Interprocedural Control Flow Analysis

Flemming Nielson and Hanne Riis Nielson

Department of Computer Science, University of Aarhus
Ny Munkegade, DK-8000 Aarhus C, Denmark
{fn,hrn}@daimi.au.dk
Web address: http://www.daimi.au.dk/~{fn,hrn}

Abstract. Control Flow Analysis is a widely used approach for analysing
functional and object oriented programs. Once the applications become
more demanding also the analysis needs to be more precise in its ability
to deal with mutable state (or side-effects) and to perform polyvariant
(or context-sensitive) analysis. Several insights in Data Flow Analysis
and Abstract Interpretation show how to do so for imperative programs
but the techniques have not had much impact on Control Flow Anal-
ysis. We show how to incorporate a number of key insights from Data
Flow Analysis (involving such advanced interprocedural techniques as
call strings and assumption sets) into Control Flow Analysis (using Ab-
stract Interpretation to induce the analyses from a collecting semantics).

1 Introduction

Control Flow Analysis. The primary aim of Control Flow Analysis is to deter-
mine the set of functions that can be called at each application (e.g. x e where x
is a formal parameter to some function) and has been studied quite extensively
([PAECEEE] to cite just a few). In terms of paths through the program, one tries
to avoid working with a complete flow graph where all call sites are linked to
all function entries and where all function exits are linked to all return sites.
Often this is accomplished by means of contours [(a la call strings [Z3] or
tokens [[&1]) so as to improve the precision of the information obtained. One way
to specify the analysis is to show how to generate a set of constraints [EEEIEY]
whose least solution is then computed using graph-based ideas. However, the
majority of papers on Control Flow Analysis (e.g. [ZAEEIIEN]) do not consider
side-effects — a notable exception being [E].

Data Flow Analysis. The intraprocedural fragment of Data Flow Analysis ig-
nores procedure calls and usually formulates a number of data flow equations
whose least solution is desired (or sometimes the greatest when a dual ordering
is used) [4]. It follows from Tarski’s theorem [24] that the equations could equally
well be presented as constraints: the least solution is the same.

The interprocedural fragment of Data Flow Analysis takes procedure calls into
account and aims at treating calls and returns more precisely than mere goto’s: if

S.D. Swierstra (Ed.): ESOP/ETAPS’99, LNCS 1576, pp. 20-l 1999.
© Springer-Verlag Berlin Heidelberg 1999

Interprocedural Control Flow Analysis 21

a call site gives rise to analysing a procedure with a certain piece of information,
then the resulting piece of information holding at the procedure exit should
ideally only be propagated back to the return site corresponding to the actual

call site (see Figure H).

In other words, the intraprocedu-
ral view is that all paths
through a program are valid
(and this set of paths is a
regular language), whereas the
interprocedural view 1is that
only those paths will be valid
where procedure entries and ex-
its match in the manner of
parentheses (and this set of
paths is a proper context free
language). Most papers on Data
Flow Analysis (e.g. [EEEE]) do
not consider first-class proce-
dures and therefore have no
need for a component akin to
Control Flow Analysis — a no-
table exception to this is [F].

One approach deals with the
interprocedural analysis by ob-
taining transfer functions for
entire call statements [ZAE
(and to some extent [H). Alter-
natively, and as we shall do in

call of call of
Pl or P2 P2

Fig. 1. Function call.

this paper, one may dispense with formulating equations (or constraints) as the
function level and extend the space of properties to include explicit context

information.

— A widely used approach modifies the space of properties to include informa-
tion about the pending procedure calls so as to allow the correct propagation
of information at procedure exits even when taking a mainly intraprocedural
approach; this is often formulated by means of call strings [ZJZ].

— A somewhat orthogonal approach modifies the space of properties to include
information that is dependent on the information that was valid at the last
procedure entry [ZAJAE]; an example is the use of so-called assumption
sets that give information about the actual parameters.

Abstract Interpretation. In Abstract Interpretation [H], the systematic develop-
ment of program analyses is likely to span a spectrum from abstract specifications
(like 9] in the case of Control Flow Analysis), over syntax-directed specifications

22 Flemming Nielson and Hanne Riis Nielson

(as in the present paper), to actual implementations in the form of constraints
being generated and subsequently solved (as in [HESAEIE]). The main advan-
tage of this approach is that semantic issues can be ignored in later stages once
they have been dealt with in earlier stages. The first stage, often called the col-
lecting semantics, is intended to cover a superset of the semantic considerations
that are deemed of potential relevance for the analysis at hand. The purpose
of each subsequent stage is to incorporate additional implementation oriented
detail so as to obtain an analysis that satisfies the given demands on efficiency
with respect to the use of time and space.

Aims. This paper presents an approach to program analysis that allows the si-
multaneous formulation of techniques for Control and Data Flow Analysis while
taking the overall path recommended by Abstract Interpretation. To keep the
specification compact we present the Control Flow Analysis in the form of a
succincet flow logic . Throughout the development we maintain a clear sep-
aration between environment-like data and store-like data so that the analysis
more clearly corresponds to the semantics. As in [i] we add components for
tracking the side-effects occurring in the program and for explicitly propagating
environments; for the side-effects this gives rise to a flow-sensitive analysis and
for the environments we might coin the term scope-sensitive.

