
Costs of General Purpose Learning

John Case a Keh-Jiann Chen b Sanjay Jain c

aDepartment of CIS
University of Delaware

Newark, DE 19716
USA

Email: case@cis.udel.edu
b Institute for Information Sciences

Academica Sinica
Taipei, 15, Taiwan
Republic of China

c School of Computing
National University of Singapore

Singapore 119260
Email: sanjay@comp.nus.edu.sg

Abstract

Leo Harrington surprisingly constructed a machine which can learn any com-
putable function f according to the following criterion (called Bc

∗-identification).
His machine, on the successive graph points of f , outputs a corresponding infinite
sequence of programs p0, p1, p2, . . ., and, for some i, the programs pi, pi+1, pi+2, . . .

each compute a variant of f which differs from f at only finitely many argu-
ment places. A machine with this property is called general purpose. The sequence
pi, pi+1, pi+2, . . . is called a final sequence.

For Harrington’s general purpose machine, for distinct m and n, the finitely many
argument places where pi+m fails to compute f can be very different from the finitely
many argument places where pi+n fails to compute f . One would hope though, that if
Harrington’s machine, or an improvement thereof, inferred the program pi+m based
on the data points f(0), f(1), . . . , f(k), then pi+m would make very few mistakes
computing f at the “near future” arguments k + 1, k + 2, . . . , k + `, where ` is
reasonably large. Ideally, pi+m’s finitely many mistakes or anomalies would (mostly)
occur at arguments x � k, i.e., ideally, its anomalies would be well placed beyond
near future arguments. In the present paper, for general purpose learning machines,
it is analyzed just how well or badly placed these anomalies may be with respect to
near future arguments and what are the various tradeoffs.

In particular, there is good news and bad. Bad news is that, for any learning
machine M (including general purpose M), for all m, there exist infinitely many
computable functions f such that, infinitely often M incorrectly predicts f ’s next m

Preprint submitted to Elsevier Science 11 March 2007

near future values. Good news is that, for a suitably clever general purpose learning
machine M, for each computable f , for M on f , the density of any such associated
bad prediction intervals of size m is vanishingly small.

Considered too is the possibility of providing a general purpose learner which
additionally learns some interesting classes with respect to much stricter criteria
than Bc

∗-identification. Again there is good news and bad. The criterion of fi-
nite identification requires for success that a learner M on a function f output
exactly one program which correctly computes f . Bc

n-identification is just like
Bc

∗-identification above except that the number of anomalies in each program of
a final sequence is ≤ n. Bad news is that there is a finitely identifiable class of
computable functions C such that for no general purpose learner M and for no
n, does M additionally Bc

n-identify C. Ex-identification by M on f requires that
M on f converges, after a few output programs, to a single final program which
computes f . A reliable learner (by definition) never deceives by false convergence;
more precisely: whenever it converges to a final program on a function f , it must
Ex-identify f . Good news is that, for any class C that can be reliably Ex-identified,
there is a general purpose machine which additionally Ex-identifies C!

1 Introduction

The learning situation often studied in inductive inference [JORS99] may be
described as follows. A learner receives as input, one at a time, the successive
graph points of a function f . As the learner is receiving its input, it conjec-
tures a sequence of programs as hypotheses. To be able to learn the function
f , the sequence of programs conjectured by the learner must have some desir-
able relation to the input function f . By appropriately choosing this desirable
relation one gets different criteria of successful learning. One of the first such
criteria studied is called Ex-identification ([Gol67,BB75,CS83]). The learner
is said to Ex-identify a function f iff the sequence of programs output by it
on f , after a few output programs, converges to a single final program which
computes f . 1 A learner is said to Ex-identify a class iff it Ex-identifies each
function in the class. A class of functions is Ex-identifiable iff some machine
Ex-identifies the class.

Even though one cannot Ex-identify the class of all the computable func-
tions [Gol67], there are large and useful classes of functions which can be
Ex-identified. For example, any recursively enumerable class of computable
functions such as the class of polynomials or the class of primitive recursive
functions [Rog67] is Ex-identifiable.

[Bār74,CS83] considered a generalization of Ex-identification called Bc-

1 In general more formal definitions are in Section 2 below.

2

identification. In Bc-identification of a function f by a machine M one re-
quires that the sequence of programs output by M on f either converges to
a program for f , or the sequence of programs is infinite, with all but finitely
many of them being (possibly different) programs for f . [CS83] also consid-
ered the variants of the Ex and Bc-identification criteria in which the final
programs need not be perfect, but are allowed to have some anomalies or mis-
takes in their predictions of I/O behavior. For n a natural number, if the final
programs are allowed to make at most n errors, then the criteria of inference
are called Exn and Bcn respectively. If the final programs are allowed to make
at most finitely many errors, then the criteria of inference are called Ex∗ and
Bc∗ respectively.

Harrington [CS83] constructed a machine which Bc∗-identifies each com-
putable function! In the present paper, we call machines which do this general
purpose. However, on infinitely many computable functions, the final programs
output by Harrington’s machine become more and more degenerate, i.e., the
finite sets of anomalies in successive final output programs, in general, grow
in size without bound. We note that this is a property of any general pur-
pose learner, and, in fact, the number of anomalies grows faster than any
computable bound (Theorem 4 in Section 3 below).

