Finite State Verification for the
Asynchronous w-Calculus*

Ugo Montanari and Marco Pistore

Computer Science Department, University of Pisa
Corso Italia 40, 56100 Pisa, Italy
{ugo,pistore}@di.unipi.it

Abstract. The m-calculus is a development of CCS that has the abil-
ity of communicating channel names. The asynchronous m-calculus is a
variant of the m-calculus where message emission is non-blocking.
Finite state verification is problematic in this context, since even very
simple asynchronous 7-processes give rise to infinite-state behaviors. This
is due to phenomena that are typical of calculi with name passing and
to phenomena that are peculiar of asynchronous calculi.

We present a finite-state characterization of a family of finitary asynchro-
nous m-processes by exploiting History Dependent transition systems with
Negative transitions (HDN), an extension of labelled transition systems
particularly suited for dealing with concurrent calculi with name pass-
ing. We also propose an algorithm based on HDN to verify asynchronous
bisimulation for finitary m-processes.

1 Introduction

A growing interest has been recently devoted to calculi and languages for dis-
tributed systems, and in particular to the new phenomena they evidence. One
of these phenomena is mobility: in large distributed systems, like the internet,
there is mobility of hardware (when a computer is moved to a different node)
and mobility of code and data (when applets are downloaded from the network
and executed locally, or when remote programs are executed on local data).

The m-calculus [7J6] is a foundational calculus with mobility. In the w-cal-
culus, processes can handle channel names as messages, thus modeling changes
in their neighborhood. Furthermore, name passing is enough to simulate higher
order and object oriented concurrent calculi, thus also mobility of code and of
data can be expressed in the m-calculus. In the original papers on 7-calculus
[[J6], communications are synchronous, i.e., the emission and the reception of
a message are assumed to happen in the same instant. More recently, an asyn-
chronous version of the m-calculus has been defined [Bl2]. Here it is assumed that
messages take time to move from the sender to the receiver, and that the sender
is mot blocked until the message is received.

* Research partially supported by CNR Integrated Project “Metodi e Strumenti per
la Progettazione e la Verifica di Sistemi Eterogenei Connessi mediante Reti di Co-
municazione”, and Esprit WG CONFER2.

W.R. Cleaveland (Ed.): TACAS/ETAPS’99, LNCS 1579, pp. 255-270, 1999.
© Springer-Verlag Berlin Heidelberg 1999

256 Ugo Montanari and Marco Pistore

While more expressive and more suitable to describe distributed systems, the
calculi with name passing give rise to new problems, that cannot be solved by
exploiting existing techniques for CCS-like process calculi. Here we focus on the
problem of extending to (classes of) m-processes the techniques of finite state
verification.

Finite state verification is successful in the case of concurrent systems, since
interesting problems can be expressed by means of finite state systems. This is
the case for instance of protocols, where the control part is often independent
from the data part and can be verified with finite-state techniques.

In this paper we face the problem of finite state verification for the asyn-
chronous m-calculus. This is not a trivial problem, since naive approaches lead
to infinite state systems also for very simple asynchronous m-processes. Differ-
ent techniques have to be exploited to obtain finite state representations for
interesting classes of processes. Now we are going to describe these techniques.

As a first step, we give a new definition of bisimilarity for the asynchronous
m-calculus. In the classical asynchronous bisimulations proposed in [BI1]), a lazy
approach is used for output messages: since an arbitrary amount of time can be
required for a message to be delivered, messages are never forced to be emit-
ted from the system. In this way, however, infinite state systems are obtained
practically for all recursive processes: in fact, if new messages are produced but
never delivered, the size of the system can grow unboundedly.

We propose a different definition of bisimulation, that we have called hot-
potato bisimulation, where messages are emitted as soon as they are ready (a
similar approach is proposed in [12] for asynchronous systems without mobility).
In this way, the system cannot grow unboundedly due to messages that are ready
to be emitted, but that are still undelivered. The classical, eager asynchronous
bisimulation and the new hot-potato bisimulation coincide.

Another cause of infiniteness is the generation of fresh names. This is a
general phenomenon for the m-calculus: processes have the ability of creating
dynamically new channels with the environment, and fresh names have to be
associated to the new channels. Standard transition systems are not very con-
venient for dealing with allocation and deallocation of names: name creation
is handled via the exposure of an internal name, that is subject to alpha con-
version, and this results in an infinite branching; moreover, if names are never
removed, new states are produced at every cycle which includes a name gen-
eration. In [§] we propose an enhanced version of labelled transition systems,
that we called History Dependent (HD) transition systems, and a corresponding
HD-bisimulation; names appear explicitly in states and labels of HD, so that
name creation and deallocation can be explicitly represented.

