From DFA-Frameworks to DFA-Generators:
A Unifying Multiparadigm Approach

Jens Knoop

Universitdat Dortmund, D-44221 Dortmund, Germany
Phone: ++49-231-755-5803 Fax: ++49-231-755-5802
E-mail: knoop@ls5.cs.uni-dortmund.de
http://sunshine.cs.uni-dortmund.de/ knoop

Abstract. Program analysis is still characterized by paradigm-specific
approaches, which are developed to accommodate to the diversities of the
different programming paradigms as e.g. the imperative, object-oriented,
or parallel one. Switching between paradigms or transferring analyses
across paradigm boundaries requires usually detailed knowledge of the
peculiarities of the various approaches. This complicates both the reuse of
analyses and the proofs of their correctness. On the other hand, abstract
interpretation provides a unifying access to program analysis. In this ar-
ticle we exploit this for the construction of program analysis generators
based on a uniform design principle. Basically, we proceed by extracting
the abstract kernel from the standard analysis framework, which we then
consider under a generic perspective. We show that there are concrete in-
stances in such different paradigms as those above. As a by-product their
decomposition into a “theoretical” and “practical” part which are specifi-
cational and computational in nature, reveals the aforementioned design
principle. The frameworks and their respective generators, which can
be fed by concise specifications, can thereby be considered black-boxes:
analysis designers only need to know of the (quite similar) interfaces.
The proof of correctness or even precision of a generated algorithm with
respect to a specific property reduces to checking the premises of a few
theorems. This considerably eases the construction of analyses within
a specific paradigm as well as the switch between and the transfer of
analyses to other paradigms.

Keywords: Program optimization, abstract interpretation, data-flow
analysis (DFA), DFA-frameworks, DFA-generators, coincidence theorems,
intraprocedural, interprocedural, parallel, object-oriented, conditional DFA.

1 Motivation

Static program analysis — in the context of optimizing compilers usually called
data-flow analysis (DFA) — is an almost indispensable prerequisite for the ap-
plication of performance improving transformations by optimizing compilers (cf.
[DTT)3334135]). Typical questions to be answered by DFA in order to enable clas-
sical optimizations like code motion (cf. [32]), constant propagation (cf. [13]), or

W.R. Cleaveland (Ed.): TACAS/ETAPS’99, LNCS 1579, pp. 360-B74] 1999.
© Springer-Verlag Berlin Heidelberg 1999

From DFA-Frameworks to DFA-Generator 361

dead code elimination (cf. [I]) are, if a program term ¢ has always been com-
puted when reaching a specific program point (“Is ¢ available?”), if its evaluation
always yields the same constant value there (“Is the value of ¢t a constant?”), or
if a variable v will not be used on any program continuation leaving this point
without a preceding redefinition (“Is v dead?”).

DFA
T - Specification

DFA : Theory Practice
Framework Interface

Generator

Program i Coincidence Theorem Correctness Lemma
Property %ﬁ MOP-Solution = =

Fig.1. The general structure of a DFA-framework.

After fixing the relevant program property DFA-designers are thus typically
faced with two problems: first, inventing an algorithm for computing the set
of program points enjoying the property under consideration; second, proving
that it computes this set precisely. A common observation here is that the more
powerful and expressive the features are the underlying programming language
provides (procedures, parallelism, objects, polymorphism, etc.), the more con-
straints must be respected by a DFA-designer which are imposed by the fea-
tures of the programing language rather than the property considered. This is
quite important because these constraints tremendously influence the technical
complexity of the algorithms and the proofs of their correctness and precision.
Consequently, it is the less adequate to construct DFA-algorithms by means of
ad-hoc techniques the more powerful and expressive the considered programming
language is because this usually amounts to inventing an individual solution for
the considered analysis problem both on the algorithmical and the proof side.

In this article we reconsider the design process of DFA-algorithms under
the unifying view of abstract interpretation. This leads us to a uniform mul-
tiparadigm approach, which in addition suggests a principle for the automatic
generation of DFA-algorithms. To this end we first reduce the standard frame-
work for intraprocedural DFA to its abstract kernel. Considering it then from a
generic point of view, we demonstrate that it has instances in intraprocedural,
interprocedural, (data-) parallel, explicitly parallel, object-oriented, and condi-

362 Jens Knoop

tional DFA; hence, it applies to quite different paradigms. Moreover, this ap-
proach provides DFA-designers with strong support both on the practical and
the theoretical side. On the theoretical side because precise guidelines can be set
up, which structure and simplify the development of DFA-algorithms as well as
the proofs of their correctness or even precision. On the practical side because
DFA-generators can be distilled from the frameworks allowing the automatic
generation of DFA-algorithms from concise specifications. Though the concrete
DFA-frameworks and their respective DFA-generators differ in their details for
such different programming paradigms, from the perspective of a DFA-designer,
they can be considered black-boxes sharing almost the same interface. In fact,
knowing their (quite similar) interfaces is sufficient for the successful and rapid
development of proven correct DFA-algorithms.

