An Operational Investigation
of the CPS Hierarchy

Olivier Danvy! and Zhe Yang? *

' BRICS ***

Department of Computer Science, University of Aarhus
Building 540, Ny Munkegade, DK-8000 Aarhus C, Denmark
danvy@brics.dk
2 Department of Computer Science, New York University
251 Mercer Street, New York, NY 10012, USA
zheyang@cs.nyu.edu

Abstract. We explore the hierarchy of control induced by successive
transformations into continuation-passing style (CPS) in the presence
of “control delimiters” and “composable continuations”. Specifically, we
investigate the structural operational semantics associated with the CPS
hierarchy.

To this end, we characterize an operational notion of continuation seman-
tics. We relate it to the traditional CPS transformation and we use it to
account for the control operator shift and the control delimiter reset
operationally. We then transcribe the resulting continuation semantics in
ML, thus obtaining a native and modular implementation of the entire
hierarchy. We illustrate it with several examples, the most significant of
which is layered monads.

1 Introduction

1.1 Background

Continuation-passing style (CPS) programs are usually obtained by CPS trans-
formation. The CPS hierarchy is obtained by iterating the CPS transformation,
which yields programs whose types obey the following pattern:

Fun = Valy — Cont; — Conty — ... — Cont,, — Ans,,

Cont; = Val; — Conty — ... — Cont,, — Ans,,
Cont,, = Val,, — Ans,,

In the CPS hierarchy, programs exhibit the familiar pattern of success/failure
continuations which is pervasive in functional specifications of backtracking.

* Partially supported by National Science Foundation grant CCR-9616993 and by
BRICS.
*** Basic Research in Computer Science (http://www.brics.dk),
Centre of the Danish National Research Foundation.

S.D. Swierstra (Ed.): ESOP/ETAPS’99, LNCS 1576, pp. 224l 1999.
© Springer-Verlag Berlin Heidelberg 1999

An Operational Investigation of the CPS Hierarchy 225

Enriching CPS with identity and composition makes it possible to simulate
Prolog-style backtracking and also to accumulate results. To simulate Prolog-
style backtracking, we successively apply the current continuation to all possible
choices—failing if there are none. To accumulate results, we use the current
continuation to compute the result of the “remaining computation” and stash
it away in an accumulator. To combine these two control mechanisms, e.g., to
accumulate all the possible results of a non-deterministic computation in a list,
we exploit the natural hierarchy between these two processes: the generation
should take place in a context where its successive results are accumulated. We
therefore CPS-transform the generation process (thus making its continuation
continuation-passing) and we supply the accumulation process as its initial con-
tinuation [H.

The CPS hierarchy thus offers a fitting platform to express hierarchical
backtracking—at the price indicated by the types above: a quadratic inflation
of continuations.

The last level of CPS can be avoided by using the identity continuation and
the ability to compose continuations. This is often deemed enough when n =1
or n = 2 in the type equations above. For higher values of n, this quadratic cost
can be alleviated with a linguistic device: two new syntactic forms in direct style,
whose CPS transformation yields the desired effect of initializing a continuation
with identity and of composing continuations. Initializing a continuation with
identity is achieved with the control delimiter reset. Composing continuations
is enabled by the control operator shift which captures the current (delimited)
continuation and makes it ready to be composed with a subsequent continu-
ation [f]. For comparison, the control operator callcc captures the current
(unlimited) continuation and makes it ready to replace a subsequent continua-
tion A

The challenge now is how to implement the CPS hierarchy more directly than
by repeated CPS transformations and more efficiently than with a definitional
interpreter [[]. Filinski showed how to implement the first level natively, using
callcc and one reference cell 4. In this article, we show how to implement the
entire hierarchy natively, using callcc and one reference cell per level.

1.2 Related work

The CPS hierarchy was identified and advocated by Danvy and Filinski [,
who also introduced the corresponding hierarchy of control operators shift,, and
reset,, (one per surrounding continuation). At the same time, but independently
of CPS, Felleisen invented control delimiters [M], initiating a whole area of work
on composable continuations and hierarchies of control [e 2]
[ENE3EA]. Control delimiters, for example, were instrumental to obtain a full-
abstraction result [E].

All researchers in this new area followed Felleisen and defined their new
control constructs operationally. They reported a variety of control operators,
each of these displaying inventiveness in its modus operandi, its description, and
its implementation.

226 Olivier Danvy and Zhe Yang

In contrast, shift and reset are defined by translation into CPS. They have
also proven particularly fruitful: because (we believe) control delimiters and com-
posable continuations arise naturally in the CPS hierarchy, a number of applica-
tions of shift and reset were reported through the 90’s [EJEIEATATARD) up to
and including the R5RS [&. There were only two further studies, however, of
the CPS hierarchy and its guidelines: Murthy’s, formalizing its type system [E3],
and Filinski’s, establishing its equivalence with computational monads [EI].

1.3 This work

The growing number of applications of shift and reset leads one to want to
combine them. For example, suppose that we want to specialize programs that
use shift and reset, using type-directed partial evaluation [l]. The problem is
that type-directed partial evaluation also uses shift and reset, and we would
like these two uses not to interfere with each other. This kind of applications
require the CPS hierarchy to layer different uses of shift and reset at different
levels.

It is difficult to implement the CPS hierarchy natively, since the semantics
of built-in constructs cannot be altered. We thus take a novel approach using
operational semantics: we characterize an operational ‘continuation semantics’
and following Section [E0 (1) we enrich it with identity and composition of
continuation as provided by shift and reset, and (2) we transform the result
in a new continuation semantics. The new semantics extends the old one with
a new pair of shift and reset; moreover, it can be natively implemented in
the old semantics, since all the rules in the new semantics except those of the
newly added operators are those of the old semantics, with the addition of one
unchanged component. Iterating this process yields a family of semantics—the
CPS hierarchy—and its native and modular implementation in ML, & la Filinski
[EAE3N]. This general approach provides a native implementation of the new
language constructs.