Since the programs output by any general purpose learning machine make
large numbers of mistakes (on infinitely many computable functions), it would
be interesting to study how these errors are distributed. For example, in real
life one probably cares more about “near future errors” than “distant future
errors”. Based on this motivation in Section 4 below we define new criteria
of inference called Bcn

m. Informally, for a machine to Bcn
m-identify a function

f , for its final programs, their predictions on the next m inputs should have
at most n errors. In Section 4 we completely resolve the relationship between
different Bcn

m criteria of inference (Corollary 23 in Section 4). In particular,
we show that for any learning machine M, (including general purpose M), for
all m, there exist infinitely many computable functions f such that, infinitely
often M incorrectly predicts f ’s next m near future values (Corollary 24)!
Thus there is an ostensibly unpleasant cost to general purpose learning. As
we will see, though, this can, be assuaged at least in some interesting respects
described below.

In contrast to the result mentioned above that any general purpose learning
machine M predicts next m values wrongly infinitely often, we show that the
density of such bad prediction intervals can be made very small (Theorem 28
in Section 5 below).

A reliable learner (by definition) never deceives by false convergence; more
precisely: whenever it converges to a final program on a function f , it must
Ex-identify f [Min76,BB75,CJNM94]. For example, r.e. classes of computable

3

functions (such as the class of polynomial functions and the class of primitive
recursive functions [Rog67]) as well as the class of total run time functions can
be reliably Ex-identified [BB75,CS83]. On a further positive note, we show
that for every reliably Ex-identifiable class of computable functions S, there
is a general purpose learning machine which Ex-identifies S (Theorem 30 in
Section 5 below)!

The criterion of finite identification requires for success that a learner M on a
function f output exactly one program which correctly computes f . Learning
by finite identification can be thought of as one-shot learning. We show, by
contrast to the result in the immediately above paragraph (Theorem 30), that
there is a class S which is finitely identifiable, yet for all n, no general purpose
learner can additionally Bcn-identify S (Corollary 36 in Section 5 below).

Freivalds and Wiehagen [FW79] showed that there exists a machine which
can identify all the recursive functions if, in addition to the graph of the in-
put function, it is given an arbitrary upper bound on the size of the minimal
program computing the input function as additional information. Freivalds,
Botuscharov and Wiehagen [FBW98] further showed that in some (but not
all) acceptable programming systems, the above machine can produce a final
program of size within the upper bound given as additional information. Ma-
chines, as in above, exhibit a different kind of general purpose behaviour. We
will not deal with above type of general purpose learners in this paper.

We now proceed formally.

2 Notation and Preliminaries

Recursion-theoretic concepts not explained below are treated in [Rog67]. N
denotes the set of natural numbers. ∗ denotes a non-member of N and is as-
sumed to satisfy (∀n ∈ N)[n < ∗ < ∞]. Let ∈,⊆,⊂,⊇,⊃, respectively denote
membership, subset, proper subset, superset and proper superset relations for
sets. Emptyset is denoted by ∅. Cardinality of a set S is denoted by card(S).
So “card(S) ≤ ∗” means that card(S) is finite. We let min(S) and max(S), re-
spectively, denote the minimum and maximum element in S. We take min(∅)
to be ∞ and max(∅) to be 0.

〈·, ·〉 denotes a 1-1 computable mapping from pairs of natural numbers onto
natural numbers. π1, π2 are the corresponding projection functions. 〈·, ·〉 is
extended to n-tuples in a natural way.

Λ denotes the empty function. η, with or without decorations (decorations
are subscripts, superscripts, primes and such), ranges over partial functions.

4

η(x)↓ denotes that η(x) is defined. η(x)↑ denotes that η(x) is not defined. For
a ∈ N ∪ {∗}, η1 =a η2 means that card({x | η1(x) 6= η2(x)}) ≤ a. η1 6=a η2

means that ¬[η1 =a η2]. (If η1 and η2 are both undefined on input x, then, as
is standard, we take η1(x) = η2(x).) If η =a f , then we often call a program
for η as an a-error program for f . We let domain(η) and range(η) respectively
denote the domain and range of the partial function η.

We let f, g and h, with or without decorations, range over total functions. R
denotes the class of all computable functions, i.e., total computable functions
with arguments and values from N . C and S, with or without decorations,
range over subsets of R. ϕ denotes a fixed acceptable programming system
[Rog58,Rog67,Ric80,Ric81,Roy87]. ϕi denotes the partial computable function
computed by program i in the ϕ-system. Note that in this paper all programs
are interpreted with respect to the ϕ-system. We let Φ be an arbitrary Blum
complexity measure [Blu67] associated with the acceptable programming sys-
tem ϕ; many such measures exist for any acceptable programming system
[Blu67]. Let ϕi,s be defined as follows.

ϕi,s(x) =
{

ϕi(x), if x < s and Φi(x) ≤ s;
↑, otherwise.