Overview. Figure [illustrates the essence of our approach from the point of
view of a DFA-designer. In this figure ¢ is assumed to denote the property of
interest. Fundamental for computing the set of program points enjoying ¢ is the
theory of abstract interpretation (cf. [BIEN7I30/36]). It provides a well-founded
basis for DFA. The point here is to replace the “full” semantics of a program
by a simpler more abstract version, which is tailored for the problem under
consideration. Usually, the abstract semantics is defined by a (local) semantic
functional, which gives abstract meaning to the (elementary) statements of a
program in terms of transformations on a complete lattice. Its elements represent
the data-flow facts of interest. A local abstract semantics induces two notions
of a solution of the respective DFA-problem, which result from two different
globalization approaches: the MOP-solution of the “operational” meet-over-all-
paths (MOP) approach, and the MFP-solution of the “denotational” maximal-
fized-point (MFP) approach.

The MOP-solution mimics the effect of possible program executions: for every
program point it is the “meet” (intersection) of all data-flow facts contributed by
program paths reaching it. Usually, the MOP-solution is conceptually quite close
to the program property of interest, but in general the underlying MOP-approach
is not effective. It is thus specifying in nature. In distinction, the MFP-solution
is defined as the greatest solution of a system of equations imposing consistency
constraints on an annotation of the program with data-flow facts: in essence,
the data-flow fact attached to a program point must be implied by the results
of transforming the informations attached to its predecessors according to their
abstract meaning.

In contrast to the MOP-approach, the MFP-approach is practically relevant.
It induces a generic fixed point algorithm, which (under specific side-conditions)
terminates with the MFP-solution. As shown in Figure[l], this algorithm can di-
rectly be fed with a local abstract semantics: the concrete DFA-algorithm results
automatically from instantiating the generic algorithm by the DFA-specification
under consideration, and need not be implemented by the DFA-designer. The
DFA-designer is only left with proving that the generated algorithm precisely
computes the set of program points enjoying ¢. This can be proved in only three
independent steps, which are based on properties of the specification only.

From DFA-Frameworks to DFA-Generator 363

1. Fquivalence: prove that the program property ¢ under consideration is equiv-
alent to the MOP-solution of the DFA-problem specified (1).

2. Coincidence: prove that the MOP-solution and the MFP-solution of the
DFA-problem considered coincide (2).

3. Effectivity: prove that the automatically generated DFA-algorithm termi-
nates (3b)) with the MFP-solution (3a)).

The gap which must be bridged in the first step is usually considerably small
because typically both ¢ and the MOP-solution are defined in terms of the effect
of program paths over the same basic properties. This gap can be bridged by a
usually straightforward induction on the length of program paths.

The second step is the central one of this proof sequence. It has to bridge
the gap between the theoretical part of the DFA-framework and its respective
DFA-generator. The glue combining them is a coincidence theorem establishing
the coincidence of the conceptually quite different MOP- and MFP-solution. The
coincidence theorem gives a sufficient condition for the coincidence of the MOP-
solution, which constitutes the requested reference solution of a DFA-problem,
and the MFP-solution, which is computed by the generated DFA-algorithm. In
fact, the coincidence theorem can be considered the theoretical backbone of a
DFA-framework.

In the third step, finally, it must be verified that the generated DFA-algorithm
terminates with the MFP-solution. Similar to the coincidence theorem, an ef-
fectivity theorem gives a sufficient condition for this. It can be checked knowing
the DFA-specification only.