While HD and HD-bisimilarity are adequate to describe the w-calculus with
synchronous communications, a more general model is needed for the asynchro-
nous m-calculus. In this paper we define History Dependent transition systems
with Negative transitions (HDN) and HDN-bisimulation. We show that the asyn-
chronous 7-calculus can be represented by means of HDN and that finite state
HDN are obtained for an important family of w-processes. In our opinion, HDN

Finite State Verification for the Asynchronous 7-Calculus 257

are a rather general model for mobile calculi; for instance, in [I0] they are ap-
plied also to the early/late [7] and to the open [13/11] semantics of m-calculus.
We also believe that they can be applied to other calculi with mobility, like the
join calculus [4].

Finally, we define an iterative method to calculate HDN-bisimilarity for a cer-
tain class of finite state HDN. This method resembles the partitioning approach
for ordinary labelled transition systems [9], where a partition of the states is built
and incrementally refined until all the states in the same block are equivalent. In
general HDN-bisimilarity is not guaranteed to be transitive: thus it is not possi-
ble to build a partition of equivalent states. Therefore, our partitioning approach
applies only to a class of redundancy-consistent HDN. Fortunately enough, the
HDN corresponding to asynchronous w-calculus is redundancy-consistent. Hence
the partitioning method applies to verify equivalence of finitary asynchronous
T-processes.

2 The asynchronous m-calculus

Asynchronous processes are a subset of ordinary 7-calculus processes. More pre-
cisely, output prefixes ab. P are not allowed in the asynchronous context: in ab.P,
in fact, process P is blocked until message ab is emitted, while in the asynchro-
nous context message emission is required to be non-blocking. Output prefixes
are replaced by output particles ab, that represent an output communication of
name b on channel a that is ready to be delivered. For the same reasons, outputs
cannot appear in a choice point, so sums are restricted to 7 and input prefixes.

Let 91 be an infinite, countable set of names, ranged over by a, ... ,z. Asyn-
chronous processes are defined by the syntax:

P.Q u=ab | G| PP | (va)P | A(ax,... ,an) (processes)

G,H =0 ‘ a(b).P ‘ T.P ‘ G+G (guards)

where we assume that a definition A(by,... ,by,) df & 4 corresponds to each

process identifier A. All the occurrences of b in (vb) P and a(b).P are bound;
free and bound names of process P are then defined as usual and we denote
them with fn(P) and bn(P) respectively.

We define a structural congruence = that identifies all those processes that
differ only for inessential details in the syntax of the programs. Formally, we
define = as the smallest congruence that satisfies the following rules:

P =Q if P and @ are alpha equivalent

G+0=G G+G =G'+G GH+(G'+G") = (G+G)+G"

Plo=P P|P =P|P P|(P|P")=(P|P)P’

(va)0=0 (va)(wb) P = (vb)wa)P (va)(P|Q)= Pl(va)Q if a & tn(P)
The structural congruence is useful to obtain finite state representations for

classes of processes. In fact, it can be used to garbage-collect terminated pro-
cesses and unused restrictions.

258 Ugo Montanari and Marco Pistore

[Tauv] 7.P - P x] a(b).P 22 p [out] @ - 0
« , ab / a(e) 7 a(b) a(d)
son] —C—=C" [comn] L2 L Q- (oroen Lo—F Q20
G+H — G PIQ — P'|Q{%c} PlQ — (vb) (P'|Q")
ab / a ’
P—P : P—P :
[opeN] —L—=L"_jrq2p PAR] — L2 ==L if bn(a) N (Q) = 0
wb) P 2% p' PIQ = P'|Q
Res] — L2 =—=P__itagn() [cone] LEEL P —Q Q=Q

(va) P - (va) P’ P-5Q

GA{al/bl a"/bn} — P . def
D f A(by,...,bn) =G
[IDE] Alar,an) 5 P if A(br) A

If o : 91 — N, we denote with Po the process P whose free names have been
replaced according to substitution o (possibly with changes in the bound names
to avoid name clashing); we denote with {¥1/zy - -¥Yn/z,} the substitution that
maps x; into y; for ¢ = 1,... ,n and which is the identity on the other names.
With some abuse of notation, we can see substitution ¢ in Po as a function on
fn(P) rather than on N.

The actions that the processes can perform, are the following:

o x= 1 | alc) ‘ ab ‘ a(c)

and are called respectively synchronization, input, free output and bound output
actions; a and b are free names of o (fn()), whereas ¢ is a bound name (bn(a));
moreover n(«a) = fn(a) Ubn(a).

The operational semantics of the asynchronous m-calculus is defined by means
of a labelled transition systems. The transitions for the ground operational se-
mantics are defined by the axiom schemata and the inference rules of the table
on the top of this page. We recall that in the ground semantics no name instan-
tiation occurs in the input transitions. In [I] it is shown that ground semantics
coincides with early and late semantics in the case of asynchronous mw-calculus
without matching.

2.1 Asynchronous bisimulation

In this section we introduce asynchronous bisimulation. As we will see, while the
management of 7 and output transitions in the bisimulation game is standard,
a special clause is needed for the input transitions; different characterizations
of asynchronous bisimulation are proposed in [I]: they differ just in the way
input transitions are dealt with. Following [1], we first define or-bisimulation,
that just considers output and 7 transitions; then we consider different notions
of bisimulations that extend o7-bisimulation with a clause for input transitions.