For a given partial computable function η, we define MinProg(η) to denote
min({i | ϕi = η}).

Let zeroext(η) denote a function defined as follows.

zeroext(η)(x) =
{

η(x), if x ∈ domain(η);
0, otherwise.

2.1 Function Identification

We first describe inductive inference machines. We assume, without loss of
generality, that the graph of a function is fed to a machine in canonical order.
For any partial function η and n ∈ N such that, for all x < n, η(x)↓, we let
η[n] denote the finite initial segment {(x, η(x)) | x < n}. Clearly, η[0] denotes
the empty segment. We let Λ denote the empty segment. SEG denotes the
set of all finite initial segments, {f [n] | f ∈ R ∧ n ∈ N}. We let σ and τ ,
with or without decorations, range over SEG. Let |σ| denote the length of σ.
We often identify (partial) functions with their graphs. Thus for example, for
σ = f [n] and for x < n, σ(x) denotes f(x). A learning machine (also called
an inductive inference machine (IIM)) [Gol67] is an algorithmic device that
computes a mapping from SEG into N ∪ {?}. Intuitively, “?” above denotes
the case when the machine may not wish to make a conjecture. Although it

5

is not necessary to consider learners that issue “?” for identification in the
limit, it becomes useful when the number of mind changes a learner can make
is bounded. In this paper, we assume, without loss of generality, that once an
IIM has issued a conjecture on some initial segment of a function, it outputs
a conjecture on all extensions of that initial segment. This is without loss of
generality because a machine wishing to emit “?” after making a conjecture
can instead be thought of as repeating its previous conjecture. We let M,
with or without decorations, range over learning machines. Since the set of
all finite initial segments, SEG, can be coded onto N , we can view these
machines as taking natural numbers as input and emitting natural numbers
or ?’s as output. We say that M(f) converges to i (written: M(f)↓ = i) iff
(∀∞n)[M(f [n]) = i]; M(f) is undefined if no such i exists. The next definitions
describe several criteria of function identification.

Definition 1 [Gol67,BB75,CS83] Let a ∈ N ∪ {∗}. Let f ∈ R.

(a) M Exa-identifies f (written: f ∈ Exa(M)) just in case, there exists an i
such that M(f)↓ = i and ϕi =a f .

(b) M Exa-identifies S iff M Exa-identifies each f ∈ S.

(c) Exa = {S ⊆ R | (∃M)[S ⊆ Exa(M)]}.

We often write Ex for Ex0.

By definition of convergence, only finitely many data points from a function
f had been observed by an IIM M at the (unknown) point of convergence.
Hence, some form of learning must take place in order for M to learn f . For this
reason, hereafter the terms identify, learn and infer are used interchangeably.

Definition 2 [Bār74,CS83] Let a ∈ N ∪ {∗}. Let f ∈ R.

(a) M Bca-identifies f (written: f ∈ Bca(M)) iff, for all but finitely many
n ∈ N , ϕM(f [n]) =a f .

(b) M Bca-identifies S iff M Bca-identifies each f ∈ S.

(c) Bca = {S ⊆ R | (∃M)[S ⊆ Bca(M)]}.

We often write Bc for Bc0.

Some relationships between the above criteria are summarized in the following
theorem.

Theorem 3 [CS83,BB75,Bār71]

Ex0 ⊂ Ex1 ⊂ · · · ⊂ Ex∗ ⊂ Bc ⊂ Bc1 ⊂ · · · ⊂ Bc∗ = 2R.

6

Since R ∈ Bc∗, we often call a machine which Bc∗-identifies R a general
purpose learning machine.

We let I range over identification criteria defined above. There exists an r.e. se-
quence M0,M1,M2, . . ., of inductive inference machines such that, for all cri-
teria I of inference considered in this paper, one can show that [JORS99]:

for all C ∈ I, there exists an i ∈ N such that C ⊆ I(Mi).

We assume M0,M1,M2, . . . to be one such sequence of machines.

3 General Purpose Machines and Their Mistakes

Unfortunately, the programs output by Harrington’s machine become more
and more degenerate, i.e. the finite set of anomalies in final programs output
grows in size without bound. In fact the finite sets of anomalies cannot even
be bounded by a computable function as the next theorem shows.

Theorem 4 Suppose R ⊆ Bc∗(M). Let g be a computable function. Then
there exist infinitely many f ∈ R such that, for infinitely many n, ϕM(f [n]) 6=

g(n)

f .

Proof. Suppose M and g are as given in the hypothesis. We will construct
one f such that for infinitely many n, ϕM(f [n]) 6=g(n) f . The construction
can be easily modified to produce infinitely many distinct such f . By Kleene
Recursion Theorem [Rog67], there exists an e such that ϕe may be defined as
follows. Let ϕe(0) = e. Let x0 = 1. Go to stage 0.

Stage s
1. Let h = zeroext(ϕe[xs]).
2. Search for ns > xs and a set Ss such that (a) ϕM(h[ns])(y)↓, for all y ∈ Ss,

(b) min(Ss) > ns, and (c) card(Ss) > g(ns).
3. If and when such ns, Ss are found, let

ϕe(y) = 1 + ϕM(h[ns])(y), if y ∈ Ss.
ϕe(y) = h(y), if y ≤ max(Ss) and y 6∈ Ss.