The analysis makes use of mementoes (for expressing context information in the
manner of [A]) that are general enough that both call string based approaches
(e.g. [ZA]) and dependent data approaches (in the manner of assumption-
sets [ZEA]) can be obtained by merely approximating the space of mementoes;
this gives rise to a contezt-sensitive analysis. The mementoes themselves are
approximated using a surjective function and this approach facilitates describing
the approximations between the various solution spaces using Galois connections
as studied in the framework of Abstract Interpretation [HEIA].

Overview. Section 2 presents the syntax of a functional language with side-
effects. Section 3 specifies the abstract domains and Section 4 the analysis itself.
In Section 5 we then show how the classical developments mentioned above can
be obtained as Abstract Interpretations. Finally, Section 6 concludes. — The
full version of this paper is available as a technical report which establishes the
correctness of the analysis and contains the proofs of the main results.

2 Syntax
We shall study a functional language with side-effects in the style of Standard
ML [E. It has variables z, f € Var, expressions e and constants ¢ given by:

en=clz|fn, z=>e|fun, fz=>e|(e;) |e1; ex|refye

| 'e|ep :=ey|let x=e; ineg | if e then e; else e

c:=true| false| O | --

Interprocedural Control Flow Analysis 23

m € Mem = {0} U (Lab x Mem) x Val x Store x (Pntr x Mem)
de€ Data =--- (unspecified)
(m,mq) € Closure = Pntr X Mem
(zw,maq) € Cell = Pntgr X Mem
v € Vala = Data U Closure U Cell
W € Val = P(Mem X Vala)
R e Env — Var — Val

S € Store = Cell — Val
Table 1. Abstract domains.

Here fn, x => e is a function that takes one argument and fun, f x =>e is a
recursive function (named f) that also takes one argument. We have labelled all
syntactic occurrences of function applications with a label [€ Lab, all defining
occurrences of functions with a label m € Pntg and all defining occurrences of
references with a label @w € Pntg.

In Appendix A the semantics is specified as a big-step operational semantics
with environments p and stores o. The language has static scope rules and
we give it a traditional call-by-value semantics using judgements of the form
pt{e,o1) = (w,o9).

3 Abstract Domains

Mementoes. The analysis will gain its precision from the so-called mementoes
(or contours or tokens). A memento m € Mem represents an approximation of
the context of a program point: it will either be ¢ representing the initial context
where no function calls have taken place or it will have the form

(L, man), W, S, (m, ma))

representing the context in which a function is called. The idea is that

(I,myp) describes the application point; [is the label of the function applica-
tion and my, is the memento at the application point,

— W is an approximation of the actual parameter at the application point,

S is an approximation of the store at the application point, and

— (m,myq) describes the function that is called; 7 is the label of the function
definition and my is the memento at the definition point of the function.

Note that this is well-defined (in the manner of context-free grammars): com-
posite mementoes are constructed from simpler mementoes and in the end from
the initial memento ¢. This definition of mementoes is akin to the contexts con-
sidered in [H; in Section 5 we shall show how the set can be simplified into
something more tractable.

24 Flemming Nielson and Hanne Riis Nielson

R%,RCF = Ra?hep = Pntr — Env
Mp € MCacher = Pntr — P(Mem)

Wr € W&hep = (ePntr U Pntre) — Val
Sr € SCacher = (ePntr U Pntre) — Store

Table 2. Caches.

Ezample 1. Consider the program “program” defined by:
((fn, x => ((x x)! (fn, y => x))?) (fn, z => z))*

The applications are performed in the order 3, 1 and 2. The mementoes of interest
are going to be: mz = ((3a<>)a Wi, [L (I’,O)), mp = ((L m3)7 Wi, [}a (Z?O))? mz =
((2,m1), Wa, [], (z,¢)) where Wy, W5 and W3 will be specified in Example 2 and
[] indicates that the store is empty. a

Abstract values. We operate on three kinds of abstract values: data, function
closures and reference cells. Function closures and reference cells are represented
as pairs consisting of the label (7 and o, respectively) of the definition point and
the memento my at the definition point; this will allow us to distinguish between
the various instances of the closures and reference cells. The abstract values will
always come together with the memento (i.e. the context) in which they live so
the analysis will operate over sets of pairs of mementoes and abstract values. The
set Val obtained in this way is equipped with the subset ordering (denoted C).
The sets Env and Store of abstract environments and abstract stores, respectively,
are now obtained in an obvious way and ordered by the pointwise extension of
the subset ordering (denoted C).

Ezample 2. Continuing Example 1 we have

W = {(0, (z,0))} Wi = {(ms, (2,0))} Wa = {(m1, (y,m3))}

since the function z is defined at the top-level (¢) and y is defined inside the
application 3. O

Caches. The analysis will operate on five caches associating information with
functions; their functionality is shown in Tablel. The caches R4, R% and Mp
associate information with the labels 7 of function definitions:

— The environment caches RE and R%: for each program point m, R% ()
records the abstract environment at the definition point and R% () records
the same information but modified to each of the contexts in which the
function body might be executed. — As an example, the same value v of a
variable = used in a function labelled 7 may turn up in R%&(7)(z) as (mg, v)
and in R%(m)(z) as (me, v) where mg = ¢ in case of a top-level function and
me = ((1,0), W, S, (7,¢)) in case of a top-level application .