Benefits. The proof obligations of the second and third step require to check
the premises of a coincidence theorem and an effectivity theorem only. In general,
this is much simpler than establishing the corresponding results for an algorithm
invented afresh for a problem. Moreover, the concrete DFA-algorithm, which
decides the program property of interest, comes for free in this approach. It is the
algorithm automatically resulting from instantiating the generic algorithm of the
framework with the considered DFA-specification. This is particularly important
because the specification interface and the proof obligations remain essentially
the same though the internal structure of the DFA-frameworks becomes more
complex when the features of the programming language are enriched. Thus,
the benefits of applying the DFA-framework are the greater the more powerful
the programming language is the framework is designed for. In fact, though
the details of the frameworks for intraprocedural, interprocedural, parallel or
conditional DFA are quite different, the DFA-designer can think of and apply
them as black boxes: a framework and its respective DFA-generator is a black
box, which accepts in a specific format a DFA-specification which is tuned to the
program property of interest. It returns an algorithm, which computes the set of
program points enjoying this property, provided that the three proof obligations
labeled equivalence, coincidence, and effectivity are supplied as illustrated in
Figure 2L
Summarizing, for a DFA-designer the major benefits are as follows:

364 Jens Knoop

,,, - DFA

i Specification
|

|

Intraprocedural
DFA

Framework

Interprocedural
Object-oriented
Parallel
Conditional

Coinaid Effectivity
oincidence Theorem
Cvemren” peorn. ©

Correctness Termination

1
1
i
Program
Property u

oMV ©
Obligations:

Equivalence Coincidence Effectivity

Fig.2. The black-box view of DFA-frameworks.

— Information hiding: all details which are not relevant for a particular appli-
cation are hidden.

— Automatic generation of DFA-algorithms: the concrete DFA-algorithm for a
DFA-problem results automatically from a concise specification in terms of
an abstract interpretation.

— Precise proof obligations: proving the generated algorithm to be precise for
the property of interest requires only knowledge of the specification.

And last but not least:

— Uniformity: applicability of the overall approach to a broad range of pro-
gramming paradigms.

In the remainder of this article we focus on the last point. We demonstrate
that the benefits summarized above, which have previously been demonstrated
for intraprocedural and interprocedural DFA (cf. [I415]24]), can be realized for
further paradigms, too, including object-oriented, parallel, and conditional DFA.

Structure of the Article. In Section 2] we reconsider the intraprocedural
base case and illustrate the essence of our approach by discussing the inter-
nal structure of the standard intraprocedural DFA-framework. Subsequently, we
demonstrate that the pattern of the intraprocedural case carries over to inter-
procedural, data-parallel and object-oriented, explicitly parallel, and conditional
DFA. In fact, demonstrating the generality of the underlying pattern is a cen-
tral concern of this article, rather than applying the frameworks to concrete
DFA-problems. Thus, the presentation remains on purpose on a conceptual level

From DFA-Frameworks to DFA-Generator 365

taking a user’s point of view in order to demonstrate that the DFA-designer is
offered almost the same interface independently of the paradigm and the specific
setting considered. Additionally, we put emphasis on the coincidence theorems
underlying the concrete DFA-frameworks. They are the theoretical backbone
providing the key to the overall approach.

2 Intraprocedural Data-flow Analysis

In this section we illustrate the essence of our approach by reconsidering the stan-
dard framework for intraprocedural DFA of imperative programs (cf. [T2[T3]).
Figure Blshows the intraprocedural instance of the “abstract” framework of Fig-

ure [

Intraprocedural C
T > DFA [1] Y
| i i C
: 0
Intraprocedural - Theory Practice
DFA
Framework
Generator

Generic
Fixed Point Alg.

Intraprdcedural
Termination | Lemma

Intraprocedural Intraprocedural
Program quiy Coincide Theorem Correctness Lemma
e . = y = Computed Solution
Property < H > MOP-Solution MFP-Solution H

® ®

Fig. 3. The intraprocedural DFA-framework.

Intraprocedural DFA is characterized by a separate and independent inves-
tigation of the procedures of a program. Following [I9] we assume that pro-
cedures are represented as directed edge-labeled flow graphs G = (N, E., s, e),
whose nodes n € N represent program points, and whose edges e € E rep-
resent the statements and the nondeterministic control flow of the underlying
procedure, and where s and e denote two distinct program points, the so-called
start and end node of G. In this setting a local abstract semantics specifying a
DFA-problem is a functional [] : E — (C — C) which gives abstract meaning to
the statements of the procedure in terms of transformation functions on a set
of data-flow facts, usually a complete lattice of finite height Cl] The following

! In [31] it is thus called a lattice framework.