4. Let xs+1 = 1 + max(Ss).
Go to stage s + 1.

End stage s

We first claim that step 2 succeeds in every stage. This is so since M Bc∗-
identifies all computable functions, and in particular h. Thus, there exist ns

and Ss such that (a) ϕM(h[ns])(y)↓, for all y ∈ Ss, (b) min(Ss) > ns, and

7

(c) card(Ss) > g(ns). It follows that ϕe is total. Let f = ϕe. Now for all
s, ϕM(f [ns])(x) 6= f(x), for all x ∈ Ss. Thus, ϕM(f [ns]) 6=g(ns) f . Theorem
follows. 2

4 Predicting Near Future Values

Based on Theorem 4, it would be interesting to study how the anomalies of
the programs outputted by a machine are distributed. For example, in real
life one probably cares more about “near future errors” than “distant future
errors”. This leads us to the following definition.

Definition 5 Let m,n ∈ N and f ∈ R.

(a) M Bcn
m-identifies f (written: f ∈ Bcn

m(M)), iff, for all but finitely many
x, card({z < m | ϕM(f [x])(x + z) 6= f(x + z)}) ≤ n.

(b) M Bcn
m-identifies C, if it Bcn

m-identifies each f ∈ C.

(c) Bcn
m = {C | some M Bcn

m-identifies C}.

Intuitively, one can view Bcn
m-identification of a function by a machine as

follows. At any stage, the learning machine predicts the next m values. At all
but finitely many stages, at least m − n out of the m predictions are correct.

In this section we resolve the relationship between different Bcn
m-identification

criteria.

Following four propositions follow directly from the definitions.

Proposition 6 For m ≥ n, Bcn ⊆ Bcn
m.

Proposition 7 Suppose m ≥ n and k ∈ N . Then Bcn
m ⊆ Bcn+k

m+k.

Proposition 8 Suppose m ≥ n ≥ k. Then Bck
m ⊆ Bcn

m.

Proposition 9 Suppose m ≥ k ≥ n. Then Bcn
m ⊆ Bcn

k .

Proposition 10 For all m > 0, Bc = Bc0
m.

Proof. Clearly, for m ≥ 1, Bc ⊆ Bc0
m ⊆ Bc0

1. NV′′ defined by Pod-
nieks [Pod74] is identical to Bc0

1. The proposition follows from NV′′ = Bc

[Pod74,CS83]. 2

The following theorem shows some advantages of having to predict fewer cor-
rect values in the near future.

8

Theorem 11 Suppose m′ > m. Then, Bc1
m − Bcm′−m

m′ 6= ∅.

Proof. Let
Zk = {x | k · m′ < x < k · m′ + m},

Ek = {k · m′} ∪ {x | k · m′ + m ≤ x < (k + 1) · m′},

and
Uk = Zk ∪ Ek = {x | k · m′ ≤ x < (k + 1) · m′}.

We now consider the following two properties defined on total functions.

(PropA) f satisfies PropA iff, for all k, for all x ∈ Zk, f(x) = 0.
(PropB) f satisfies PropB iff, for all k, for all x ∈ Ek, f(x) = f(k · m′).

Let C = {f ∈ R | f satisfies PropA and PropB}.

The above class is easily seen to be in Bc1
m. We now show that C 6∈ Bcm′−m

m′ .

Suppose by way of contradiction that M Bcm′−m
m′ -identifies C. Let σ0 = Λ. In

the following construction, in stage s we will define σs+1. Domain of σs will
be

⋃

k<s Uk. Also, lims→∞ σs(x)↓. Suppose f is defined as follows:

f(x) = lim
s→∞

σs(x)

Then, f will be in C, and M does not Bcm′−m
m′ -identifies f .

For all k, let errk
0 = 0. Intuitively, at the beginning of stage s, for k < s, errk

s

denotes the number of inputs in Ek on which M(σs[k ·m
′]) has been currently

diagonalized against. We will have errk
s = 0, for k ≥ s.

Go to stage 0.

Stage s
1. For k ≤ s, let Convk

s = card({x ∈ Ek | ϕM(σs[k·m′]),s(x)↓}).
2. Let Cands = {k ≤ s | Convk

s > max({errk′

s | k ≤ k′ ≤ s})}.
If Cands = ∅, then let Cs = s. Otherwise, let Cs be the minimum element

in Cands.
3. For k < Cs, let errk

s+1 = errk
s .

Let errCs
s+1 = ConvCs

s .
For k > Cs, let errk

s+1 = 0.
4. For x ∈

⋃

k<Cs
Uk, let σs+1(x) = σs(x).

For x ∈ ECs
, let σs+1(x) = 1 + max({ϕM(σs[Cs·m′])(x) | x ∈

ECs
∧ ϕM(σs[Cs·m′]),s(x)↓}).