Interprocedural Control Flow Analysis 25

— The memento cache M p: for each program point 7, Mp(7) records the set
of contexts in which the function body might be executed; so Mp(7) = ()
means that the function is never executed.

The caches Wp and Sp associate information with function calls. For a function
with label m € Pntp we shall use em (€ ePntf) to denote the point just before
entering the body of the function, and we shall use we (€ Pntge) to denote the
point just after leaving the body of the function. The idea now is as follows:

— The value cache Wp: for each entry point ew, Wr(ew) records the abstract
value describing the possible actual parameters, and for each exit point e,
W (me) records the abstract value describing the possible results of the call.

— The store cache Sp: for each entry point em, Sp(em) records the abstract
store describing the possible stores at function entry, and for each exit point

e, Sp(mwe) records the abstract store describing the possible stores at func-
tion exit.

Ezample 3. For the example program we may take the following caches:

m X y z
W (e7)| {(m3, (2,0))} 0 {(ma, (2,0)), (ma, (y,m3))}
W (me)|{(m3, (y,m3))} 0 {(ma, (2,0)), (ma, (y, m3))}
Sr (o) [] [] []
Sr(me) [] [] []
Ré (7 [] [x = {(ms, (2,9))}] p

Mp(m) {ms} 0 {m1, ma}

4 Syntax-directed Analysis

The specification developed in this section is a recipe for checking that a proposed
solution is indeed acceptable. This is useful when changing libraries of support
code or when installing software in new environments: one merely needs to check
that the new libraries or environments satisfy the solution used to optimise the
program. It can also be used as the basis for generating a set of constraints [i&4]
whose least solution can be obtained using standard techniques (e.g. []).

Given a program e and the five caches (R%, R%, Mp, Wr,Sr) the purpose of
the analysis is to check whether or not the caches are acceptable solutions to the

Data and Control Flow Analysis. The first step is to find (or guess) the following
auxiliary information:

— an abstract environment R € Env describing the free variables in e (and
typically it is L if there are no free variables in the program),

26 Flemming Nielson and Hanne Riis Nielson

— a set of mementoes M € P(Mem) describing the possible contexts in which
e can be evaluated (and typically it is {o}),

— an initial abstract store Sy € Store describing the mutable store before eval-
uation of e begins (and typically it is T if the store is not initialised before
use),

— afinal abstract store Sy € Store describing the mutable store after evaluation
of e completes (and possibly it is T), and

— an abstract value W € Val describing the value that e can evaluate to (and
it also possibly is T).

The second step is to check whether or not the formula
R,M > 6251‘>SQ&W

is satisfied with respect to the caches supplied. This means that when e is exe-
cuted in an environment described by R, in a context described by M, and upon
a state described by S; the following happens: if e terminates successfully then
the resulting state is described by S and the resulting value by W.

We shall first specify the analysis for the functional fragment of the language
(Table®) and then for the other constructs (Tablel). As in] any free variable
on the right-hand side of the clauses should be regarded as existentially quanti-
fied; in principle this means that their values need to be guessed, but in practice
the best (or least) guess mostly follows from the subformulae.

Ezample 4. Given the caches of Example 3, we shall check the formula:

[]:{o} &> program : [] — [] & {(o, (y,m3))}

So the initial environment is empty, the initial context is ¢, the program does
not manipulate the store, and the final value is described by {(o, (y,ms))}. O

The functional fragment. For all five constructs in the functional fragment
of the language the handling of the store is straightforward since it is threaded
in the same way as in the semantics.

For constants and variables it is fairly straightforward to determine the abstract
value for the construct; in the case of variables we obtain it from the environment
and in the other case we construct it from the set M of mementoes of interest.

For function definitions no changes need take place in the store so the abstract
store is simply threaded as in the previous cases. The abstract value representing
the function definition contains a nested pair (a triple) for each memento m
in the set M of mementoes according to which the function definition can be
reached: in a nested pair (mq, (7, m2)) the memento m; represents the current
context and the pair (7, mg) represents the value produced (and demanding that
my = mg corresponds to performing a precise relational analysis rather than a

Interprocedural Control Flow Analysis 27

R,M > c: 51— S &W
iff S) C So A {(m,de) |meMyYCW

R,M > r:5 =S &W
iff 1 TSy A R(z) CW

RM > foxz=>e:5 — S22 & W
iff S C So A {(m,(m,m)) | meM}C W ARCRL(%) A
R&(m)[x — Wr(em)], Mp(m) > e:Sp(om) — Sr(me) & Wr(me)

RM > fun, fz=>e: S5 — S22 & W
iff 51 C So A {(m, (m,m)) |me M} CW A
RIf v {(m, (m,m)) | m € M}] € RE:(r) A
R&(m)[x — Wr(em)], Mp(m) > e:Sp(om) — Sr(me) & Wr(me)