Definition 1 (or-bisimulation [I]). A symmetric relation R on m-processes

is a or-bisimulation if P R Q and P - P’, where « is not an input transition,
and bn(a) Nfn(P|Q) = 0, imply Q = Q' and P' R Q'.

Finite State Verification for the Asynchronous 7-Calculus 259

Notice that clause “bn(a) N fn(P|Q) = 0" in the definition above assures that,
when a channel name is extruded in a bound output transition, a fresh name
(i.e., a name that is not used in P or @) is used to denote that channel.

In an asynchronous context, messages can be received by a process in any
moment, even if the process is not ready to consume them: in [5] this intuition is

modeled by allowing every process to accept every input message, i.e., according

b
to the semantics of [3], P =) Plab is a valid transition for every process P.

This approach has some drawbacks; the most important for our purposes is that
an infinite number of transitions can be performed by every process — even by
process 0 — so finite state verification is not possible.

. . . . b
In this paper we follow instead the approach of [I]: an input transition P o)

P’ corresponds to the consumption of a message, i.e., to the execution of an input

prefix. However, in the definition of asynchronous bisimulation, we cannot require

that, given two bisimilar processes P and @, each input transition P) P is
.- b . .

matched by a transition) a®) Q': process @ can receive the message ab without

consuming it, and be still equivalent to P. In asynchronous bisimulation [II,

b b
hence, a transition P «®) P’ can be matched either by a transition Q =) Q'

and P’ and @’ should be still bisimilar; or by a fictitious input transition of @,
that receives the message but does not consume it: this is modeled by requiring
that Q@ — @’ (i.e., Q performs some internal work), and that P’ is bisimilar to
Q'|ab (process Q'|ab has received the message but has not yet consumed it).

Definition 2 (ground asynchronous bisimulation [I]). A symmetric re-

lation R on m-processes is an (ground) asynchronous bisimulation if it is a

ot-bisimulation such that P R Q and P o®) pr with b & (P|Q) imply

o cither Q o) Q and PP R Q' e 0or Q" Q" and P' R (Q'[ab).

Two processes P and @ are asynchronous bisimilar, written P ~, Q, if P R Q
for some asynchronous bisimulation R.

In [I] some alternative characterizations of asynchronous bisimulation are

proposed. One of them, namely 3-bisimulation, shows that it is possible to dis-

cover by only considering the behavior of P whether the input P o) P is

“redundant”, and to require that only the “non-redundant” input transitions of
P are matched in Q). The intuition is that an input transition is “redundant” if
it is immediately followed by the emission of the received message.

Here we define a variant of 3-bisimulation, that we call 4-bisimulation. Ac-

b
cording to it, if process P performs an input P o) P’ but it also can perform

a 7 transition P — P” such that P’ and P”|ab are bisimilar, then the input
transition is redundant, and should not be matched by an equivalent process Q.

Definition 3 (4-bisimulation). A symmetric relation R on w-processes is a

4-bisimulation if it is a or-bisimulation such that P R Q and P o) P’ with

b & tn(P|Q) imply

260 Ugo Montanari and Marco Pistore

o either o®) Q' and P R Q' e or P P" and P' R (P"|ab).

Two processes P and @ are 4-bisimilar, written P ~4 Q, if there is some 4-
bisimulation R such that P R Q.

In our opinion 4-bisimulation is particularly interesting: each process can discover
privately if a transition is redundant, and in when two transitions of different
processes are matched, it is required that the labels are exactly the same.

Proposition 1. Relations ~, and ~4 coincide.

3 “Hot-potato” bisimulation

Asynchronous bisimulation and its alternative characterizations discussed in the
previous section are not amenable for finite state verification. In fact, infinite
state systems are obtained for essentially all the interesting processes that can
perform infinite computations. This happens since the messages generated dur-
ing a computation are not forced to be emitted, even if their channels are not
restricted; rather, they are simply put in parallel to the process. So, every pro-
cess that continues to generate output messages, gives rise to an infinite state
system.

We define now “hot-potato” bisimulation, that avoids this source of infinite-
ness. The key idea is to force the output particles to be emitted as soon as
possible: consider process

P = (vc) (ve) (aclbeled|ef|G).

Output particles @c and be can be emitted directly. Particle @d can be emitted
only after name ¢ has been extruded by the emission of @c or of be. Particle
ef, finally, cannot be fired, since name e is restricted and there are no output
particles that extrude it. In what follows, whenever we need to identify the firable
output particles of a process P we use the notation P = F<P’, where F contains
the firable output particles and the restrictions that are extruded by them, while
P’ contains the blocked output particles and the control part. So, for instance,
process P can be decomposed as follows:

P = (ve) (aclbeled) < (ve) (f|G).