For x ∈ ZCs
∪

⋃

Cs<k<s+1 Uk, let σs+1(x) = 0.
5. Go to stage s + 1.
End stage s

9

Claim 12 For all s, the following three properties hold.

(a) for all x ∈
⋃

k<Cs
Uk, σs+1(x) = σs(x).

(b) for all k < Cs, errk
s+1 = errk

s , and

(c) either Cs = s, or errCs
s+1 > max({errk

s | Cs ≤ k ≤ s}).

Proof. Follows directly from construction. 2 (Claim 12)

Claim 13 lims→∞ errk
s↓ for every k. Thus, lim inf Cs goes to infinity, and

lims→∞ σs(x)↓.

Proof.

We show the claim by induction on k. Suppose, for k′ < k, lims→∞ errk′

s ↓.
Let t > k be a stage such that, for all k′ < k, for all s > t, errk′

s = errk′

t .
Thus, by Claim 12(b and c), for all s > t, Cs ≥ k. Hence, by Claim 12(b
and c), for all s > t, errk

s ≤ errk
s+1. Since errk

s is bounded by m′ − m + 1,
lims→∞ errk

s↓. Thus, using Claim 12, it follows that lim inf Cs goes to infinity,
and thus lims→∞ σs(x)↓. 2 (Claim 13)

Let

f(x) = lim
s→∞

σs(x)

We claim that f ∈ C and M does not Bcm′−m
m′ -identify f . Note that f clearly

satisfies PropA and PropB. We thus just need to show that f ∈ R and M

does not Bcm′−m
m′ -identify f .

Let errk denote lims→∞ errk
s . Let r ≤ m′ − m + 1, be the largest value such

that errk = r, for infinitely many k.

Let t1, t2 be large enough so that, t2 > t1, and

(i) for all k ≥ t1, errk ≤ r;

(ii) for all k ≤ t1, for all s ≥ t2, errk
s = errk

t2
.

Thus, in particular for all s > t2, errCs
s ≤ r.

Claim 14 For all s > t2, if errCs
s = r, then for all s′ > s, Cs′ > Cs,

Proof. Suppose by way of contradiction that s′ > s is the first stage in
which Cs′ ≤ Cs. Then err

Cs′

s′ > errCs
s , by the condition for selection of Cs′ in

step 2 of the construction. This in turn implies that err
Cs′

s′ > r. A contradiction
to the choice of t2. 2 (Claim 14)

10

It follows from Claims 12 and 14 that, if s > k2 and errCs
s = r, then σs+1[(Cs +

1) · m′] ⊆ f . Moreover, since errCs
s = r, for infinitely many s, it follows that

⋃

{s|s>t2 ∧ errCs
s =r} σs+1[(Cs + 1) · m′] = f .

Since the left hand side of above equation is computable, it follows that f is
computable.

Furthermore, for all s > t2, for all k > t1, Convk
s ≤ r (otherwise errCs

s would
be at least r + 1).

Thus, for all Cs > t1, such that errCs
s = r, we have ϕM(f [Cs·m′])(x) 6= f(x),

for all x ∈ ECs
. It follows that M does not Bcm′−m

m′ -identify f . Theorem
follows. 2(Theorem 11)

The next theorem shows some advantages of being allowed to predict more
wrong values in the near future.

Theorem 15 For all n ∈ N , Bcn+1 − Bcn
n+1 6= ∅.

Proof. Let Zf = {x | f((n + 2) · x) 6= 0}.

Let C = {f | [card(Zf) = ∞ ∧ (∀∞x ∈ Zf)[ϕf((n+2)·x) =n+1 f]] ∨ [0 <
card(Zf) < ∞ ∧ ϕf((n+2)·max(Zf)) =n+1 f]}.

It is easy to verify that C ∈ Bcn+1. We now show that C 6∈ Bcn
n+1. Suppose

by way of contradiction, M Bcn
n+1-identifies C. Then, by operator recursion

theorem [Cas74], there exists a computable, 1–1, increasing p such that p(0) >
0, and ϕp(i) may be described in stages as follows.

Below, let ϕs
p(y) denote ϕp(y) defined before stage s. Let Xk = {x | (n+2) ·k <

x < (n+2) · (k +1)}. Intuitively, for the diagonalizing function f constructed,
for infinitely many k, for all x ∈ Xk, ϕM(f [(n+2)·k+1])(x) 6= f(x).

We will define variables qi
s (for i ≤ n + 2), σs, and Ei

s (for i ≤ n + 1) in
the construction. Intuitively, for the diagonalizing function f which we will
construct, think of qi

s (for i ≤ n + 1) as elements of Zf . σs is an approximate
initial segment of f at the beginning of stage s. The domain of σs will be
{x | x < (n + 2) · (1 + qn+2

s)}. Ei
s denotes a set of k’s such that qi

s < k ≤ qi+1
s

and ϕM(σs[(n+2)·k+1]) makes at least n + 1− i convergent errors on inputs from
Xk (with respect to σs).

11

For i ≤ n + 2, let qi
0 = i. Initial segment σ0, with domain {x | x < (n + 2) ·

(qn+2
0 + 1)} is defined as follows.