En passant, to make sure that we account for shift and reset as originally
defined (i.e., by CPS transformation), we relate our operational notion of con-
tinuation semantics with the traditional CPS transformation.

1.4 Applications

A toy example: The two following computations declare an outer context 1 +
[1. They also declare a delimited context [50 + [11, which is abstracted as
a function denoted by k. This function is successively applied to 0, yielding 50,
and to 10, yielding 60. These two results are added, yielding 110 which is then
plugged in the outer context. In both cases, the overall result is 111.

1 + reset (fn () => 50 + shift (fn k => (k 0) + (k 10)))
1 + let funk v = 50 + v in (k 0) + (k 10) end

In the first computation, the context is delimited by reset and the delimited
context is abstracted into a function with shift. The second computation is the
continuation-passing counterpart of the first one.

An Operational Investigation of the CPS Hierarchy 227

More substantial examples: The CPS hierarchy also makes it possible to express
computations like min-max processes or quantifier alternation. For example, the
existential quantifier Jv.p(v) for a condition p over non-deterministically gener-

ated values v can be implemented as
fun exist v p
= shift (fn k => if (p v) then true else k ())

where the return value of reset corresponding to the collection is set to false.
Similarly, we can implement the universal quantifier with a function forall.
Using these two functions at different levels, we can write formulae of arbitrary
quantifier alternation.

2 Operational Semantics of the CPS Hierarchy

This section presents a family of operational semantics that can be directly
transcribed into an implementation.

Starting with an operational semantics S for ML (Section EZN), we character-
ize an operational notion of continuation semantics (Section E=l). We then relate
continuation semantics and syntactic CPS transformation, which is a result in
itself (Sections =l and E=). Based on the CPS transformation, we provide a
semantic account of shift and reset (Section E=3).

The semantics L, which is S extended with shift and reset, is no longer
a continuation semantics. We induce two continuation semantics H and I, and
prove that they both simulate the semantics L (Sections B2 and E=8). Moreover,
1 is directly implementable in S, in that the S-rules embed into the I-rules with
the addition of one unchanged component. This component can be implemented
by a reference cell. As for the remaining I-rules, they correspond to new control
operators which can be implemented as functions.

The resulting semantics I is a continuation semantics, and thus, generalizing,
we can iterate the whole transformation (Section). The resulting family of op-
erational semantics formalizes the CPS hierarchy and is directly implementable
in the initial operational semantics of ML (Section H).

2.1 Starting semantics S

We use Harper, Duba, and MacQueen’s “continuation-based operational seman-
tics” for ML i) as our starting semantics S Bits syntactic categories are defined
by the following grammar.

ec Fxpu=ua|l|Ar.e|ee; —expressions
ve Val =1L | Az.e —values
ke Cont::=0|ke|vk —continuations

Its inference rules specify a judgment of the form “k F e = v” which reads

“under the continuation k, evaluating the expression e yields the answer v”
(Table H).

! For brevity, both WRONG and LET rules in the original semantics are omitted here.
The WRONG rule specifies the error case and serves in the formulation of type
soundness. The LET rule is only there for ML’s let polymorphism.

228 Olivier Danvy and Zhe Yang

O F k[vi] = v

VALO) = VAL1 k#0
()\:‘ Fov=wv () kF vy = v (k# L)
k[0 F = klvo O] + =
(FN)M (eo not a value) (ARG)M (e1 not a value)
kF eer = v k F voer = v

kF [vi/z]e = v

BETA) ———M8m ————
()k F (Az.e)vy = v

Table 1. An operational continuation semantics

A continuation k can be thought of as an expression with precisely one “hole”
O in it. We write k[e] and k[k'] to denote the expression and continuation ob-
tained by filling the hole in k& with an expression e and a continuation k’, respec-
tively, where k[k’] is the “composition” of k with &’.

We are mainly interested in the dynamic semantics of shift and reset, and
thus we do not present typing rules and the related soundness proof, which can
be adapted from the work of Harper, Duba, and MacQueen [] and of Gunter,
Rémy, and Riecke [E. We rely on the static type system of our implementation
language, ML, for the type soundness (Section H).

2.2 An operational notion of continuation semantics

Operational semantics give rise to derivation trees. We define a branchless se-
mantics as an operational semantics whose rules have one premise at most.
Such a semantics gives rise to branchless derivation trees, i.e., lists. Note that
a branchless semantics directly corresponds to a reduction semantics, where re-
duction proceeds from the conclusion of a rule to the premise, or to the final
result if the rule has no premise. Staying in the world of branchless evaluation
semantics makes it easy to refer to a complete computation (as a judgment) as
well as a single reduction (as a rule instance).

A continuation semantics, like the one in Tablell is branchless: the contin-
uation component in its judgments keeps track of the remaining branches in a
corresponding direct-style derivation tree; it can be regarded as the stack used
to traverse this derivation tree.

2.3 CPS transformation

Previous studies of the CPS hierarchy build on the CPS transformation. To
justify our study of control operators with the continuation semantics of Table
B we adapt the call-by-value CPS transformation to its expressions, values, and
continuations.

%xHEmp = \K.K X [€] var = ¢

V] Bap = A6k U] vai —
[eo elﬂEmi = Ak.[eo] Bzp Avo.[€1] Ezp AV1.vo V1 K [Aa-e] var = Az.[e] map

An Operational Investigation of the CPS Hierarchy 229

[O] cont = Av.Ak.KV
[ke1] cont = M. AE[E] cont v Avo.[e1] Bzp Av1.v0 v1 K
[vo k] cont = M. AK.[k] cont v Av1.[Jvo] vai v1 &

The rationale for [-]cont is that the “hole” O in the continuation is an ab-
straction over a value, as captured in the following lemma, where “=g,” denotes
[Bn-convertibility.

Lemma 1. For all k € Cont and v € Val, [k[v]]Ezp =pn [k]cont [V] vai-

Proof. By structural induction on k.

