table 1: Syntax and typing of CIA

A Pi-Calculus Process Semantics of Concurrent Idealised ALGOL

[1,

[v],

['vl,

[E:1® Ez]]
[skip],
[output E]
[input L]]
[vV:=E],
[Cy; o],
[Cy]l Co,
[if B then P; else Pz]]

321

Pp{get,,put,).0
de _<)
W) (IV], | algt, pt).gt(x) B(x).0)
d“((B, | [B2], | a(@).r(y) Bz @ y).0)
ﬁO
<mwm | q(x).out(z).5.0)
in(z).put, ().p.0
v,)dVLNEmeum)()EK>pm
vo)([C1], |¢.0C21,)

vq)

[B], la(z).([x = tt] [P1], | [« = fI] [P2],))

la. (v q)([B], | a()- (= = tt] (v r)([CT, | a@.0) |
[z = f]5.0)) |a.0)
[new [r]::= Bin C], ¥ (vg)([E], | 4().(v) (Reg, 2] | [C],))
[«], < #(p).0
[reca. P, " (va)(ta(r).[P], | 7(p).0)
Az : 6). P], " (v o) (B(v).v(,). P],)
(

[PiP2], = (va)([P1], [4(v).(v2)(0(z, p).Le(r).[P2],))
Table 2: Encoding CIA-{await} in the m-calculus

= (
= (
(l/ g, 7)([C1], [TC-], | ¢.r-p.0)
=
= (

(
[while B do (], va)(

def

def

VIS < v a) (V] | algt, pt) T.gt(x).(£.0] B(x).0))

kamEVd“()@ﬂlq() out(z).(£.0] 5.0))
—-zum><zmzput<><KMﬁo>

~

[[1nput L]]
)
[await B then C’]]Z d—ef (1/ a)(‘a (v q)(é [[B]] | () ([a: = tt] (ur|)(|[C’]] | 7. (£

Table 3: Encoding Full CIA in the 7-calculus—Modifications to Table 2

	Introduction
	Concurrent Idealised ALGOL
	The Pi-Calculus
	Interpreting CIA in the Pi-Calculus
	Examples of reasoning
	Refinements
	Further results and discussion