σ0(x) =











p(qi
0), if x = qi

0 · (n + 2), for some i < n + 2;
0, if x < (n + 2) · (qn+2

0 + 1) and x is not of
form qi

0 · (n + 2), for any i < n + 2.

For i ≤ n + 1, let ϕ0
p(qi

s)
= σs[(n + 2) · (1 + qi+1

s)].

For i < n + 1, let Ei
0 = ∅, and let En+1

0 = {qn+2
s }. In stage s, we will define

σs+1 and qi
s+1, for i ≤ n + 2, and correspondingly define E i

s+1, for i ≤ n + 1.
This will be done is such a way, so that (a) (∀x)(∀∞s)[σs+1(x) = σs(x)], and
(b) f defined as f(x) = lims→∞ σs(x), is the diagonalizing function.

For all s, we will satisfy the following invariants:

(A) For i ≤ n, qi
s < qi+1

s .

(B) For all i ≤ n + 1, ϕs
p(qi

s)
= σs[(n + 2) · (qi+1

s + 1)].

(C) For all i ≤ n + 1, for all k ∈ Ei
s, card({x ∈ Xk | ϕs

M(σs[(n+2)·k+1])(x)↓ 6=
σs(x)}) ≥ n + 1 − i.

(D) For all i ≤ n + 1, Ei
s ⊆ {x | qi

s < k ≤ qi+1
s }.

Go to stage 0.

Stage s
1. Let Cands = {i < n + 1 | (∃k ∈ Ei+1

s)[card({x ∈ Xk |
ϕM(σs[k·(n+2)+1]),s(x)↓}) ≥ n + 1 − i]}.

2. If Cands is empty, then let Cs = n + 1. Else, let Cs = min(Cands).
3. If Cs < n + 1, then let ks ∈ ECs+1

s be such that card({x ∈ Xks
|

ϕM(σs[ks·(n+2)+1]),s(x)↓}) ≥ n + 1 − i.
If Cs < n + 1 and there exists an x ∈ Xks

such that σs(x) =
ϕM(σs[ks·(n+2)+1]),s(ys)↓, then let ys be one such x. Else, let ys =↑.

4. For i ≤ Cs, let qi
s+1 = qi

s.
For Cs < i ≤ n + 2, let qi

s+1 = qn+2
s + i − Cs.

12

5. Let

σs+1(x) =































































































σs(x), if x < (n + 2) · (1 + qn+2
s)

and x 6= ys;
ϕM(σs[ks·(n+2)+1]),s(ys) + 1, if x = ys;
p(qi

s+1), if (n + 2) · (1 + qn+2
s) ≤ x

and x < (n + 2) · (1 + qn+2
s+1)

and x = qi
s+1 · (n + 2),

for some i < n + 2;
0, if (n + 2) · (1 + qn+2

s) ≤ x
and x < (n + 2) · (1 + qn+2

s+1)
and x is not of form
qi
s+1 · (n + 2),

for any i < n + 2.

6. For i < Cs, let Ei
s+1 = Ei

s.
If Cs < n + 1, then let ECs

s+1 = ECs
s ∪ {ks}.

For Cs < i < n + 1, let Ei
s+1 = ∅.

Let En+1
s+1 = {k | qn+1

s+1 < k ≤ qn+2
s+1 }.

7. For i ≤ n + 1, let ϕs+1
p(qi

s+1)
= σs+1[(n + 2) · (qi+1

s+1 + 1)].

8. For Cs < i ≤ n+1, let ϕp(qi
s)

follow ϕp(qCs
s+1)

on inputs ≥ (n+2) · (qi+1
s +1).

(* Note that above implies that ϕp(qi
s)

=1 ϕ
p(qCs

s+1)
, since ϕp(qi

s)
and ϕ

p(qCs
s+1)

may differ only on ys. *)
9. Go to stage s + 1.
End stage s

It is easy to verify that invariants (A) to (D) are satisfied. Also, note that step 7
is consistent since, for i ≤ Cs, σs[(n+2)·(qi+1

s +1)] ⊆ σs+1[(n+2)·(qi+1
s+1+1)] (by

invariant (D), if Cs < n+1, then ks > qCs+1
s and thus ys > (n+2)·(qCs+1

s +1)).

Claim 16 For each s, the following are satisfied.

(a) For i ≤ Cs, qi
s+1 = qi

s.

(b) For Cs < i ≤ n + 2, qi
s+1 > qn+2

s .

(c) qi
s ≤ qi

s+1.

(d) For i < j, if qi
s < qj

s′, then s ≤ s′ or qi
s = qi

s′.

(e) σs[(n + 2) · (qCs+1
s + 1)] ⊆ σs+1[(n + 2) · (qCs+1

s + 1)].

(f) For all Cs < i ≤ n + 1, ϕp(qi
s)

=1 ϕ
p(qCs

s).

13

Proof. Parts (a) to (e) follow by induction on stages. For (f) see note in
step 8. 2 (Claim 16)

Claim 17 For all s and for all i < n+1, card({x | ϕp(qi
s)

(x)↓ 6= ϕp(qi+1
s)(x)}) ≤

1.