2.4 Soundness and completeness of the operational semantics

The following theorem connects the continuation semantics of Section =l and
the CPS transformation of Section E=3

Theorem 1. For allk € Cont, e € Fxp, and v € Val, if k F e = v then
le] Ezp Aw.[k] cont w Aa.a =gy [V] vai-

Proof. By rule inductionon & F e = wv.

Corollary 1. For alle € Exp and v € Val, if O - e = v then [e] pmp Aw.w
= [v] var-

Because the term [e] gzp Aw.w is convertible to a value [v] vq, it must reduce
to a value that is equal to [v] yo; modulo Bn-conversion under normal-order eval-
uation (by the Normalization theorem), and thus also under applicative-order
evaluation (by Plotkin’s Indifference theorem [E]). The operational semantics
is thus sound with respect to the call-by-value semantics defined by the CPS
transformation.

Proving completeness requires a close correspondence between the rules and
the translated terms, and as often, “administrative redexes” in the CPS trans-
formation get in the way. To prove completeness (i.e., that the evaluation of the
CPS form of a term e with an identity continuation leads to a value v, then
O F e = w), we successfully adopted Danvy and Filinski’s one-pass CPS
transformation).

These soundness and completeness results are not surprising. One can also
obtain them by proving the equivalence of the continuation semantics and a
direct semantics, and then by using Plotkin’s Simulation theorem [E8]. A more
immediate connection between continuation semantics and CPS transformation,
however, provides the basic framework for adding control operators.

2.5 An operational account of shift and reset

A control operator “reifies” a continuation k into a function fi. In terms of the
CPS transformation, such a function appears as a A-term:

A = 2w . [k] cont w Aa.a.

230 Olivier Danvy and Zhe Yang

Correspondingly, in the continuation semantics, we need to find out how to
invoke such a function fi to be able to use a reified continuation.

Let us fix a continuation k. For any given value v, the corresponding v’ such
that k = v = v is unique, if it exists. This suggests us to define a function fj
for every continuation k as follows.

frv=0v <= kFov=7

And this is justified by the CPS transformation: as a corollary of Theorem M
when e = v, the term Ay, ([v] vai) is Bn-convertible to

(Aw.[k] cont w Aa.a) [V]var =gy [V] Ezp Aw.[k] contw Aa.a =gy [V'] var-

Now we are ready to introduce the control operators shift and reset by
adding the following expression forms and the corresponding rules.

e ::=... | reset e | shift c.e | pushcc(e, k)
Shift and reset are defined by their CPS transformation [:

shift c.e] gzp = Ac.(Ae.[€] mzp Aa.a) AMw A& K (kw
[» »

—composition of continuations

[reset €] gzp = A&k ([€] Bop Aa.a)

—identity continuation

In both shift c.e and reset e, the type of e should be the same—though not
necessarily the same as the final result type. Thus any shift-expression must be
delimited by a corresponding reset or a shift—a hidden restriction that cannot
be easily expressed in this translation. We address it in Section B3

The translation of shift and reset are not in CPS because they compose
continuations. This programming pattern is abstracted by the meta-control op-
erator pushcc:

[pushcc(e, k)] gzp = A&k ([€] Bop Aw.[k] cont w Aa.a)

Pushcc is a meta-control operator because its expression form contains contin-
uations. It therefore can only be used to define other control operators.

Correspondingly, in the operational semantics, we can express the composi-
tion of functions f and fj, related to continuations k and k&’ by adding the rule
pushcc (Table B). As for shift and reset, they are defined by the rules shift and
reset in term of pushcec.

Let us resume the inductive proof of Theorem M for the three new rules. We
only reproduce the most interesting one here, i.e., pushcc.

Proof. (excerpt)
The induction hypotheses for the rule pushcc (Table B read:

le] Bzp Aw.[K'] cont w Aa.a =gy [V'] var (i1)
[V'] Ezp Aw.[k] cont w Aa.a =gy [k] cont [V'] vai Aa.a =y [V] val (i2)

An Operational Investigation of the CPS Hierarchy 231

(Ac.e) Aw.pushce(w, k) = v
k + shift ce = v

k + pushcc(e,0) = v
k F reset e = v

(shift) s (reset)

"Fe= EEJ =0
k + pushcc(e, k') = v

(pushcc)k

Table 2. Definitional rules for shift and reset

Now, we have [pushcc(e, k)] gop Aw.[k] cont w Aa.a
=gy (AK.K ([€] Bzp Aw.[K'] cont w Aa.q)) Aw.[k] cont w Aa.a
=gy [k] cont [V'] var Aa.a, by (i1)
=pn [v] var, by (i2)

Theorem B, and consequently Corollary l still hold for the operational se-
mantics and the CPS transformation extended with the control operators. There-
fore, the operational semantics gives the same definition for the control operators
as those given by the CPS transformation.

2.6 A continuation semantics for shift and reset

With the addition of pushcc, the semantics is no longer branchless. To obtain an
equivalent branchless semantics, we need to use the idea of the CPS transfor-
mation, i.e., flattening derivation trees by remembering branching computations
(continuations k in pushcc) in a stack.

We thus induce another semantics H from the extended semantics, referred to
as L. For clarity, we subscript rules and domains by the semantics they belong
to. A judgment in H is of the form & Fyg e = v, where e € Exp; (which
can be one of the form introduced by the control operators), but & forms a
new domain of “global” continuations: k € Conty = Conty, x (Conty, list) =
Cont . The global continuations (of type Conty) are always non-empty lists of
continuations, whose head is the current active continuation, and whose tail is
a stack of saved continuations.

The H-rules are given in Table ll Most of them are simply the correspond-
ing L-rules with the stack ks carried around unchanged. The interesting rules,
pushccy and VALOEONS, function as the branching rule pushcc, .

The semantics H is branchless. We would like to show that it correctly ac-
counts for L, i.e., Vk,e,v. (k b e = v) <= (k:nil Fg e = v).