366 Jens Knoop

straightforward extension of [] to finite program paths p = (e1, ..., eq), where
Idc denotes the identity on C, is the key to the meet-over-all-paths globalization:

[p]= Ide if p is the “empty” path
Pi=a [(e2,...,eq)]ofe1] otherwise

Denoting the set of all program paths reaching a program point n by P[s, n],
the MOP-solution with respect to a local abstract semantics [| is defined by:

The MOP-Solution: Vcy € C Vn € N. MOP(n)=q4 [1{[p](co)|p € P[s,n] }

In contrast, the MFP-solution is defined as the greatest solution of the following
equation system:

dfi(n) — Co ifn=s
=AM {[(m,n)](dfi(m))|m is a predecessor of n } otherwise

Let dfi., denote the greatest solution of this equation system with respect
to the start information c¢g. Then the MFP-solution is defined by:

The MFP-Solution: VY¢g € CVne N. MFP(n) = dfic,(n)

The well-known (intraprocedural) Coincidence Theorem of Kildall [13], and Kam
and Ullman [T2] gives a sufficient condition for the coincidence of the MOP-
solution and the MFP-solution in this setting.

Theorem 1 (Intraprocedural Coincidence Theorem).
The (intraprocedural) MEP- and MOP-solution coincide, if the local semantic
functions of the abstract interpretation are all distributiveZ

As an example we consider the availability of a program term ¢. This is a
classical (cf. [T1]) and practically relevant (cf. [22l32]) DFA-problem, where the
set of data-flow facts is given by the lattice of Boolean truth values ¢t and ff
with ff C tt. Intuitively, ¢ is available at a program point n, if on every program
path reaching n the last modification of one of ¢’s operands is followed by a
computation of ¢. This is illustrated by the program of Figure[d(a). Figure[d(b)
highlights the program points where a + b is available, and Figure @(c) shows
the program points where ¢ + b is available.

The DFA solving the availability problem is specified by the local abstract
semantics

Consty if Transp,(e) A Comp,(e)
lel,,=dar § 1ds if Transp,(e) A—~Comp,(e)
Const g otherwise

2 A function f : C—C is called distributive iff vC' C C. f(I'lc")y =T1{f(c)|c e
C'}. 1t is called monotonic iff YC' C C. f(I'1¢") © [T{f(c)|c € C'}. Hence,
monotonicity is a weaker requirement than distributivity. For monotonic semantic
functions the MFP-solution is a safe approximation of its MOP-counterpart, i.e.,
MFP T MOP; a fact, which holds for the other coincidence theorems given in the
course of this article, too.

From DFA-Frameworks to DFA-Generator 367

)

Fig. 4. Illustrating availability in the intraprocedural setting.

where Idg denotes the identity, and Consty, and Consty the constant functions
on {tt, ff }, respectively. Moreover, Comp and Transp are two local predicates de-
fined for the statements of the procedure under consideration. They are true if ¢
is computed along edge e, and if no operand of ¢ is modified along e, respectively.
Obviously, all semantic functions are distributive. Hence, the MOP-solution and
the MFP-solution coincide, which proves the central step of verifying that the
DFA-algorithm, which is automatically generated from this specification, pre-
cisely computes the set of program points, where term ¢ is available.

Remark 1. Note that in abstract interpretation correctness has both a “horizon-
tal” and a “vertical” aspect. The coincidence theorem above (and those consid-
ered in the following sections) reflect the horizontal aspect: they are concerned
with the precision of a fixed point solution (“MFP”) computed with respect
to a reference solution (“MOP”) desired, which both refer to the same level of
abstraction, which is fixed by the local abstract semantics they are sharing. In
contrast, the vertical aspect concerns the correctness of the abstract semantics
induced by its underlying local abstract semantics with respect to a reference
semantics, usually the “concrete” program semantics or some other abstract
semantics, e.g. the so-called static semantics (cf. [5]). We do not consider the
vertical aspect here. It is an orthogonal issue, which cannot meaningfully be
considered on the level of abstraction of the current presentation.

3 Interprocedural Data-flow Analysis

Figure [6 shows the interprocedural instance of the DFA-framework of Figure [Il
Note that the internal structure of the framework and its corresponding gen-
erator is more complicated. However, the user interface is almost the same: in
comparison to the intraprocedural setting only a single component has been
added. In the following we discuss the differences in more detail.
Interprocedural DFA takes the semantics of procedure calls into account.
For the interprocedural version of the MOP-approach this requires that only