RM > (e1e):8 — Sy &W
iff RM > e1:51 =S &Wi ARM > ex: Sy — Ss & Wy A
v € {r | (m,(7m,mq)) € Wh}:

let X =newx((l, M), W2, Ss, Wh)
Xge = {(md,mc) | (md,mh,mc) € X}
Xe = {me | (ma,mn,m.) € X}
Xhe = {(mh,mc) | (md, Mh, mc) € X}
Xen = {(mc,mh) | (md, Mh, mc) € X}

in RE(T)[Xac] C R%(m) A Xe € Mp(m) A
W2 [Xne] CWr (o) A S3[Xne] E Sp(em) A
Wr(me)[Xen] CW A Sp(we)[Xcen] C Sa

new,. ((I, M), W, S,W') =
{(mdvmhv mc) | (mh7 (TI', md)) € le mp € M7 Me = new((l7mh)7 VV, Sv (TI', md))}

Table 3. Analysis of the functional fragment.

less precise independent attribute analysis). Finally, the body of the function
is analysed in the relevant abstract environment, memento set, initial abstract
state, final abstract state and final abstract value; this information is obtained
from the caches that are in turn updated at the corresponding call points. More
precisely, the idea is to record the abstract environment at the definition point
in the cache R% and then to analyse the body of the function in the context of
the call which is specified by the caches R%, Mp, Wr and Sr as explained in
Section 3. The clause for recursive functions is similar.

Example 5. To check the formula of Example 4 we need among other things to
check:
[o}t z=>2z: [] =[] & {(o(2,0))}

This follows from the clause for function definition because [| C [] and the
clause for variables gives:

[z e {(mlv (2:,0)), (m27 (y7 m3))}]7 {m17m2}l>z : [] - [] & {(mlv (2:,0)), (m27 (y7 m3))}

28 Flemming Nielson and Hanne Riis Nielson

Note that although the function z is called twice, it is only analysed once. O

In the clause for the func-
tion application (e; e)!
we first analyse the op-
erator and the operand
while threading the store. :
Then we use W7 to de v rXDJ

termine which functions
can be called and for each Y r 1
such function m we pro- Xuc

ceed in the following way. furé‘;ﬁilon

First we determine the

mementoes to be used function
for analysing the body of body
the function m. More pre- v ’
cisely we calculate a set function
X of triples (mgq, mp, me) return
consisting of a definition

memento mg describing

the point where the func-

tion 7 was defined, a

current memento my, de-

scribing the call point,

and a memento m, de-
scribing the entry point Fig. 2. Analysis of function call.

3

to the procedure body.

(For the call (x x)! in Ex-

ample 1 we would have X = {(o,m3,m1)} and 7 = 2.) For this we use the
operation new, whose definition (see Table H) uses the function

new : (Lab x Mem) x Val x Store x (Pntr x Mem) — Mem

for converting its argument to a memento. With Mem defined as in Table[lll this
will be the identity function but for simpler choices of Mem it will discard some
of the information supplied by its argument.

The sets Xgc, Xe, Xpe, and X, are “projections” of X. The body of the function
7w will be analysed in the set of mementoes obtained as X, and therefore X, is
recorded in the cache M for use in the clause defining the function. Because
the function body is analysed in this set of mementoes we need to modify the
mementoes components of all the relevant abstract values. For this we use the
operation

WY = {(mz,v) | (m1,v) € W, (m1,mz) € Y}

defined on W C Val and Y C Mem x Mem. This operation is lifted to abstract
environments and abstract stores in a pointwise manner.

Interprocedural Control Flow Analysis 29

Coming back to the clause for application in Table [l the abstract environment
R& () is relative to the mementoes of the definition point for the function and
thus has to be modified so as to be relative to the mementoes of the called
function body and the set X facilitates performing this transformation. (For
the call (x x)! in Example 1 we would have that X4. = {(¢,m1)}.) In this way we
ensure that we have static scoping of the free variables of the function. The actual
parameter W is relative to the mementoes of the application point and has to be
modified so as to be relative to the mementoes of the called function body and
the set Xj. facilitates performing this transformation; a similar modification is
needed for the abstract store at the entry point. We also need to link the results
of the analysis of the function body back to the application point and here the
relevant transformation is facilitated by the set X.p.

The clause for application is illustrated in Figure [l On the left-hand side we
have the application point with explicit nodes for the call and the return. The
dotted lines represent the abstract environment and the relevant set of memen-
toes whereas the solid lines represent the values (actual parameter and result)
and the store. The transfer function [Xg.] is used to modify the static environ-
ment of the definition point, the transfer function [X},] is used to go from the
application point to the function body and the transfer function [X,.;]| is used
to go back from the function body to the application point. Note that the figure
clearly indicates the different paths taken by environment-like information and
store-like information — something that is not always clear from similar figures
appearing in the literature (see Section 5).

Ezample 6. Checking the formula of Example 4 also involves checking;:

[x = {(ms, (z,0)}], {ms} & (x)" : [] = [] & {(ms, (2,0))}

For this, the clause for application demands that we check

[x — {(ms, (z,0))}], {ms} > x: [] = [] & {(m3, (z,0))}
which follows directly from the clause for variables.