Theorem 2. For all k € Contr, e € Exp;, andv € Valy, if k L e = v, then
Vkse Conty,v' € Valp. (O ks by v =v)= (k:ks by e =).

Proof. By rule inductionon k& Fp e = wv.

NIL

For ks = nil, using rule VALOy -, we obtain the following corollary.

Corollary 2. For all k € Contr, e € Exzp; and v € Valy, if k b e = v then
konil by e = v.

232 Olivier Danvy and Zhe Yang

kikskg v = v

VALON"
(H) Ovkekstbyg v = v

(VALOEON®)

Ounilbyg v =

O ks by klvi] = v (k # \:‘) (FNH)k[Del] ks kg e = v

(VAL1y)
k:ks Fg vi = v k:ks kg eer = v

(eo not a value)

ElvoO] ks kg ex = v k:ks by [vi/zle = v

ARG t 1 BETA
(H) ki ks bty voer = v (€1 not a value) H)k wks by (Az.e)vy = v

O: ks ki (Ac.e) \w.pushec(w, k) = v k:: ks Fg pushcc(e,J) = v
(resety)

(shifty) =
k :: ks Fg shift c.e = v k: ks Fg reset e = v

kek' tkskyge=w
k' :: ks g pushcc(e, k) = v

(pushcey)

Table 3. An operational continuation semantics for shift and reset

For the inverse direction, we need to refer to the derivation more explicitly:
we use =< to denote the sub-derivation relation, and we write D : J if D is a
derivation ending with the judgment J.

Theorem 3. For all ks € Cont}, k € Contr, e € Exp,, v € Valg, if D :
k:ksbtge= v, then

JveValp, D'. (kb e = v)A(D' XD)AD" : (O:ks by v=1).

Proof. By strong induction on the derivation D.

For ks = nil in Theorem B we notice that the only possible derivation for D’

is one-step, using rule VALO”'L, so the witness v is v/, and the following corollary

holds.

Corollary 3. For allk € Contr, e € Expy, andv € Valg, ifk :nil Fg e = v
then k Fp e = wv.

Together, Corollary Bl and Corollary Bl show that the branchless semantics H
simulates the semantics L. H can be implemented by a definitional interpreter
as before [A]. Our goal, however, is to implement the control operators natively
as functions (using first-class continuations and cells, like Filinski [&]). The
semantics of the built-in constructs cannot be altered in such a setting, thereby
preventing us to implement the crucial rule VA LOEONS, which is enacted when the
active continuation (of type Conty,) is already identity. Such behavior should be
put into the continuation: instead of initializing it with an identity continuation
0O, we should initialize it with an operation to resume the top continuation from
the stack. The corresponding transformation of L is described in Section E=d

Now we can come back to the typing problem of shift. The requirement that
all shift-expressions must be enclosed by a corresponding reset or shift can
be easily manifested in the semantics H by adding a side condition to the rule

An Operational Investigation of the CPS Hierarchy 233

O ks b1 k[v1] = v

VALO) =————— VAL1 k#0
(I)\:‘::ksFIv:>v (1) k:ks Fr vy = v (k# L)
k[Oeq] ks - =
(FNy) el 57 o Y (ep not a value)
k:ks Fr eper = v
k Oy ks - = k ks F =
(ARG)) [vo =] sTr e i (e1 not a value) (BETA|) s 1 [vi/ale hd

ki ks Fr voer = v k:ks Fr (Az.e)vy = v
id?%" ks k1 (Ac.e) Aw.pushec(w, k) = v

(shifty) -
k:: ks k1 shift ce = v

(ks # nil)

k:: ks 1 pushcc(e,id??) = v kuk' ks bkre=wv

reset, ushcc
() k: ks F; resete = v (p I)k’ i ks ;1 pushce(e, k) = v

ks Fr v = v
k' :: ks 1 popec(v) = v’
Table 4. An implementable semantics for shift and reset

(popec)) (ks # nil)

shifty that the stack should not be empty. (This makes the definition of shift
partial; when the stack is empty, we obtain a run-time error.)

O: ks Fg (AK.e) \w.pushcc(w, k) = v)
% ks g shift ke = v (ks 7 nil)

(ShiftH)

2.7 An implementable continuation semantics for shift and reset

The implementable semantics I is also induced from the semantics L with Cont;
= Contyg = C’ontz. We introduce a new operator popcc:

e = ... | popcc(e)

Intuitively, this operator pops the continuation stack and sends its operand
to the popped continuation. Now, the initial continuation can be defined as
idi? def popcc(0d), which replaces O in rules shift,; and reset,, thus eliminating
the need for the rule VALOSON®.

In Tablel the I-rules are the same as the H-rules except for VALO, (replacing
VALOHIL and VALOEONS), shift,, reset,, and popcc;,.

Semantics I simulates semantics L, as shown by the following theorem.

Theorem 4. For all e € Erzp; and v € Valp, (O :nil Fr e = v) <
(O:nil by e = o).

Proof. By two straightforward inductions.

This new semantics I has two properties:

(1) Tt is branchless. More specifically, for any intermediate judgment k F;
e = v in a proof tree, the rest of the computation after e is evaluated is totally
captured in the global continuation k. We can thus iterate the above process to
add control operators at subsequent levels.

234 Olivier Danvy and Zhe Yang

(2) It can be directly implemented in the starting semantics S using refer-
ences and first-class continuations in the following Wayl the head of the global
continuation k is the current continuation, while the tail is stored in a reference
cell. All the S-rules automatically ‘extend’ to the corresponding I-rules, without
touching the reference cell; the new rules defining the control operators can then
be directly implemented by encoding the four constants shift, reset, pushcc
and popcc as functions, using callcc to capture the current continuation and
throw to restore it.