Proof. If for all s′ ≥ s, qi+1
s′ = qi+1

s , then clearly, ϕp(qi
s)

= ϕs
p(qi

s)
= σs[(n +

2) · (qi+1
s + 1)] ⊆ ϕs

p(qi+1
s)

⊆ ϕp(qi+1
s).

So suppose s′ > s is the least number such that qi+1
s′ 6= qi+1

s . Then, by con-
struction of σs′ and steps 7 and 8 in stage s′ − 1, the only possible member of
{x | ϕp(qi

s)
(x)↓ 6= ϕp(qi+1

s)(x)} is ys′−1. Claim follows. 2 (Claim 17)

By inductively applying above claim we get,

Corollary 18 For all s and for all i < j ≤ n + 1, card({x | ϕp(qi
s)

(x)↓ 6=
ϕ

p(qj
s)(x)}) ≤ j − i.

Let C ≤ n + 1, be the least value such that Cs = C for infinitely many s.
Thus, for i ≤ C, lims→∞ qi

s↓, and for C < i ≤ n+1, lims→∞ qi
s↑. For i ≤ C, let

qi = lims→∞ qi
s. Claim 16(c) and invariant (B) thus imply that ϕp(qC) is total.

Let f = ϕp(qC). Note that for all x ∈ Zf , f(x) = p(x) and x = qj
s, for some

s ∈ N and j ≤ n + 1 (by construction).

Claim 19 f ∈ C.

Proof. Suppose qj
s > qC , and j ≤ n + 1. Then, we must have j > C, and

thus by Claim 16 (d), qC
s = qC . Thus, by Corollary 18 we have that, for all

qj
s > qC , ϕp(qC) =j−C ϕ

p(qj
s). Thus f ∈ C. 2 (Claim 19)

Let s be such that, for all s′ ≥ s, qC
s = qC . Let EC =

⋃

s′≥s EC
s . Note that EC

is infinite.

Claim 20 For all k ∈ EC , for all x ∈ Xk, ϕM(f [(n+2)·k+1])(x) 6= f(x).

Proof. For all k ∈ EC , ϕM(f [(n+2)·k+1]) converges on at most n + 1 − C
elements in Xk (otherwise step 3 in the construction would make Cs′ < C, for
some s′ > s). Moreover, due to invariant (C), for all k ∈ EC , ϕM(f [(n+2)·k+1)]

makes at least n + 1−C convergent errors in Xk. It follows that, for k ∈ EC ,
for each x ∈ Xk, ϕM(f [(n+2)·k+1])(x) 6= f(x). 2 (Claim 20)

Since, EC is infinite it follows from above claim that M does not Bcn
n+1-

identify f . Theorem follows. 2(Theorem 15)

As a corollary to the above theorem, if one looks at the errors committed
by a general purpose machine on the next n inputs, then for infinitely many

14

functions, at infinitely many positions, the machine commits n errors in pre-
dicting the next n inputs. Hence, there is an ostensibly unpleasant cost to
general purpose learning. However, as we shall see, this can be assuaged at
least in some interesting respects (Theorems 28 and 30 in Section 5 below).

Corollary 21 Suppose m > n and m′ > n′. If n > n′, then Bcn
m −Bcn′

m′ 6= ∅.

Proof. Theorem 15 shows that Bcn′+1 − Bcn′

n′+1 6= ∅. Now since Bcn′+1 ⊆

Bcn ⊆ Bcn
m (latter inclusion by Proposition 6) and Bcn′

m′ ⊆ Bcn′

n′+1 (by Propo-
sition 9), Corollary follows. 2

Corollary 22 Suppose m′ > n′ and m > n > 0. If m′ − n′ > m − n, then
Bcn

m − Bcn′

m′ 6= ∅.

Proof. If n′ < n, then corollary follows from Corollary 21. So suppose
n ≤ n′. Theorem 11 shows that Bc1

m−n+1 − Bcm′−m+n−1
m′ 6= ∅ (note that

m′ > m − n + 1). Now, Bc1+n−1
m ⊇ Bc1

m−n+1 (by Proposition 7), and Bcn′

m′ ⊆

Bcm′−m+n−1
m′ (since n′ ≤ m′ − m + n − 1, and by Proposition 8). Corollary

follows. 2

The following corollary resolves all relationships among the Bcn
m-criteria.

Corollary 23 Suppose m > n and m′ > n′. Then: Bcn
m ⊆ Bcn′

m′ iff [n = 0 or
[n′ ≥ n and m′ − n′ ≤ m − n]].

Proof. If n > n′ then Corollary 21 shows that Bcn
m−Bcn′

m′ 6= ∅. If m′−n′ >
m − n and n > 0, then Corollary 22 shows that Bcn

m − Bcn′

m′ 6= ∅.

If n = 0, then Bcn
m = Bc ⊆ Bcn′

m′ .

If n′ ≥ n and m′ −n′ ≤ m−n, then Bcn
m ⊆ Bcn′

m+n′−n (by Proposition 7) and

Bcn′

m+n′−n ⊆ Bcn′

m′ (by Proposition 9). Corollary follows. 2

Corollary 24 For all m > n, R 6∈ Bcn
m.