368 Jens Knoop

interprocedurally valid paths are taken into account, i.e., paths respecting the
call/return-behaviour of procedure calls (cf. [37]). Whereas the respective exten-
sion of the intraprocedural MOP-approach is rather straightforward, the inter-
procedural extension of the MFP-approach requires additional care. The key of
this extension is a preprocess, which computes the semantics of procedure calls
according to the local abstract semantics of the considered DFA-problem. This
preprocess is realized by a second generic algorithm. As a consequence (cf. Figure
), the internal structure of the DFA-framework is more complicated than its
intraprocedural counterpart. However, the specification interface and the proof
obligations remain essentially the same. Only a return functional R is addition-
ally required. It is the handle to properly deal with local variables of recursive
procedures. Intuitively, the point here is that effects on global variables must be
maintained after returning from a recursive call, whereas local variables must
be reset to their values at call time. This is illustrated in the example of Figure
Bla) using availability of program terms as example. While ¢ + b is available at
the program point following the recursive call of 71 in procedure 7y, a+b is not.
The difference lies in the fact that in case of a + b a global operand is modified
within the recursive call, while it is a local one for ¢+ b. Return functions extract
this information from the data-flow informations valid at call time and valid im-
mediately before leaving the called procedure, which are stored in a DFA-stack
mimicing the run-time stack. This is discussed in detail in [I5]24]26].

a) b)

T, : VARab T :VARc

call T a:=.. X :=atb
c=.. y=ctb
ai=..
call
&= Awilletd) X = a+b
— Avail(a+b)

Fig. 5. Illustrating availability in the interprocedural and parallel setting.

y:=atb

Interference

“” Synchronization

The interprocedural variant of the intraprocedural coincidence theorem pre-
sented next captures programs with mutually recursive procedures, global and
local variables, and value and reference parameters [24,26]@

3 Sharir and Pnueli were the first who presented an interprocedural extension of the
intraprocedural coincidence theorem (cf. [37]). Their version, however, did not cap-

From DFA-Frameworks to DFA-Generator 369

Interprocedural
DFA

Interprocedural - o Theory || Practice
DFA
Framework A

Generator

Computation Tool 2
(Preprocess)

Interproc.

tnterproc. || Corr. Lem.

Procedure Call Effects

L1

Computation Tool 1
(Main Process)

Interpricedural
Termination | Lemma

P Interprocedural Interprocedural
SEEEID i Coincidence Theorem Correctness Lemma
Property <7T> IMOP-Solution = IMFP-Solution T Computed Solution

Fig.6. The interprocedural DFA-framework.

Theorem 2 (Interprocedural Coincidence Theorem).

The interprocedural MFP- and MOP-solution coincide, if the local semantic
functions and the return functions of the abstract interpretation are all distribu-
tive.

A collection of applications of the framework of Figure[d including the inter-
procedural counterpart of the availability problem considered in Section [2] can
be found for example in [I5] and [24].

4 Data-parallel and Object-oriented Data-flow Analysis

The interprocedural machinery considered in the previous section can rather
straightforwardly be enhanced to data-parallel languages like High Performance
Fortran (HPF) [§], Fortran D [9], or Vienna Fortran [39], and to object-oriented
languages like Smalltalk [10] or Oberon [38]. In fact, Figure Blcan be considered
an illustration of both the data-parallel and object-oriented situation, too, and
thus we do not present a separate figure here. In [20] this has been exploited
for the data-parallel setting of HPF considering distribution assignment place-
ment (DAP) as application. This is a new aggressive optimization which reduces
communication costs in HPF-programs by eliminating partially redundant and

ture local variables and parameters of recursive procedures. The version presented
in [I5] captures even procedural parameters.

370 Jens Knoop

partial dead (re-)distributionsfl The DFAs required for DAP, which resemble
the one for availability, were specified according to the pattern of Figure [6 of
Section[3 In [I8] and [25] the approach has been extended to an object-oriented
setting set up by a Smalltalk- and an Oberon-like language, considering type
analysis as application. In all these cases a coincidence theorem relating the
computational and the specificational part of the framework is crucial. For illus-
tration we here recall the coincidence theorem of the DFA-framework fitting to
the object-oriented setting considered in [18§].

Theorem 3 (The Object-oriented Coincidence Theorem).

The object-oriented MFP- and MOP-solution coincide, if the local semantic
functions (including the filter functions)ﬁ of the abstract interpretation are all
distributive.