Up to structural congruence =, the decomposition of P into F' and P’ is unique.
In hot-potato bisimulation the emission of a message takes precedence on
input and synchronization transitions; that is, process P cannot perform any
input or synchronization transition until messages @c, bc and éd have been emit-
ted. Moreover, rather than performing the emission of the output particles in a
sequential way, the whole firable output F' of F' < P is emitted in one step.

Definition 4 (hp-bisimulation). A symmetric relation R on w-processes is a
hot-potato bisimulation (or hp-bisimulation) if P R @Q and P = F < P’ with
bn(F) Nn(P|Q) =0 then Q = F<1Q’ and

Finite State Verification for the Asynchronous 7-Calculus 261

— if PP 5 P” then Q' — Q" and P" R Q";
— if PP and b & (P'|Q') then:
o either Q' o) Q" and P" R Q" e or P' " P" and P" R (P"|ab).

Two processes P and @ are hp-bisimilar, written P ~y, Q, if there is some
hp-bisimulation R such that P R Q.

Theorem 1. Relations ~q and ~yp, coincide.

4 History dependent transition systems

In this section we introduce a new operational model, the History Dependent
transition systems with Negative transitions, HDN in brief; they are, in our
opinion, more adequate than classical labelled transition systems for dealing
with process calculi with name passing, like the asynchronous m-calculus.

As we have explained in the Introduction, classical labelled transition sys-
tems have difficulties in modelling the creation of fresh names: for instance, in
the ordinary operational semantics of m-calculus, infinite bunches of transitions
are necessary. This problem is addressed by HDN, where states and labels are
enriched with sets of names, that are now an explicit component of the model.
Moreover each state of a HDN is used to denote a whole family of w-processes
that differ for injective renamings, and a single transition is sufficient to model
the creation of a fresh name. This is obtained by representing explicitly the cor-
respondence between the names of source, label and target of each transition; in
the ordinary labelled transition system, the correspondence between these names
is the syntactical identity, and this requires to distinguish states and transitions
that differ for the syntactical identity of the names.

All these features are also present in HD [8]. The original element of HDN
is the presence of negative transitions: these are used to determine whether a
transition is redundant or not. The intuition is that a transition is redundant
if there is a negative transition from the same state, with the same label, and
such that the two target states are bisimilar. That is, a negative transition from
a state cancels the “equivalent” positive transitions from that state.

Definition 5 (HDN). A History Dependent transition system with Negative
transitions, or HDN, is a tuple A = (Q, L, p,——, ~~5) where:

— Q is a set of states and L is a set of labels; we assume that QN L = ();
— p: LUQ — Pun(N) associates to each state and label a finite set of names;
— +—— is the (positive) transition relation and ~~> is the negative transition
relation; if Q ——° Q' (resp. Q 20 Q') then:

e Q,Q € Q are the source and target states,

o \ € L is the label,

o o:pu(Q) — p(Q)Up(N) is an injective embedding of the names of the

target state into the names of the source state and of the label.

262 Ugo Montanari and Marco Pistore

We assume that the set of labels is closed for injective renamings, i.e., for each
label X € L and each injective renaming p : w(\) +—— N, we assume that a
label \p € L is defined. The following properties of renamings on labels must be

satisfied: p(Ap) = p(r(N)), (Ap)p" = A(p; p), and Ap = X if p = idy().

4.1 A HDN for the asynchronous mw-calculus

In this section we define the HDN II corresponding to the asynchronous -
calculus; the “hot potato” semantics is exploited to this purpose.

In this case, the states Q have two forms: they are (0, P) and (1, P); in
a state of the form (0, P) the emission of the output message has still to be
performed, while in a state (1, P) it has already happened and process P can
perform input and synchronization transitions. In both cases, the names associ-
ated to the state are fn(P).

In IT all the w-processes that differ only for an injective renaming are col-
lapsed into a single state. To this purpose, we assume to have canonical repre-
sentatives for each class of processes that differ for injective renamings, and a
function norm that, given a process P, returns a pair norm(P) = (Q, o), where
() is the canonical representative of the class of processes that differ from P for
an injective renaming, and o : fn(Q) +— fn(P) is the injective renaming such
that P = Qo.

The transitions in I from a state (1, P) correspond to the synchronization
and input actions of process P. While all the 7 transitions of P have to be
represented in I7, it is not necessary to take all the input transitions; rather,
it is sufficient to take just one canonical representative for each bunch of input
transitions. In this case, a policy for allocating the fresh names has to be chosen.
Since N is countable, we can take the first name that does not already appear in
process P whenever a transition from P requires the generation of a fresh name.

So, we say that transition P “®) pris canonical i b= min(M \ fn(P)).

Whenever a process P can perform both an input transition P o®) P’ and a
7 transition P — P’ we have to take into account that the input transition is
redundant if P’ and P”|ab are bisimilar. To this purpose, a negative transition
with label a(b) is added to II.

In IT there is exactly one transition from state (0, P), that corresponds to
the emission of the firable messages. If P = F' <« P/, then F is observed as the
label of the transition. Since component F' of a process P is unique only up
to structural congruence, we assume to have canonical representatives for these
composed output messages, and we call P = F < P’ a canonical decomposition
if F' is a canonical representative.