Only the function z can be called so we have to check the many conditions only
for this function. We shall concentrate on checking that {(ms, (z,0))}[Xne] C
Wr(ez) and Wg(ze)[X C {(ms, (2,0))}. Since X = {(o, m3, m1)} we have
Xne = {(ms,m1)} and the effect of the transformation will be to remove all pairs
that do not have mg as the first component and to replace the first components
of the remaining pairs with my; using Example 3 it is immediate to verify that
the condition actually holds. Similarly, X, = {(m1,m3)} so in this case the
transformation will remove pairs that do not have m; as the first component
(i.e. pairs that do not correspond to the current call point) and replace the first
components of the remaining pairs with ms; again it is immediate to verify that
the condition holds. |

Other constructs. The clauses for the other constructs of the language are
shown in Table ll The clauses reflect that the abstract environment and the set

30 Flemming Nielson and Hanne Riis Nielson

RM > e1;ex:5 — S3& Wa
iff R,M > e1:5 — S &W1 ANR,M > ez:S2 — S3 & Wa

RM > refpe: S — Sz & W
iff RM > e:S1 — S2 &W A {(m,(w,m)) | me M}y CW ASyE S;3 A
Vme M : W C S3(w, m)

RM D> le: S — So & W
iff RM > e:S1— S2 & W AV(m, (w,ma)) € W : Sa(w,ma) C W’

R,M > e :=e2: 51— S+ &W
iff R,M > e1:5 =S &W1 ARM > ex:52 — S35 & Wa A
{(m,dy) |me M} CW A S3C Ss AV(m,(w,ma)) € W1 : Wa C Sa(w, ma)

R,M > letx =e1 iney: S1 — S3 & Wa
iff RM > e1:51 — S2 & Wi AR[z— Wil,M > ex:S2 — S3 & Wa

R,M 1> if ethene; elseez: S — S5 & W’
iff RM > e:S1— S &WA
let Ry = plae /(R); Ro = ¢laind (R); S5 = ol (S2); Sa = ¢l (S2)
in Ry,M > e1:55 — S5 &W' ARy,M > e3:81 — S5 & W'

Table 4. Analysis of the other constructs.

of mementoes are passed to the subexpressions in a syntax-directed way and
that the store is threaded through the constructs. The analysis is fairly simple-
minded in that it does not try to predict when a reference (wo, mg) in the analysis
only represents one location in the semantics and hence the analysis does not
contain any kill-components (but see Appendix B).

For the 1et-construct we perform the expected threading of the abstract environ-
ment and the abstract store. For the conditional we first analyse the condition.
Based on the outcome we then modify the environment and the store to reflect
the (abstract) value of the test. For the environment we use the transfer func-

tions go,[fr’uve}/] (R) and gpfalvsve] (R) whereas for the store we use the transfer functions
ng,[i’lYeV] (S2) and qSLealV:e] (S2). The result of both branches are possible for the whole

construct.

As an example of the use of these transfer functions consider the expression
if x then e else ey where it will be natural to set

Piie (R) = Rla — W N {(m, dixue) | m € Mem}]
and similarly for gpﬁ’l‘;@ (R). Thus it will be possible to analyse each of the
branches with precise information about x.

Little can be said in general about how to define such functions; to obtain a
more concise statement of the theorems below we shall assume that the transfer
functions ¢ and ¢ of Table @l are in fact the identities.

Interprocedural Control Flow Analysis 31

mir € Mem; = LabSF
d € Data = (unspecified)

(m,mra) € Closurer, = Pntp x Memy,
(o, mra) € Cellg = Pntr X Memy,

vr € Valag = Data U Closure U Cellg

Wy € Valg = P(Memk X VaIAk)

Ry € Erﬁk = Var — \7;|k

Sk € Store, = Cellp — Valg

Table 5. Abstract domains for k-CFA.

5 Classical Approximations

k-CFA. The idea behind k-CFA [EP7] is to restrict the mementoes to keep
track of the last k call sites only. This leads to the abstract domains of Table ll
that are intended to replace Table ll Naturally, the analysis of Tables Bl H, and l
must be modified to use the new abstract domains; also the function new, must
be modified to make use of the function

newy : (Lab x Memy) x \EI;€ X S?c;ek x (Pntg x Memy) — Memy

defined by newy((I, mgn), Wk, Sk, (7, mrq)) = takeg(I"mgp) where “” denotes
prefixing and take returns the first k£ elements of its argument. This completes
the definition of the analysis.

Theoretical properties. One of the strong points of our approach is that we can
use the framework of Abstract Interpretation to describe how the more tractable
choices of mementoes arise from the general definition.

To express the relationship between the two analyses define a surjective mapping
i : Mem — Mem,, showing how the precise mementoes of Table ll are trun-
cated into the approximative mementoes of Table B Tt is defined by pug(m) =
€, tk+1(0) = &, up+1((l, m), W, S, (m,mq)) = I" g (m) where e denotes the empty
sequence. It gives rise to the functions a}! : P(Mem) — P(Memy) and ¥ :
P(Memy,) — P(Mem) defined by o (M) = {ux(m) | m € M} and v (My) =
{m | ur(m) € My}. Since o is surjective and defined in a pointwise manner
there exists precisely one function such that

P(Mem) — P(Memy,)

is a Galois insertion as studied in Abstract Interpretation J: this means that a2/
and v are both monotone and that ¥} (o (M)) D M and o (vM (My,)) = My,
for all M C Mem and M} C Memj. One may check that ’yé\/f is as displayed above.