5 Parallel Data-flow Analysis

In this section we consider explicitly parallel programs with interleaving seman-
tics and shared memory. In this setting one is faced with the phenomena of in-
terference and synchronization. Figure Blb) illustrates their impact by opposing
a sequential and a parallel program using the availability of a + b for demonstra-
tion. Of course, parallel programs can equivalently be expressed by a sequential
“product” program which make all the interleavings explicit. Though this would
allow us to directly apply the results of intraprocedural DFA; it would not be
of much practical use as the size of the product program is exponential in the
number of parallel components: a dilemma often condensed to the catch-phrase
“state explosion problem.” For the large and practically most important class of
bitvector problems (cf. [I1]), however, it has been shown that interleavings need
not be considered at all to capture the effects of interference and synchronization
(cf. [27/29]). This allows us a two-step approach similar as in the interprocedural
case. The key of the MFP-approach of the parallel setting is a preprocess, which
in an innermost fashion computes the semantics of parallel statements. As in-
terprocedurally, the designer of a (bitvector) DFA need not to know any details
of this process when applying the framework. The treatment of capturing inter-
ference and synchronization can be encapsulated inside the framework and its
corresponding generator. For the parallel setting we have the following version
of the coincidence theorem [27J29]. It applies to bitvector problems. However,
extensions to specific non-bitvector problems are possible (cf. [17]).

Theorem 4 (Parallel Bitvector Coincidence Theorem).
The parallel MFP- and MOP-solution for bitvector problems coincide.

Following the pattern of Figure [all the bitvector analyses (e.g. availability
and very busyness of terms, reaching definitions or liveness of variables), which

4 In first practical measurements this optimization proved to be most powerful: often
a speed-up of several hundred per cent have been observed (cf. [20121]).
® See Section Bl

From DFA-Frameworks to DFA-Generator 371

Parallel Bitvector B
[T = DFA [}

b

Parallel Bitvector ' Theory || Practice
DFA
Framework

Generator

N

Computation Tool 2
(Pr

) Par-Stmt. Effects
b) **Bad Guy"*-Info.

Parallel Bitvector
Coincidence Theorem

Program i
Property <%> e =

®© ®

Fig.7. The parallel DFA-framework.

have originally been developed in the sequential imperative paradigm (cf. [11]),
can now be transferred to the parallel setting together with the optimizations
based thereon. In [28] and [I6] this has been demonstrated for code motion (cf.
[22132]) and partial dead-code elimination (cf. [23]), respectively.

6 Conditional Data-flow Analysis

Conditional branches are usually nondeterministically interpreted in DFA in or-
der to avoid undecidabilities. The framework of abstract interpretation, however,
is inherently powerful enough in order to also properly deal with conditional
branching. Here, we demonstrate this for the intraprocedural setting. Techni-
cally, this can be achieved by introducing filter functions of the form

fe:C—C defined by V' €C. fo(c)=g4cUc

where U is the lattice operator dual to the one for modelling the “merge” of data-
flow information at join nodes of the control flow. Intuitively, a filter function
matching the pattern above enriches the current data-flow information by the
data-flow facts, which are guaranteed by the particular program branch taken.
After introducing filter functions the DFA-process proceeds as in the intrapro-

372 Jens Knoop

cedural case. However, due to the special nature of the filter functions we need
here the following version of the coincidence theorem.

Theorem 5 (Conditional Coincidence Theorem).

The conditional MFP- and MOP-solution coincide, if the lattice, the local se-
mantic functions, and the filter functions of the abstract interpretation are all
distributive.

In [I8] and [25], an alternative variant of filter functions have been introduced,
aiming at achieving an “almost” deterministic treatment of program branches
and method calls. Basically, the filters introduced there propagate data-flow in-
formation (i.e., type information) only along program branches they are qualified
for. Thus, in contrast to the filter functions sketched above, they do not enrich
data-flow information according to the branching condition, but act like a sieve
letting pass only those parts of the information satisfying the (abstractly in-
terpreted) branching condition. This is discussed in detail in [I8|25]. For the
purpose of this article it suffices that these filters fit to the general pattern of
Figure[l which can be considered an abstraction of the corresponding instance
of the object-oriented setting.