2.8 An inductive construction of the CPS hierarchy

The semantic transformation (from Section Bl to Section E=l) can be generalized
and iterated: at each step, we transform an input semantics S; into an output
semantics ;11 that preserves certain inductive conditions (such as “branch-
lessness”). The operational continuation semantics displayed in Table ll satisfies
these inductive conditions, and we used it as the starting semantics ;.

+shift; /reset;

@| Li

— branchless
[]| — branchless & directly implementable
------ — the simulation relation

Fig. 1. A single transformation (from level i to level i + 1)

Figure W summarizes the development of a single transformation: we start
with the branchless semantics S; of level i. Adding shift; and reset; with re-
lated inference rules yields the semantics L; which is no longer branchless (see
Section). Then we replace the global continuation of this level by a stack
of such continuations, which forms the global continuation of the next level,
and we obtain a semantics H; where we restore the branchlessness property (see
Section E). Since H; is not directly implementable in S;, we apply another
transformation to L; to obtain a semantics I;, which is both branchless and di-
rectly implementable (see Section [B&l). Semantics I; simulates H;, which in turn
simulates L;. With its newly introduced control operators shift; and reset;, I;
satisfies the inductive conditions. Therefore, we can use it as the semantics S; 1
for the next level of the hierarchy.

2 We did not put references and callcc in the starting semantics and we only use them
for the implementation. In fact, making references available to the user causes no
problem, whereas callcc interferes with shift and reset.

An Operational Investigation of the CPS Hierarchy 235

For space reasons, the rest of this section is omitted. But it is available in
the extended version of this article [1].

3 An Implementation of the CPS Hierarchy

We implement the CPS hierarchy by transcribing the transformation of Section
B3 in Standard ML of New Jersey [M, using the structure SMLofNJ.Cont which
provides callcc and throw. The implementation uses a signature SHIFT_RESET to
specify the operations provided by a semantics S for the user and for the con-
struction of the next control level, a structure innermost_level to model the first
level in the hierarchy (which thus provides no control operators), and a functor
sr_outer to construct next-level control operators, parameterized by the answer
type ans and by the control level inner immediately preceding it. Essentially, the
signature SHIFT RESET corresponds to the inductive conditions for the semantics
S, and the functor sr_outer corresponds to the transformation from a semantics
S =5, to the next-level semantics I = S;4;.

The implementations of control operators are thus hidden inside the module
system, and they are accessed via the name of the structure that corresponds
to their level. Having devised an ordering of the control effects, a user then
implements it through the order of functor applications. Hierarchical occurrences
of shift and reset are thus no longer referred to by their relative index, which
had been criticized in the literature [E5Z].

We implemented the functor sr_outer by transcribing line-by-line the added
semantic rules in semantics I (four new functions, one per operator) and the
definition of the constant id;” B We also use two auxiliary functions: a func-
tion replace gcont, used implicitly in the semantics, captures and replaces the
current global continuation, and a function cont2gcont, required by the induc-
tive conditions for semantics S, converts a first-class continuation to a global
continuation. The code is thus very concise: the pretty-printed program defining
innermost._level and sr_outer takes about 40 lines of ML code (Figure H).

We also provide a functor for the usual first level of control operators (shift;
and reset;):

functor initial_control_level (type ans) : SHIFT_RESET
= sr_outer (type ans = ans structure inner = innermost_level)

Specializing this functor for the first level of the CPS hierarchy yields a result
similar to Filinski’s implementation of shift and reset [[ZJ]. The main difference
is that here we use an explicit stack of continuations whereas Filinski uses an
implicit one through functional abstraction. (An analogy: one can represent en-
vironments in an interpreter as a list or as a function.)

3 We use the function SMLofNJ.Cont.isolate to coerce a non-returning function to a
continuation. This function can be defined as follows.

fun isolate f = callcc (fn x => f (callcc (fn y => throw x y)))

236 Olivier Danvy and Zhe Yang

signature SHIFT_RESET (* control level ¢ *
= sig
type answer (* answer type of level 4

val reset : (unit -> answer) -> answer
val shift : ((’a -> answer) -> answer) -> ’a

type ’a gcont (* Contl (= Cont}) *

val replace_gcont : ’a gcont -> (’b gcont -> ’a) -> ’b

(* captures current global continuation (of type 'b gcont), *
(* and replaces it with the first argument (of type ‘a gcont) *

— =

val cont2gcont : ’a cont -> ’a gcont (* Contl — Contk*)
end

structure innermost_level :> SHIFT_RESET (* level 0 *)

= struct (* here, global continuation = ML continuation *)

exception InnermostLevelNoControl
type answer = unit

type ’a gcont = ’a cont (* uses ML continuation for Cont% *)

fun replace_gcont new_c e_thunk
= callcc (fn old_c => throw new_c (e_thunk old_c))
fun cont2gcont ¢ = ¢

fun reset _ = raise InnermostLevelNoControl
fun shift _ = raise InnermostLevelNoControl
end

functor sr_outer (type ans structure inner: SHIFT_RESET) :> SHIFT_RESET

where type answer = ans (* from S =S; toI = S;41 *)

= struct
exception MissingReset
exception Fatal
type answer = ans

type ’a gcont (* Contr= Conts+ *)

= (answer inner.gcont) list * ’a inner.gcont

val stack = ref [] : (answer inner.gcont) list ref (* ks *)

fun replace_gcont (new_ks, new_k) e_thunk

(* captures and replaces the global continuation, recursively *)

= inner.replace_gcont new_k
(fn cur_k => let val cur_gcont = (!stack, cur_k)
in stack := new_ks; (e_thunk cur_gcont) end)
fun cont2gcont action
= ([1, inner.cont2gcont action)

fun popcc v (* rule popce; *)
= case !stack of (* side condition (ks # nil) *)
[1 => raise Fatal
| k’::ks => (stack := ks; inner.replace_gcont k’ (fn _ => v))
val id_popcc = inner.cont2gcont (isolate popcc) (* dD°P *)
fun pushcc k e_thunk (* rule pushcg *)
= inner.replace_gcont k
(fn k’ => (stack := k’ :: !stack; e_thunk ()))
fun reset e_thunk (* rule reset, *)
= pushcc id_popcc e_thunk
fun shift k_abstraction (* rule shift; *)
= case !stack of (* side condition (ks # nil) *)