32 Flemming Nielson and Hanne Riis Nielson

To obtain a Galois insertion

Val == Val,

we first define a surjective mapping nx : Mem X Valp — Memy x Valar by
taking n(ma, d) = (ue(man), d), mi(man, (1,ma)) = (pe(ma), (7, pe(maq))), and
nk(mn, (@, ma)) = (ue(ma), (@, pr(ma))). Next define o) and v by o) (W) =
{ne(m,v) | (m,v) € W} and 7Y (W) = {(m,v) | ne(m,v) € Wi}. It is then
straightforward to obtain a Galois insertion

E
— Tk
Env — Envy
E
Qg

by setting o (R)(z) = of (R(z)) and vZ(Rk)(z) = 7Y (Rk(x)). To obtain a
Galois insertion

o
Store — Storey,
A
define o (S) (@, mra) = o (U{S(w,ma) | px(ma) = mpa}) and 73 (Sk) (@, ma)
= (Sk(w, pr(ma))).
We now have the machinery needed to state the relationship between the present
k-CFA analysis (denoted) and the general analysis of Section 4 (denoted ©>):

Theorem 1. If (Rlp, R¢r, Mir, Wir, Skr) satisfies
Ry, My, >y e: Sp1— Ska & Wi

then ('ykE o R‘éF, 'ykE o R s ’yé\/f o Myp, ’yX oWhkr, ’ylf o Skr) satisfies
Y (Ri), v (M) > e 75 (Sk1) — 5 (Ska) &) (W).

In the full version we establish the semantic correctness of the analysis of Section
4; it then follows that semantic correctness holds for k-CFA as well.

Call strings of length k. The clause for application involves a number of
transfers using the set X relating definition mementoes, current mementoes and
mementoes of the called function body. In the case of a k-CFA like approach it
may be useful to simplify these transfers.

The transfer using X, can be implemented in a simple way by taking
Xhe = {(mh,takek(ZAmh)) ‘ mp € M}

where [is the label of the application point. This set may be slightly too large
because it is no longer allowed to depend on the actual function called (the
m) and because there may be my, € My, for which no (my, (7,mq)) is ever an

Interprocedural Control Flow Analysis 33

element of W;. However, this is just a minor imprecision aimed at facilitating a
more efficient implementation. In a similar way, one may take

X. = {takex(I'mp,) | mp € M}
where again this set may be slightly too large.

The transfers using X, can also be somewhat simplified by taking

Xep = {(takek(ZAmh),mh) ‘ mp € M}
= {(m., dropy (m.)) | drop; (m.) € M}
U {(me, dropy (m.) ') | dropy (m.)l" € M}

where drop; drops the first element of its argument (yielding e if the argument
does not have at least two elements). Again this set may be slightly too large.

The transfer using X4, can be rewritten as
Xge = {(md,takek(ZAmh)) ‘ mp € M, (mh, (7T, md)) S W1}
where [is the application point and 7 is the function called.

For functions being de-
fined at top-level there
is not likely to be too
much information that
need to be transformed
using Xg4.; however, sim- r
plifying X4. to be inde- b
pendent of 7 is likely to
be grossly imprecise.

B
—

Performing these modi- call

fications to the clause

for application there is

no longer any need for

an explicit call of new,.

The resulting analysis is function
similar in spirit to the return
call string based analy-

sis of [&4; the scenario

of [is simpler because

the language considered

there does not allow lo-

cal data. Since we have

changed the definition of
the sets Xge, Xe, Xpe and Fig. 3. Degenerate analysis of function call.

function
body

X¢n to something that is

no less than before, it fol-

lows that an analogue of Theorem M still applies and therefore the semantic
correctness result still carries over.

34 Flemming Nielson and Hanne Riis Nielson

mp € Mem, = {e} U P(DataU Pntr UPntg)

decData =--- (unspecified)
(m, mpq) € Closure, = Pntp X Mem,,
(o, mpa) € Cell, = Pntg X Mem,
vp € Valap, = Data U Closure, U Cell,
W, € Val, = P(Mem,, x Valap)
R, € ErEp = Var — \7a\|p
Sp € Store, = Cell, — Val,

Table 6. Abstract domains for assumption sets.

It is interesting to note that if the distinction between environment and store is
not clearly maintained then Figure ll degenerates to the form of Figure [l this
is closely related to the scenario in &3] (that is somewhat less general).

Assumption sets. The idea behind this analysis is to restrict the mementoes
to keep track of the parameter of the last function call only; such information
is often called assumption sets. This leads to the abstract domains of Table i
that are intended to replace Table ll Naturally, the analysis of Tables [l l, and |l
must be modified to use the new abstract domains; also the function new, must
be modified to make use of the function

new, : (Lab x Mem,,) x \Elp X S?c;ep x (Pntg x Mem,,) — Mem,,

given by new,((I, mpn), Wp, Sp, (1, mpa)) = {keepp(vp) | (mp,vp) € Wy} where
keep,, : Valp, — (DataUPntp UPntRg) is given by keep, (d) = d, keep, (7, mpq) = m,
keepp, (o, mpq) = w.