7 Conclusions

The origins of DFA-frameworks based on abstract interpretation lie in the im-
perative programming paradigm with the main focus on intraprocedural and in-
terprocedural DFA. In this article we reconsidered this approach from a generic
point of view. We showed that the resulting generic framework has instances
in quite different programming paradigms ranging from the classical imperative
over the parallel and data-parallel one to the object-oriented paradigm, which
are becoming more and more important in practice. From the perspective of
a DFA-designer this unifying approach simplifies to switch between paradigms
as well as to transfer analyses beyond paradigm boundaries. Moreover, as a
by-product of our approach, we obtained a natural decomposition of the DFA-
frameworks into a “theoretical” and “practical” part suggesting a uniform prin-
ciple for the construction of DFA-generators. In each case the backbone of the
decomposition is a specific coincidence theorem relating the solution computed
by a DFA-algorithm to the solution specified. According to this principle DFA-
generators (or tool kits) have already successfully been realized for intra- and
interprocedural DFA, e.g., in terms of the DFA&OPT-METAFrame tool kit [14],
and in similar form in the DFA-generator systems PAG (cf. [2]) and OPTIMIX
(cf. [34]). As demonstrated here, these approaches can uniformly be extended to
further paradigms and settings. An extension to parallel programs is integrated
in the tool kit of [14], further extensions are in progress.

References

1. A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques and
Tools. Addison-Wesley, 1985.

10.

11.
12.

13.

14.

15.

16.

17.

18.

19.

20.

From DFA-Frameworks to DFA-Generator 373

. M. Alt and F. Martin. Generation of efficient interprocedural analyzers with

PAG. In Proc. 2nd Int. Static Analysis Symp. (SAS’95), LNCS 983, pages 33
— 50. Springer-V., 1995.

U. ABmann. How to uniformly specify program analysis and transformation with
graph rewrite systems. In Proc. 6th Int. Conf. on Compiler Const. (CC’96), LNCS
1060, pages 121 — 135. Springer-V., 1996.

U. ABmann. OPTIMIXing. In Proc. Poster Session 7th Int. Conf. on Compiler
Const. (CC’98), pages 28 — 35. Departamento de Informética, Univ. Lisboa, 1998.
P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Conf. Rec.
4th Symp. Principles of Prog. Lang. (POPL’77), pages 238 — 252. ACM, NY, 1977.
P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In
Conf. Rec. 4th Symp. Principles of Prog. Lang. (POPL’79), pages 269 — 282. ACM,
New York, 1979.

P. Cousot and R. Cousot. Abstract interpretation frameworks. J. of Logic and
Computation, 2(4):511 — 547, 1992.

High Performance Fortran Forum. High Performance Fortran language specifica-
tion version 2.0. Technical report, Rice University, Houston,TX, January 1997.
Available via HPFF home page: http://www.crpc.rice.edu/HPFF.

G. Fox, S. Hiranandani, K. Kennedy, C. Koelbel, U. Kremer, C.-W. Tseng, and
M.-Y. Wu. FORTRAN D language specification. Technical report, Rice University,
Houston,TX, January 1992.

A. Goldberg and D. Robson. Smalltalk-80: The Language and its Implementation.
Addison-Wesley, 1983.

M. S. Hecht. Flow Analysis of Computer Programs. Elsevier, North-Holland, 1977.
J. B. Kam and J. D. Ullman. Monotone data flow analysis frameworks. Acta
Informatica, 7:305 — 317, 1977.

G. A. Kildall. A unified approach to global program optimization. In Conf. Rec.
1st Symp. Principles of Prog. Lang. (POPL’73), pages 194 — 206. ACM, NY, 1973.
M. Klein, J. Knoop, D. Koschiitzki, and B. Steffen. DFA&OPT-METAFrame: A
tool kit for program analysis and optimization. In Proc. 2nd Int. Workshop on
Tools and Algorithms for Constr. and Analysis of Syst. (TACAS’96), LNCS 1055,
pages 422 — 426. Springer-V., 1996.

J. Knoop. Optimal Interprocedural Program Optimization: A new Framework and
its Application. PhD thesis, Univ. of Kiel, Germany, 1993. LNCS Tutorial 1428,
Springer-V., 1998.

J. Knoop. Eliminating partially dead code in explicitly parallel programs. TCS,
196(1-2):365 — 393, 1998. (Special issue devoted to Euro-Par’96).

J. Knoop. Parallel constant propagation. In Proc. 4th Furop. Conf. on Parallel
Processing (Euro-Par’98), LNCS 1470, pages 445 — 455. Springer-V., 1998.

J. Knoop and W. Golubski. Abstract interpretation: A uniform framework for type
analysis and classical optimization of object-oriented programs. In Proc. 1st Int.
Symp. on Object-Oriented Technology (WOON’96), pages 126 — 142, 1996.

J. Knoop, D. Koschiitzki, and B. Steffen. Basic-block graphs: Living dinosaurs?
In Proc. 7th Int. Conf. on Compiler Construction (CC’98), LNCS 1383, pages 65
— 79. Springer-V., 1998.