Notice that the names p(F') that correspond to label F' are not only the free
names of F', but also its restricted ones. So, if the injective substitution p is
applied to F, not only the free names are changed according to p, but also the
restricted ones.

Finite State Verification for the Asynchronous 7-Calculus 263

Definition 6 (HDN for the asynchronous w-calculus). The HDN II for
the “hot potato” asynchronous m-calculus is defined as follows:

— Qmn = {(0,P) | P is a canonical m-process} U {(1,P) | P is a canonical
m-process without firable messages} and pu((0, P)) = p((1, P)) = (P);

— L ={1}U{a®) | a,b e NYU{F | F is canonical} and pu(7) =0, p(a(d)) =
{a,b}, p(F) =m(F)Ubn(F);

— i (0,Q) € Qm, Q = F<Q' is a canonical decomposition, and norm(Q') =
(Q",0), then (0,Q) —=% (1,Q");

—if (1,Q) € Qn, Q@ — Q' is a transition, and norm(Q’) = (Q",), then
(1, Q) =17 (0,Q");

-if(1,Q) e Qm, Q o) Q' is a canonical transition, and norm(Q’) = (Q”, o),

then (1,Q) e (0,Q");

b
-if(1,Q) € Qm, Q o) Q' is a canonical transition, Q — Q" is a transition,

and norm(Q"[ab) = (Q", o), then (1,Q) %Qﬁ'j (0,Q").

Definition 7 (finitary processes). Let P be an asynchronous m-process and
let norm(P) = (Q,0). Process P is finitary if and only if a finite number of
states in II are reachable from (0, Q).

4.2 HDN-bisimulation

In this section we define bisimulation on HDN. In this case, bisimulations cannot
simply be relations on the states; they must also deal with name correspondences:
a HDN-bisimulation is a set of triples of the form (Q1, d, Q2) where Q1 and Q)2 are
states of the HDN and ¢ is a partial bijection between the names of the states.
The bijection is partial since bisimilar states of a HDN can have a different
number of names (in fact, bisimilar 7-processes can have different sets of free
names).

Notation 1. We represent with f : A ~— B a partial bijection from set A to
set B and with f : A «— B a total bijection from set A to set B. We denote
with f; g the concatenation of f and g and with f~' the inverse of f.

Suppose that we want to check if states Q1 and ()2 are bisimilar via the partial
bijection d : p(@Q1) —— p(Q2) and suppose that @1 can perform a transition

Q1 2Ly Q. There are two alternatives:

— State Q, matches the transition of Qq with a transition Qg F22+°2 Q@Y such
that labels A; and s coincide up to a bijective renaming p, and states @} and
QY are still bisimilar via a partial bijection ¢’. Clearly, name correspondences
0, p and 0’ have to be related. More precisely, p has to coincide with § on
the names that appear both in the label and in the source state (in fact, p
is used to extend 0 to the fresh names that are introduced in the transition)
and all the pairs of names that appear in 5’ must appear, via the embeddings
o1 and o3, either in § or in p.

264 Ugo Montanari and Marco Pistore

— Transition Q1 > Q] is redundant, i.e., there is some negative transition

Q1 21,0 QY such that labels A; and A} coincide up to a bijective renaming
p, and states Q) and QY are bisimilar via a partial bijection ¢§’. Also in this
case, name correspondences id,(q,), p and ¢’ are related.

Definition 8 (redundant transitions). Let R be a symmetric set of triples
on HDN A. Transition Qq F215°1 Y is redundant for R, written Qy FALy 01

Q' € red[R], if there exists some negative transition Qi 20 QY and some
p:p(Ay) «— p(N)) such that

= pN(p(Q1) x u(Q1)) = idyu(q,) N((A1) x p(A}));
- >‘,1 = Alp;
- (Q1,0",QY) € R for some §' C o1; (idy(qy) Up);aifl.

If transition Q1 FALy 0 " is not redundant for R, then we say that it is non-
redundant for R and we write Q 151 Q) & red[R].

Definition 9 (HDN-bisimulation). A symmeltric set of triples R on HDN
A is a HDN-bisimulation if (Q1,9,Q2) € R implies that for each transition
Q1 F2571 Q4 & red[R] there exists some transition Qa 252 Q) and some
p (A1) «— p(A2) such that

= p 0 ((Q1) x p(Q2)) = 6N (A1) x p(A2));
— Xo = \ip;
—(Q4,0',Q4) € R for some &' C oy1; (5 U p); o5

Proposition 2. If R; with i € I are HDN-bisimulations for some HDN then
also | J;c; Ri is a HDN-bisimulation.

This proposition guarantees the existence of the largest bisimulation for a HDN
A. We denote with ~ 4 this largest HDN-bisimulation. Moreover, if (Q1, 0, Q2) €
~ 4 then we say that states Q1 and Qo are HDN-bisimilar according to 6.