Theoretical properties. We can now mimic the development performed above.
The crucial point is the definition of a surjective mapping p, : Mem — Mem,,
showing how the precise mementoes of Table ll are mapped into the approxima-
tive mementoes of Table [l It is given by pu,(¢) = €, and i, ((I, m), W, S, (7, mq))
= {keep,(v) | (m',v") € W}. where keep, : Vala — (Data U Pntg U Pntg) is the
obvious modification of keep, to work on Vala rather than Vala,. Based on p,
we can now define Galois insertions

aM 4M) between P(Mem) and P(Mem,,)

)

(P) P - Ny
— (a),7)) between Val and Val,
- (af, ’yf) between Env and ng/p
- (ozg , ’yg) between Store and S?o\rep

very much as before and obtain the following analogue of Theorem [

Interprocedural Control Flow Analysis 35

Theorem 2. If (RgF,R;F,Mpp,pr,Spp) satisfies
Ry, My, >y e:Sp1 — Sp2 & W,

then ('y;;5 oRgF,'yf OR;F,VII)M o./\/lpp,'y;/ onF,'yg o Spr) satisfies

YE(RY), Y (My) > e:75(Sp1) — 75 (Sp2) & 7Y (Wp).

As before it is a consequence of the above theorem that semantic correctness
holds for the assumption set analysis as well.

6 Conclusion

We have shown how to express interprocedural and context-sensitive Data Flow
Analysis in a syntax-directed framework that is reminiscent of Control Flow
Analysis; thereby we have not only extended the ability of Data Flow Analysis
to deal with higher-order functions but we also have extended the ability of
Control Flow Analysis to deal with mutable data structures. At the same time
we have used Abstract Interpretation to pass from the general mementoes of
Section 3 to the more tractable mementoes of Section 5. In fact all our analyses
are based on the specification of Tables ll and B

Acknowledgement. This work has been supported in part by the DART project
funded by the Danish Science Research Council.

References

1. F. Bourdoncle. Interprocedural abstract interpretation of block structured lan-
guages with nested procedures, aliasing and recursivity. In Proc. PLILP 90, vol-
ume 456 of Lecture Notes in Computer Science, pages 307-323. Springer, 1990.

2. F. Bourdoncle. Efficient chaotic iteration strategies with widenings. In Proc. For-
mal Methods in Programming and Their Applications, volume 735 of Lecture Notes
in Computer Science, pages 128-141. Springer, 1993.

3. P. Cousot and R. Cousot. Static determination of dynamic properties of recur-
sive procedures. In E. J. Neuhold, editor, Formal Description of Programming
Concepts. North Holland, 1978.

4. P. Cousot and R. Cousot. Systematic Design of Program Analysis Frameworks.
In Proc. POPL 79, pages 269-282, 1979.

5. A. Deutsch. On Determining Lifetime and Aliasing of Dynamically Allocated Data
in Higher Order Functional Specifications. In Proc. POPL ’90, pages 157-169.
ACM Press, 1990.

6. K. L. S. Gasser, F. Nielson, and H. R. Nielson. Systematic realisation of control
flow analyses for CML. In Proc. ICFP 97, pages 38-51. ACM Press, 1997.

7. M. S. Hecht. Flow Analysis of Computer Programs. North Holland, 1977.

36

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Flemming Nielson and Hanne Riis Nielson

N. Heintze. Set-based analysis of ML programs. In Proc. LFP ’9}, pages 306-317,
1994.

N. Heintze and J. Jaffar. An engine for logic program analysis. In Proc. LICS 92,
pages 318-328, 1992.

S. Jagannathan and S. Weeks. Analyzing Stores and References in a Parallel
Symbolic Language. In Proc. LF'P ’94, pages 294-305, 1994.

S. Jagannathan and S. Weeks. A unified treatment of flow analysis in higher-order
languages. In Proc. POPL ’95. ACM Press, 1995.

N. D. Jones and S. S. Muchnick. A flexible approach to interprocedural data flow
analysis and programs with recursive data structures. In Proc. POPL ’82, pages
66-74. ACM Press, 1982.

J. Knoop and B. Steffen. The interprocedural coincidence theorem. In Proc. CC
’92, volume 641 of Lecture Notes in Computer Science, pages 125-140. Springer,
1992.

W. Landi and B. G. Ryder. Pointer-Induced Aliasing: A Problem Classification.
In Proc. POPL ’91, pages 93-103. ACM Press, 1991.

R. Milner, M. Tofte, and R. Harper. The definition of Standard ML. MIT Press,
1990.

F. Nielson and H. R. Nielson. Infinitary Control Flow Analysis: a Collecting Se-
mantics for Closure Analysis. In Proc. POPL ’97. ACM Press, 1997.

H. R. Nielson and F. Nielson. Flow logics for constraint based analysis. In Proc. CC
’98, volume 1383 of Lecture Notes in Computer Science, pages 109-127. Springer,
1998.

J. Palsberg. Global program analysis in constraint form. In Proc. CAAP ’94,
volume 787 of Lecture Notes in Computer Science, pages 255-265. Springer, 1994.
J. Palsberg. Closure analysis in constraint form. ACM TOPLAS, 17 (1):47-62,
1995.

H. D. Pande and B. G. Ryder. Data-flow-based virtual function resolution. In
Proc. SAS ’96, volume 1145 of Lecture Notes in Computer Science, pages 238-254.
Springer, 1996.

E. Ruf. Context-insensitive alias analysis reconsidered. In Proc. PLDI 95, pages
13-22. ACM Press, 1995.

M. Sagiv, T. Reps, and S. Horwitz. Precise interprocedural dataflow analysis
with applications to constant propagation. In Proc. TAPSOFT ’95, volume 915 of
Lecture Notes in Computer Science, pages 651-665, 1995.