J. Knoop and E. Mehofer. Interprocedural distribution assignment placement:
More than just enhancing intraprocedural placing techniques. In Proc. 5th Int.
Conf. on Parallel Architectures and Compilation Techniques (PACT’97), pages 26
— 37, 1997.

374

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.
34.

35.

36.

37.

38.

39.

Jens Knoop

J. Knoop and E. Mehofer. Optimal distribution assignment placement. In Proc.
3rd Europ. Conf. on Parallel Processing (Euro-Par’97), LNCS 1300, pages 364 —
373. Springer-V., 1997.

J. Knoop, O. Riithing, and B. Steffen. Optimal code motion: Theory and practice.
ACM Trans. Prog. Lang. Syst., 16(4):1117-1155, 1994.

J. Knoop, O. Riithing, and B. Steffen. Partial dead code elimination. In Proc.
ACM SIGPLAN Conf. on Prog. Lang. Design and Impl. (PLDI’94), volume 29,6
of ACM SIGPLAN Not., pages 147 — 158, 1994.

J. Knoop, O. Riithing, and B. Steffen. Towards a tool kit for the automatic gen-
eration of interprocedural data flow analyses. J. Prog. Lang., 4(4):211-246, 1996.
J. Knoop and F. Schreiber. Analysing and optimizing strongly typed object-
oriented languages: A generic approach and its application to Oberon-2. In Proc.
2nd Int. Symp. on Object-Oriented Technology (WOON’97), pages 252 — 266, 1997.
J. Knoop and B. Steffen. The interprocedural coincidence theorem. In Proc.
4th Int. Conf. on Compiler Construction (CC’92), LNCS 641, pages 125 — 140.
Springer-V., 1992.

J. Knoop, B. Steffen, and J. Vollmer. Parallelism for free: Bitvector analyses — No
state explosion! In Proc. 1st Int. Workshop on Tools and Algorithms for Constr.
and Analysis of Syst. (TACAS’95), LNCS 1019, pages 264 — 289. Springer-V., 1995.
J. Knoop, B. Steffen, and J. Vollmer. Code motion for parallel programs. In Proc.
of the Poster Session of the 6th Int. Conf. on Comp. Constr. (CC’96), pages 81 —
88. TR LiTH-IDA-R-96-12, 1996.

J. Knoop, B. Steffen, and J. Vollmer. Parallelism for free: Efficient and optimal
bitvector analyses for parallel programs. ACM Trans. Prog. Lang. Syst., 18(3):268
— 299, 1996.

K. Marriot. Frameworks for abstract interpretation. Acta Informatica, 30:103 —
129, 1993.

P. M. Masticola, T. J. Marlowe, and B. G. Ryder. Lattice frameworks for mul-
tisource and bidirectional data flow problems. ACM Trans. Prog. Lang. Syst.,
17(5):777 — 802, 1995.

E. Morel and C. Renvoise. Global optimization by suppression of partial redun-
dancies. Comm. ACM, 22(2):96 — 103, 1979.

R. Morgan. Building an Optimizing Compiler. Digital Press, 1998.

S. S. Muchnick. Advanced Compiler Design and Implementation. Morgan Kauf-
mann, San Francisco, CA, 1997.

S. S. Muchnick and N. D. Jones, editors. Program Flow Analysis: Theory and
Applications. Prentice Hall, Englewood Cliffs, NJ, 1981.

F. Nielson. A bibliography on abstract interpretations. ACM SIGPLAN Not.,
21:31 — 38, 1986.

M. Sharir and A. Pnueli. Two approaches to interprocedural data flow analysis.
In S. S. Muchnick and N. D. Jones, editors, Program Flow Analysis: Theory and
Applications, chapter 7, pages 189 — 233. Prentice Hall, Englewood Cliffs, New
Jersey, 1981.

Niklaus Wirth. The programming language Oberon. In Software-Practice and
Ezxperience, volume 18, pages 671-690. John Wiley and Sons, 1988.

H. Zima, P. Brezany, B. Chapman, P. Mehrotra, and A. Schwald. Vienna Fortran
- A language specification version 1.1. Technical Report ACPC/TR 92-4, Austrian
Center for Parallel Computation, March 1992.

] NN

4321 B0

10.1007/b107031130025

	Motivation
	Intraprocedural Data-flow Analysis
	Interprocedural Data-flow Analysis
	Data-parallel and Object-oriented Data-flow Analysis
	Parallel Data-flow Analysis
	Conditional Data-flow Analysis
	Conclusions