The following theorem shows that HDN-bisimulation on IT captures exactly
asynchronous bisimulation.

Theorem 2. Let P and Py be two m-processes and let norm(Py) = (Q1,071)
and norm(Pe) = (Q2,02). Then Py ~q Pa if and only if (0,Q1) and (0,Q2) are
HDN-bisimilar in II according to o1; 02_1.

4.3 Iterative characterization of HDN-bisimulation

In this section we show that, for a class of finite state HDN, the largest bisim-
ulation can be effectively built with an iterative algorithm that resembles the
partition refinement techniques of classical labelled transition systems [9].

As afirst step, we characterize HDN-bisimulations on HDN A as the pre-fixed
points of a monotone functor @ 4.

Finite State Verification for the Asynchronous 7-Calculus 265

Definition 10 (functor @4). Functor ®4 on symmetric set of triples R on
HDN A is defined as follows: (Q1,0,Q2) € Pa(R) if and only if for each
Q1 2571 Q4 & red[R] there exists some transition Qa 252 Q) and some
p (A1) «— p(N2) such that

= p 0 ((Q1) x p(Q2)) = 6N (A1) x p(A2));
— Xo = \ip;
—{Q4,0',Q4) € R where &' C o1; (U p);o5t.

Fact 1. Set of triples R is a HDN-bisimulation for A if and only if it is a
pre-fixed point of functor @ 4.

Lemma 1. Functor @4 is monotone. Moreover, if the HDN A is finite branch-
ing, functor @4 is continuous.

The fact that functor @4 is continuous for finite branching HDN (and hence
in particular for finite state HDN), guarantees that the largest bisimulation ~ 4
can be obtained by the iterated application of &4 starting from the universal

set of triples Un= {(Q1,6,Q2) | Q1,Q2 € Q, § : p(Q1) — pu(Q2)}.
Corollary 1. Let A be a finite branching HDN. Then ~a = [, e P (Ua).

This result can be exploited to obtain an algorithm that builds ~ 4 whenever
A is a finite state HDN. However, this approach is not very efficient, since it
involves the manipulation of large sets of triples: even in the case ~4 is very
small, the algorithm starts from a set of triples U4 that is very large.

A similar situation also happens in the case of bisimulation for ordinary
finite state transition systems: all the states are considered equivalent in the
beginning, and this universal relation is refined by the repeated application of
a functor. In that case, however, all the approximations built by the algorithm
are equivalences and can be efficiently represented by partitions of the states
in equivalence blocks. So, for instance, the initial relation is represented in a
compact way by the singleton partition, where all the states are in the same
block.

To develop an efficient algorithm for HDN-bisimulation, it would be impor-
tant to apply partitioning-like techniques also in this context. Unfortunately,
in general the approximations @7 (i), and in particular the largest HDN-
bisimulation ~ 4, are not transitively closed. Consider if fact the following very
simple HDN A, where no names are associated to states and labels:

P Q R
a-lel
P Q/ Q//

It holds that (P,0,Q) € ~4 (since P and @ have the same positive transitions)
and that (Q, 0, R) € ~ 4 (since the only positive transition of Q is clearly redun-
dant). It is not true, however, that (P,), R) € ~ 4, since R is not able to match
the positive transition of P.

266 Ugo Montanari and Marco Pistore

These problems occur since in the definition of @ 4, as well as in the definition
of HDN-bisimulation, it is not required that a non-redundant transition of @1 is
matched by a non-redundant transition of Q2. Now we define functor ¥4 where
this correspondence between non-redundant transitions is forced. Therefore, the
approximations obtained by iterating functor ¥, are transitively closed. How-
ever, this functor differs from @4 in general and, even worse, it is non-monotone
(so there is no guarantee that the approximations will ever converge).

Definition 11 (functor ¥,). Functor ¥4 on a symmelric set of triples R
is defined as follows: (Q1,0,Q2) € Wa(R) if and only if for each (1 FAL 01

Q) ¢ red[R] there exists some transition Qg —22 Qb ¢ red[R] and some
p (A1) «— p(X2) such that

= PN Q1) x p(@2)) = 00 (M) x p(A2));
— Xo = \ip;
—{Q4,0',Q4) € R where &' C o1; (U p);o5t.

Consider HDN A on the previous page and let R = {{P’,0,Q’)} and S =
{(P",0,Q"), (Q',0,Q")}. Then clearly R C S. However, (P,(),Q) € ¥4(R) but
(P,0,Q) € Wa(S), s0 W4(R) L W4(S). In the case of HDN A, therefore, functor
¥, is not monotone.

While in general different, there are classes of finite branching HDN on which
functors @ and ¥ compute the same sequence of approximations. This situation
is very convenient, since in this case the advantages of both functors hold; that
is, the functor is continuous, so that the largest HDN-bisimulation is captured by
iterating it; and the approximations are transitively closed, which implies that
also the largest bisimulation is transitively closed. Fortunately enough, all the in-
teresting HDN that we have considered are redundancy-consistent. In particular,
this is the case of II.