[1 => raise MissingReset
| _ = inner.replace_gcont id_popcc
(fn (k : ’a inner.gcont)
=> k_abstraction (fn w => pushcc k (fn () => w)))
end

Fig. 2. A native implementation of the CPS hierarchy in Standard ML of New Jersey

An Operational Investigation of the CPS Hierarchy 237

4 Application: layering monadic effects

As a significant application of composable continuations, Filinski’s work on
adding user-defined monadic effects to ML-like languages by monadic refiec-
tion shows that composing continuations is a universal effect, which can be used
to simulate all effects expressible using a monad [EAEE]. The original work only
allowed one monadic effect, but recently, Filinski has extended the technique to
allow layering effects by relating a heterogeneous tower of monads to a tower of
continuation monads, and then implementing them using a collection of cells to
hold the meta-continuations [i&].

Independently, we directly adapted Filinski’s original one-level implementa-
tion with minimal changes to parameterize the functor that generates a monad
representation by the monad representation layered beneath it, which also gives
an inductive implementation of a monadic hierarchy. We essentially put in each
structure of a monad representation the corresponding level in the control hier-
archy; the functor that generates an outer monad representation is passed the
control level of the monad representation at the inner layer, and applies functor
sr_outer to construct its own control level.

The benefits of this representation of layered monads is the same as in Filin-
ski’s work [E: it is a direct implementation, i.e., no level of interpretation and
no level of translation hinder it [ZEEHA|.

More detail and several illustrative examples are available in the extended
version of this article [H].

5 Related Work

5.1 Felleisen’s seminal work

As already mentioned in Section IR, the notion of control delimiters in direct
style is due to Felleisen [H]. As already pointed out by Danvy and Filinski [,
control delimiters are significant because they fit in each level of the CPS hi-
erarchy very naturally: they correspond to resetting the current continuation
to the identity function; and indeed the control delimiter reset is equivalent
to Felleisen’s. As for abstracting control, programming practice suggested the
control operator shift which is equivalent to one of the variants of Felleisen’s
JF-operator.

Felleisen’s work relies on a notion of control stack, and has inspired a number
of similar control operators. Danvy and Filinski’s work relies on CPS, and has
inspired a number of applications, for two compound reasons we believe:

Ezpressiveness: Programming intuitions run strong in the world of control stacks.
But lacking guidelines, how does one know, e.g., whether one has landed on [the
continuation equivalent of] Algol 60’s control stack or on Lisp’s control stack—
i.e., on the control equivalent of lexical scope or on dynamic scope (whichever
may be best)? And how does one use the result?

Conversely, the world of CPS is a structured one, which offers guidelines
and holds much untapped expressive power. For example [EF], Filinski has

238 Olivier Danvy and Zhe Yang

shown that the expressive power of the CPS hierarchy is equivalent to the one of
computational monads. In fact, our new examples could equally well be expressed
using a tower of monads.

More specifically, operational descriptions of control hierarchies offer the pos-
sibilities to shadow control delimiters, to capture them or not when abstracting
control, to restore them or not when reinstating abstracted control, and to dy-
namically search through them at run time. CPS shields us against the most
extravagant of these mind-boggling possibilities, since by definition, programs
with shift and reset denote CPS programs. These CPS programs may have
many layers of continuations, but they are (1) purely functional and (2) stati-
cally typed.

Efficient implementation: A stack-based implementation of control tends to ex-
ert a cost which is linear in the use of each captured continuation. Besides, and
this is a well-known thesis in the continuation community [M], it faces a real
problem of duplicated continuations.

Therefore alternative implementations have been sought. For example, Fil-
inski already showed that shift; and reset; can be implemented concisely in
terms of callec, which itself can be implemented efficiently [EEAEH. Through
an alternative (but equivalent) formalism, our work essentially generalizes this
concise implementation to the whole CPS hierarchy, with no new cost and an
equivalent use.

5.2 Filinski’s work

As a significant application of the CPS hierarchy, Filinski’s work on adding user-
defined monadic effects to ML-like languages by monadic reflection shows that
composing continuations is a universal effect, which can be used to simulate all
effects expressible using a monad [EAEEH].

5.3 Gunter, Rémy, and Riecke’s work

Gunter, Rémy, and Riecke present a new set of control operators generalizing
exceptions and continuations, and its associated operational semantics and type
system [EH]. The strength of these operators lies in their static type system—
in comparison, and even though we do not doubt that there is one for the CPS
hierarchy (cf. Murthy’s work [E3]), we do not present one here explicitly; instead,
we rely on ML’s type system in our implementation.

Independently of their type system, Gunter, Rémy, and Riecke’s operators
are not cast in stone. In their own words, “We do not feel, though, that there is
a clear answer to the question of which operational rule is right; suffice it to say
that we have picked one, and that the other rules lead to strong type soundness
as well.” Similarly, we do not contend that shift and reset are the ultimate
control operators—Filinski’s operators kreflect and kreify, for example, could
well be preferred [EAET]. But we do believe that the key to their simplicity and
expressiveness is the CPS hierarchy.

Gunter, Rémy, and Riecke’s operators are also implemented with callcc.

An Operational Investigation of the CPS Hierarchy 239

5.4 Operational semantics

Operational semantics, especially small-step reduction semantics, is often used
to specify control operators formally. Several researchers have investigated the
type soundness of languages with control operators via syntactic approaches
based on operational semantics, such as Wright and Felleisen, and Harper, Duba,
and MacQueen for first-class continuations L&Y, Gunter, Rémy, and Riecke for
generalizing exceptions and continuations [li], and Murthy for the CPS hierarchy
[Z3]. Here, we use operational semantics to derive our implementation and to
prove its correctness. Also, matching the CPS hierarchy, we present a family of
continuation semantics instead of one monolithic semantics. This family can be
natively programmed in ML without resorting to an informal notion of control
stack.