M. Sharir and A. Pnueli. Two approaches to interprocedural data flow analysis.
In S. S. Muchnick and N. D. Jones, editors, Program Flow Analysis. Prentice Hall
International, 1981.

O. Shivers. Control flow analysis in Scheme. In Proc. PLDI ’88, volume 7 (1) of
ACM SIGPLAN Notices, pages 164-174. ACM Press, 1988.

O. Shivers. The semantics of Scheme control-flow analysis. In Proc. PEPM ’91,
volume 26 (9) of ACM SIGPLAN Notices. ACM Press, 1991.

A. Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific J.
Math., 5:285-309, 1955.

J. Vitek, R. N. Horspool, and J. S. Uhl. Compile-Time Analysis of Object-Oriented
Programs. In Proc. CC ’92, volume 641 of Lecture Notes in Computer Science,
pages 236-250. Springer, 1992.

Interprocedural Control Flow Analysis 37

pE{c,0) — (c,0)
pk(z,0) = (w,0) if w=p(x)
pF (fnr x => e,0) — (close (fnr = =>¢€) in p, o)
pF (fun, f x =>e,0) — (close (fun, f x =>¢) in p,0)
pF{e1,01) — (close (fn. = =>¢) in p’,02), pt {(ea,02) — (w2, 03),
p'lx — wa] (e, 03) — (w,04)

pF {(e1 e2)!,01) — (W, 04)

pk(e1,01) — (close (fun. f x =>e) in p’,02), phr (ea,02) — {(wa2,03),
P'[f + close (fun, f x =>¢) in p'][z — wo] F (e,03) — (W, 04)
)

pt{(e1 e2)',01) — (w, 04

pF{e1,01) = (wi,02), pF (e2,02) = (w2,03)
pt{er; e2,01) = (wa,03)

F{e w
prile,on) = W o2) where ¢ is the first unused location

pk (refs e,01) Ly o2t — W)

(
—
pE <6701> - <L7 O2>

pF(le,01) = (w,02) where w = 02(1)

pF{e1,01) = (1,02), pk{e2,02) = (w,03)
pE(e1 :=e2,01) — (O,03[L — W]

pF{e,01) = (wi,02), plz = wi] - (e2,02) — (w2, 03)
pt (let z =e1 in e2,01) — (w2, 03)

pk {e,01) — (true,02), ph (e1,02) — (w,03)
pF (if e then e else e2,01) — (w,03)

pt (e ,01) — (false 02), pt (e2,02) = (w,03)
pF (if e then e; else e2,01) — (w,03)

Table 7. Operational semantics.

A Semantics

The semantics is specified as a big-step operational semantics with environments
p € Env and stores o € Store. The language has static scope rules and we give it
a traditional call-by-value semantics. The semantic domains are:

t € Loc="--- (unspecified)
w € Val

wu=c | close (fn, x =>e€) in p | close (fun, f z=>¢€)inp |t

38 Flemming Nielson and Hanne Riis Nielson

RM > refpe: S — Sz & W
iff RM > e:S1 — So &W A {(m,(w,m))|me M}y CW A
VYm e M : S2® ((w,m), W) C Ss

RM 1> te:S; — So & W
iff RLM > e:S1 — S2 & W AV(m, (w,ma)) € W : S2(w,mq) E (W, M)

RM > e :=e2:51 =S4 &W
iff R,M > e1:5 =S &W1 AR,M > ex:52 — S35 & Wa A
{(m,dy) |meM} CW A
V(m, (ww,maq)) € Wi : (S3 8 (w,ma)) ® ((ww, ma), Wa) C Sa

Table 8. Dealing with reference counts.

6:::...‘L

p € Env =Var —g, Val
o € Store = Loc —g, Val

The set Loc of locations for references is left unspecified. The judgements of the
semantics have the form
pk(e,01) = (w,02)

and are specified in Table B the clauses themselves should be fairly straightfor-
ward. (We should also note that the choice of big-step operational semantics is
not crucial for the development.)

B Reference Counts

An obvious extension of the work performed here is to incorporate an abstract
notion of reference count for dynamically created cells. In the manner of [E1] we
could change the definition of Store (in Table W) to have

S € Store = Cell — (Val x Pop)
p € Pop ={0,1,M}

Here the new FTo\p component denotes how many concrete locations may simul-
taneously be described by the abstract reference cell: O means zero, | means at
most one, and M means arbitrarily many (including zero and one).

This makes it possible for the analysis sometimes to overwrite (as opposed to
always augment) the value of a cell that is created or assigned. For this we need
a new operation for adding a reference:

S & ((w,m), W) = S[(w,m) — (W, p")]

Interprocedural Control Flow Analysis

where

(W', p") = S(w,m)

"o (WUW’,M) ifp" #0
(W ap){(ml) ifp' =0

We also need a new operation for removing a reference:
S © (w,m) = S[(w,m) — (W, p")]

where
(W', p") =5S(w,m)
"o (W/ap/) ifp/ =M
(W7){(9,0) it ' £ M

The necessary modifications to the analysis are shown in Table [l

39

	Introduction
	Syntax
	Abstract Domains
	Syntax-directed Analysis
	Classical Approximations
	Conclusion
	Semantics
	Reference Counts