Definition 12 (redundancy-consistent HDN). The finite branching HDN
A is redundancy-consistent if &7 (Ua) = ¥ (Ua), for all n € IN.

Proposition 3. All the approzimations R = W} (Ua) of a redundancy-consis-
tent HDN A are transitively closed, i.e., (Q1,012,Q2) € R and (Q2,023,RQ3) € R
imply (Q1, (0125 623), Q3) € R.

Theorem 3. The HDN II is redundancy-consistent.

Each transitively closed set of triples R induces a partition of the states in
equivalence classes. However, to characterize R it is still necessary to represent
all the name correspondences between all the pairs of states in the same block.
Now we show that these correspondences can be represented in a compact way
by exploiting active names. At every step of the iteration of functor ¥4 there are
names of a state that have played no active roles in the game of matching transi-
tions, since they are not appeared yet in the labels of the transitions considered
for that state. Therefore, any correspondence can exist between the “inactive”
names of equivalent states.

Finite State Verification for the Asynchronous 7-Calculus 267

Definition 13 (active names). Let A be a HDN. The family of functions
an’; : @ — Pun(N), with n € IN, is defined as follows: an% (Q) = 0, and

an’; 1 (Q) = U () Uo(an(@))) Nu(@).

{@ 27 Qgredlwy; wa)}

Notice that only the transitions that are non-redundant w.r.t. ¥} (i{4) are con-
sidered for computing the active names at the (n+1)-th step: only those transi-
tions, in fact, are considered in the (n+1)-th application of functor W,4. Also, the
intersection — N p(Q) is necessary, since a transition can introduce new names
that do not appear in the source state.

The following proposition expresses the important properties of active names:
any name correspondence between two equivalent states is a total correspondence
between the active names of the two states; moreover, any correspondence is
possible between the non-active names of two equivalent states.

Proposition 4. Let A be a redundancy-consistent HDN. Then:

1. if (P,6,Q) € W% (Ua) then 6N (an’y (P) x an’y (Q)) is a total bijection between
an’; (P) and an”y (Q);

2. if (P,6,Q) € W (Un) and 5N (an’y (P) x an’y (Q)) = &' N (an” (P) x an’; (Q))
then (P,d6',Q) € Wi (Un).

We can exploit the properties of active names to obtain a more compact
representation of ¥7% (Ua): only the correspondences of the active names are ex-
plicitly represented for each pair of states in the same equivalence class. There
are cases in which the introduction of active names leads to a dramatic reduction
of the correspondences that have to be represented explicitly. An extreme ex-
ample is the universal relation U 4: while all the name correspondences between
each pair of states appear in U4, none of them has to be represented explicitly,
since no name is active at this point.

Also in the cases where a large number of correspondences exist between two
equivalent states, a compact representation can be found for them. In fact, let
A" (P, Q) be the set of name correspondences that exist, according to ¥ (Ua),
between the active names of P and the active names of Q:

A% (P,Q) = {3 (anfy (P) x any(Q)) | (P.6,Q) € Wi (Ua)}-

The following proposition shows that A7 (Q, Q) is a permutation group on the
active names of @); it is hence sufficient to represent it by means of a set of gen-
erators. Moreover A" (P, Q) can be recovered, starting from any of its elements
d, by composing 0 with all the elements of A% (Q,Q); it is hence sufficient to
represent explicitly only one element of A% (P, Q).

Proposition 5. Let A be a redundancy-consistent HDN. Then:

1. if A%(Q, Q) is a permutation group on an’y (Q);
2. if § € A% (P, Q) then A% (P,Q) ={8;¢" | ¢’ € A% (Q,Q)}.

268 Ugo Montanari and Marco Pistore

1 Normalize processes P; and P». Let (Qi,0;) = norm(P;) for i =1, 2.
2 Generate the part of the HDN IT that is reachable from (0, Q1) and (0, Q2).
3 Initialization:

3.1 For each (reachable) state @ of II, initialize an[@Q] to the empty set.

3.2 Initialize part to the singleton partition on the (reachable) states of IT.

3.3 For each pair of (reachable) states Q and @', initialize Delta[Q, Q'] to the
empty set of name relations.

4 Repeat the following steps until partition part becomes stable:

4.1 Compute the non-redundant transitions according to part.

4.2 Update the sets of active names an[Q)] for all the states Q.

4.3 Refine part according to functor ¥r. For each pair of states Q and Q’
that are still in the same block of part, put in Deltal@,Q’] (a compact
representation of) the valid relations between an[Q] and an[Q'].

5 Check if Q1 and Q2 are in the same class and if o1; 05 ! is in Delta[Q1, Q).

We are currently working on the implementation of an algorithm that exploits
these techniques to check bisimilarity of finitary asynchronous m-processes. In
the table above we sketch the main steps that have to be performed to check
whether processes P; and P, are equivalent. We plan to integrate it within HAL,
a verification environment for calculi with name passing [3].