5.5 Continuations

After 25 years of existence [B], continuations still remain a challenging topic, to
the point that ad-hoc frameworks are routinely preferred. For example, we find
it significant that alternative and independent solutions were sought to compile
goal-directed evaluation [Bl] and to abstract delimited control [EfEd], even though
two levels of continuations provide a simple, natural, and directly implementable
solution to both problems. This indicates that continuations require more basic
research. We have tried to contribute to this research by characterizing a specific
notion of operational continuation semantics and by formalizing its connection
to the traditional CPS transformation.

6 Conclusion

The CPS transformation is ubiquitous in many areas of computer science, includ-
ing logic, constructive mathematics, programming languages, and programming.
Iterating it yields a concise and expressive framework for delimiting and abstract-
ing control-—the CPS hierarchy—which appears substantial and fruitful but has
been explored very little so far. In this article, we have contributed to exploring
it by (1) characterizing an operational analogue of continuation semantics; (2)
developing an analogue of the CPS transformation for such an operational con-
tinuation semantics; (3) making it account for the family of control operators
shift and reset; (4) providing a native implementation of the CPS hierarchy in
the statically typed language Standard ML; and (5) illustrating the implemen-
tation both with classical and with new applications, and in particular with a
direct implementation of layered monads.

Acknowledgments

Part of this work was carried out while the second author was visiting the BRICS
PhD school at the University of Aarhus in the fall of 1997.

Thanks are due to Andrzej Filinski, Julia Lawall, and the anonymous referees
for comments on an earlier version of this article.

240 Olivier Danvy and Zhe Yang
References
1. Andrew W. Appel and David B. MacQueen. Standard ML of New Jersey. In

10.

11.

12.

13.

14.

15.

16.

Jan Maluszynski and Martin Wirsing, editors, Third International Symposium on
Programming Language Implementation and Logic Programming, number 528 in
Lecture Notes in Computer Science, pages 1-13, Passau, Germany, August 1991.
Springer-Verlag.

Robert (Corky) Cartwright, editor. Proceedings of the 1988 ACM Conference on
Lisp and Functional Programming, Snowbird, Utah, July 1988. ACM Press.
William Clinger, Anne H. Hartheimer, and Eric M. Ost. Implementation strategies
for first-class continuations. Higher-Order and Symbolic Computation, 12(1), 1999.
Olivier Danvy. Type-directed partial evaluation. In Guy L. Steele Jr., editor,
Proceedings of the Twenty-Third Annual ACM Symposium on Principles of Pro-
gramming Languages, pages 242-257, St. Petersburg Beach, Florida, January 1996.
ACM Press.

Olivier Danvy and Andrzej Filinski. Abstracting control. In Wand [&], pages
151-160.

Olivier Danvy and Andrzej Filinski. Representing control, a study of the CPS
transformation. Mathematical Structures in Computer Science, 2(4):361-391, De-
cember 1992.

Olivier Danvy and Zhe Yang. An operational investigation of the CPS hierarchy
(extended version). Technical Report BRICS RS-98-35, Department of Computer
Science, University of Aarhus, Aarhus, Denmark, December 1998.

Matthias Felleisen. The theory and practice of first-class prompts. In Ferrante and
Mager [, pages 180-190.

Matthias Felleisen, Daniel P. Friedman, Bruce Duba, and John Merrill. Beyond
continuations. Technical Report 216, Computer Science Department, Indiana Uni-
versity, Bloomington, Indiana, February 1987.

Matthias Felleisen, Mitchell Wand, Daniel P. Friedman, and Bruce F. Duba. Ab-
stract continuations: A mathematical semantics for handling full functional jumps.
In Cartwright [{], pages 52-62.

Jeanne Ferrante and Peter Mager, editors. Proceedings of the Fifteenth Annual
ACM Symposium on Principles of Programming Languages, San Diego, California,
January 1988. ACM Press.

Andrzej Filinski. Representing monads. In Hans-J. Boehm, editor, Proceedings
of the Twenty-First Annual ACM Symposium on Principles of Programming Lan-
guages, pages 446-457, Portland, Oregon, January 1994. ACM Press.

Andrzej Filinski. Controlling Effects. PhD thesis, School of Computer Science,
Carnegie Mellon University, Pittsburgh, Pennsylvania, May 1996. Technical Report
CMU-CS-96-119.

Andrzej Filinski. From normalization-by-evaluation to type-directed partial evalu-
ation. In Olivier Danvy and Peter Dybjer, editors, Preliminary Proceedings of the
1998 APPSEM Workshop on Normalization by Evaluation, NBE ’98, (Chalmers,
Sweden, May 8-9, 1998), number NS-98-1 in BRICS Note Series, Department of
Computer Science, University of Aarhus, May 1998.

Andrzej Filinski. Representing layered monads. In Alex Aiken, editor, Proceed-
ings of the Twenty-Sizth Annual ACM Symposium on Principles of Programming
Languages, San Antonio, Texas, January 1999. ACM Press. To appear.

Carl Gunter, Didier Rémy, and Jon G. Riecke. A generalization of exceptions and
control in ML-like languages. In Simon Peyton Jones, editor, Proceedings of the

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

An Operational Investigation of the CPS Hierarchy 241

Seventh ACM Conference on Functional Programming and Computer Architecture,
pages 12-23, La Jolla, California, June 1995. ACM Press.

Robert Harper, Bruce F. Duba, and David MacQueen. Typing first-class continu-
ations in ML. Journal of Functional Programming, 3(4):465-484, October 1993.
Robert Hieb and R. Kent Dybvig. Continuations and concurrency. In Proceedings
of the Second ACM SIGPLAN Symposium on Principles & Practice of Parallel
Programming, SIGPLAN Notices, Vol. 25, No. 3, pages 128-136, Seattle, Washing-
ton, March 1990. ACM Press.

Robert Hieb, R. Kent Dybvig, and Claude W. Anderson, III. Subcontinuations.
Lisp and Symbolic Computation, 5(4):295-326, December 1993.

Robert Hieb, R. Kent Dybvig, and Carl Bruggeman. Representing control in the
presence of first-class continuations. In Bernard Lang, editor, Proceedings of the
ACM SIGPLAN’90 Conference on Programming Languages Design and Implemen-
tation, SIGPLAN Notices, Vol. 25, No 6, pages 66—77, White Plains, New York,
June 1990. ACM Press.

Gregory F. Johnson. GL — a denotational testbed with continuations and partial
continuations as first-class objects. In Mark Scott Johnson, editor, Proceedings of
the ACM SIGPLAN’87 Symposium on Interpreters and Interpretive Techniques,
SIGPLAN Notices, Vol. 22, No 7, pages 154-176, Saint-Paul, Minnesota, June
1987. ACM Press.

Gregory F. Johnson and Dominic Duggan. Stores and partial continuations as
first-class objects in a language and its environment. In Ferrante and Mager [&1],
pages 158-168.

Richard Kelsey, William Clinger, and Jonathan Rees, editors. Revised® report
on the algorithmic language Scheme. Higher-Order and Symbolic Computation,
11(1):7-105, 1998. Also appears in ACM SIGPLAN Notices 33(9), September
1998.

Julia L. Lawall. Continuation Introduction and Elimination in Higher-Order Pro-
gramming Languages. PhD thesis, Computer Science Department, Indiana Uni-
versity, Bloomington, Indiana, July 1994.

Julia L. Lawall and Olivier Danvy. Continuation-based partial evaluation. In
Carolyn L. Talcott, editor, Proceedings of the 1994 ACM Conference on Lisp and
Functional Programming, LISP Pointers, Vol. VII, No. 3, Orlando, Florida, June
1994. ACM Press.

Sheng Liang, Paul Hudak, and Mark Jones. Monad transformers and modular
interpreters. In Peter Lee, editor, Proceedings of the Twenty-Second Annual ACM
Symposium on Principles of Programming Languages, pages 333-343, San Fran-
cisco, California, January 1995. ACM Press.

Luc Moreau and Christian Queinnec. Partial continuations as the difference of
continuations, a duumvirate of control operators. In Manuel Hermenegildo and
Jaan Penjam, editors, Sizth International Symposium on Programming Language
Implementation and Logic Programming, number 844 in Lecture Notes in Computer
Science, pages 182-197, Madrid, Spain, September 1994. Springer-Verlag.
Chethan R. Murthy. Control operators, hierarchies, and pseudo-classical type sys-
tems: A-translation at work. In Olivier Danvy and Carolyn L. Talcott, editors,
Proceedings of the ACM SIGPLAN Workshop on Continuations, Technical report
STAN-CS-92-1426, Stanford University, pages 49-72, San Francisco, California,
June 1992.

Gordon D. Plotkin. Call-by-name, call-by-value and the A-calculus. Theoretical
Computer Science, 1:125-159, 1975.

242

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

Olivier Danvy and Zhe Yang

Todd A. Proebsting. Simple translation of goal-directed evaluation. In Ron K.
Cytron, editor, Proceedings of the ACM SIGPLAN’97 Conference on Programming
Languages Design and Implementation, SIGPLAN Notices, Vol. 32, No 5, pages
1-6, Las Vegas, Nevada, June 1997. ACM Press.

Christian Queinnec and Bernard Serpette. A dynamic extent control operator for
partial continuations. In Robert (Corky) Cartwright, editor, Proceedings of the
Eighteenth Annual ACM Symposium on Principles of Programming Languages,
pages 174-184, Orlando, Florida, January 1991. ACM Press.

John C. Reynolds. The discoveries of continuations. Lisp and Symbolic Computa-
tion, 6(3/4):233-247, December 1993.

Dorai Sitaram. Handling control. In David W. Wall, editor, Proceedings of the ACM
SIGPLAN’93 Conference on Programming Languages Design and Implementation,
SIGPLAN Notices, Vol. 28, No 6, pages 147-155, Albuquerque, New Mexico, June
1993. ACM Press.

Dorai Sitaram and Matthias Felleisen. Control delimiters and their hierarchies.
Lisp and Symbolic Computation, 3(1):67-99, January 1990.

Dorai Sitaram and Matthias Felleisen. Reasoning with continuations II: Full ab-
straction for models of control. In Wand [&5], pages 161-175.

Philip Wadler. The essence of functional programming (tutorial). In Andrew W.
Appel, editor, Proceedings of the Nineteenth Annual ACM Symposium on Princi-
ples of Programming Languages, pages 1-14, Albuquerque, New Mexico, January
1992. ACM Press.

Philip Wadler. Monads and composable continuations. LISP and Symbolic Com-
putation, 7(1):39-55, January 1994.

Mitchell Wand, editor. Proceedings of the 1990 ACM Conference on Lisp and
Functional Programming, Nice, France, June 1990. ACM Press.

Andrew K. Wright and Matthias Felleisen. A syntactic approach to type soundness.
Information and Computation, 115:38-94, 1994.

	Introduction
	Background
	Related work
	This work
	Applications

	Operational Semantics of the CPS Hierarchy
	Starting semantics S
	An operational notion of continuation semantics
	CPS transformation
	Soundness and completeness of the operational semantics
	An operational account of shift and reset
	A continuation semantics for shift and reset
	An implementable continuation semantics for $textbf {shift}$ and $textbf {reset}$
	An inductive construction of the CPS hierarchy

	An Implementation of the CPS Hierarchy
	Application: layering monadic effects
	Related Work
	Felleisen's seminal work
	Filinski's work
	Gunter, R'emy, and Riecke's work
	Operational semantics
	Continuations

	Conclusion