We conclude this section with some comments on the complexity of the al-
gorithm. It is not possible, in general, to find an upper bound for the number
of states and transitions of the HDN corresponding to a finitary m-process P in
function of the syntactical length of P: in fact this problem is equivalent to find
an upper bound to the length of the tape used by a given Turing machine, which
is an undecidable problem. Once the HDN is built, the complexity in time for
building the largest HDN-bisimulation is polynomial in the number s of states
and t of transitions of the HDN, and exponential in the maximum number n of
the names that appear in the states. The polynomial complexity in s and ¢ is
typical of the partitioning algorithms: each iteration of step 4 of the algorithm
refines the partition of states, and at most s — 1 refinements are possible, after
that all the states are in different blocks. However, the algorithm has to deal
with correspondences between names, and there can be up to 29(*1°8™) of those
correspondences between two states, hence the algorithm is exponential in n.
Even if these correspondences are represented in a compact way by means of
permutation groups, the exponential in the number of names cannot be avoided:
some of the operations on permutation groups used in the algorithm are in fact
exponential in the number n of elements.

5 Concluding remarks

In this paper we have presented the model of history dependent transition sys-
tems with negative transitions (HDN). They are an extended version of labelled
transition systems and are adequate for asynchronous calculi with name passing.

Finite State Verification for the Asynchronous 7-Calculus 269

We have also defined a finitary characterization of bisimilarity for the 7-calculus;
this characterization can be modeled by HDN and, as a consequence, finite state
representations can be computed for a family of 7w-processes.

In this paper we have considered only the asynchronous m-calculus without
matching. In [10], however, HDN are applied also to the asynchronous m-calculus
with matching, as well as to the early, late 7], and open [13/11] semantics of the
m-calculus with synchronous communications.

We are also working to extend the approach described in this paper to the
weak asynchronous bisimulation. The alternative characterization given by 4-
bisimulation works also for the weak semantics: it is sufficient to replace the
strong transitions —— with weak transitions ==. Unfortunately, weak hot-
potato bisimulation does not coincide with weak asynchronous bisimulation: it
is not safe to force weak outputs to be emitted as soon as they are ready, since
in this case the firing of an output can discard possible behaviors. For instance,
in process 7.ab + a(c).0 the input transition is not performed at all if the output

transition 7.ab+a(c).0 — 0 has the precedence. To apply successfully the HDN
also to the weak asynchronous m-calculus it is necessary to find conditions that
allow a weak output transition to be fired without discarding behaviors.

References

1. R. Amadio, I. Castellani and D. Sangiorgi. On bisimulations for the asynchronous
m-calculus. Theoretical Computer Science, 192(2):291-324, 1998.

2. G. Boudol. Asynchrony and the 7-calculus. Research Report 1702, INRIA, Sophia-
Antipolis, 1991.

3. G. Ferrari, G. Ferro, S. Gnesi, U. Montanari, M. Pistore and G. Ristori. An
automata-based verification environment for mobile processes. In Proc. TACAS’97,
LNCS 1217. Springer Verlag, 1997.

4. C. Fournet, G. Gonthier, J.-J. Lévy, L. Maranget and D. Rémy. A calculus of
mobile agents. In Proc. CONCUR’96, LNCS 1119. Springer Verlag, 1996.

5. K. Honda and M. Tokoro. An object calculus for asynchronous communication. In
Proc. ECOOP’91, LNCS 612. Springer Verlag, 1991.

6. R. Milner. The polyadic 7-calculus: a tutorial. In Logic and Algebra of Specification,
NATO ASI Series F, Vol. 94. Springer Verlag, 1993.

7. R. Milner, J. Parrow and D. Walker. A calculus of mobile processes (parts I and
IT). Information and Computation, 100(1):1-77, 1992.

8. U. Montanari and M. Pistore. An introduction to history dependent automata. In
Proc. HOOTS 11, ENTCS 10. Elsevier, 1998.

9. R. Paige and R. E. Tarjan. Three partition refinement algorithms. SIAM Journal
on Computing, 16(6):973-989, 1987.

10. M. Pistore. History Dependent Automata. PhD Thesis. Dipartimento di Informat-
ica, Universita di Pisa, 1999.

11. M. Pistore and D. Sangiorgi. A partition refinement algorithm for the w-calculus.
In Proc. CAV’96, LNCS 1102. Spinger Verlag, 1996.

12. J. Rathke. Resource based models for asynchrony. In Proc. FoSSaCS’98, LNCS
1378. Springer Verlag, 1998.

13. D. Sangiorgi. A theory of bisimulation for w-calculus. Acta Informatica, 33:69-97,
1996.

I
E 532I-':'|E?-Eq‘.'.'

10.1007/b107031130018

	Introduction
	The asynchronous $pi $-calculus
	Asynchronous bisimulation

	``Hot-potato'' bisimulation
	History dependent transition systems
	A HDN for the asynchronous $pi $-calculus
	HDN-bisimulation
	Iterative characterization of HDN-bisimulation

	Concluding remarks