Thus, no general purpose learning machine can guarantee that anomalies are
not concentrated in the near future.

5 Desirable Properties Achievable By General Purpose Learners

Since the errors committed by programs output by a general purpose learner
can be arbitrarily bad, we look at how this may be assuaged for suitable general
purpose learners, and we also determine some additional nice properties a
general purpose learner can satisfy.

15

On can think of a program for a computable function as a predictive expla-
nation for the function’s I/O behavior [BB75,CS83]. Popper’s Refutability
Principle [Pop68] essentially says that explanations with mistakes should be
refutable. As pointed out in [CS83] (see also [CJNM94]), an erroneous pre-
dictive explanation (program) for a computable function satisfies Popper’s
Principle if it computes a total function. 2 The following theorem says that
one can construct a general purpose learner which, on computable function
input, almost always outputs programs for total functions; hence, it almost
always outputs predictive explanations which satisfy Popper’s Principle.

Theorem 25 There exists a machine M, such that, for all f ∈ R, (i) M

Bc∗-identifies f , and (ii) (∀∞n)[ϕM(f [n]) ∈ R].

Proof. Define M as follows. M on f [n], outputs a program pn such that
ϕpn

may be defined as follows.

ϕpn
(x)

1. Let Sx = {p ≤ n | f [n] ⊆ ϕp,x}.
2. If Sx = ∅, then let ϕpn

(x) = 0.
3. Else let p = min(Sx).
4. Dovetail steps 5 and 6 until one of them succeeds. If step 5 succeeds, before

step 6 (if ever) then go to step 7. If step 6 succeeds, before step 5 (if
ever) then go to step 8.

5. Search for s such that ϕp,s(x)↓.
6. Search for p′ < p, and s such that, (∀y < n)[ϕp′,s(y) = f(y)] and ϕp′,s(x)↓.
7. Let ϕpn

(x) = ϕp(x), and halt.
8. Let ϕpn

(x) = ϕp′(x).
End

We claim that above M witnesses the theorem. Suppose f ∈ R. Let q be the
least program for f . Let m > q be large enough so that, for all q ′ < q, there
exists a y < m such that ϕq′(y) 6= f(y). Let pn = M(f [n]), and consider the
definition of ϕpn

above.

Claim 26 (∀n > m)[ϕpn
=∗ f]. Thus, M Bc∗-identifies f .

Proof. Note that for large enough x, min(Sx) = q. Also, by definition of
m, search in step 6 cannot succeed for any p′ < p = q. Also, for p = q, there
exists an s such that search in step 5 succeeds. Thus, for large enough x,
ϕpn

(x) = ϕq(x) = f(x). 2 (Claim 26)

Claim 27 (∀n > m)[ϕpn
∈ R].

2 Then the halting problem [Rog67] does not stand in the way of algorithmically
locating the mistakes.

16

Proof. Note that, for n > m, min(Sx) ≥ q. Thus, for all x, step 6 of
ϕpn

(x) would eventually succeed since p′ = q and large enough s satisfy the
requirement for success of step 6. Thus, ϕpn

(x) would be defined at step 8 (if
not earlier defined due to step 2 or 7). 2 (Claim 27)

Theorem follows from above claims. 2(Theorem 25)

The following shows that even though a general purpose machine may be lo-
cally bad for infinitely many positions, one can ensure that these bad positions
have low density.

Theorem 28 For all n, there exists a machine M such that,

(a) M Bc∗-identifies R, and

(b) for all f ∈ R, limx→∞
card({k|k≤x ∧ (∀z≤n)[ϕM(f [k])(k+z)=f(k+z)]})

x+1
= 1.

Proof.

Suppose M′ Bc∗-identifies R. Suppose h is a monotonic non-decreasing com-
putable function such that limx→∞

h(x)
x

= 0. Let M be defined as follows.

M(f [m]) outputs a program pm defined as follows.

ϕpm
(y)

1. If y < m, then ϕpm
(y) = f(y).

2. If y > m + n, then ϕpm
(y) = ϕM′(f [m])(y).

3. If m ≤ y ≤ m + n, then search for a p < h(m) such that f [m] ⊆ ϕp, and
ϕp(y)↓. If and when such a p is found, let ϕpm

(y) = ϕp(y).
End

Due to step 2, ϕM(f [m]) =∗ ϕM′(f [m]). Thus, M Bc∗-identifies R. Now fix f ∈ R.
Fix x. Consider m ≤ x such that ϕM(f [m])(m+ z) 6= f(m+ z), for some z ≤ n.
For these m one of the following two conditions must hold.

Case 1: For all p < h(m), [f [m] 6⊆ ϕp or ϕp(m + z)↑ for some z ≤ n].

Case 2: There exists a p < h(m) such that f [m] ⊆ ϕp and ϕp(m + z)↓ 6=
f(m + z), for some z ≤ n.

Case 1 can hold for only for h(m) ≤ MinProg(f). Each p < h(x), can result
in Case 2 for at most n + 1 different m (since if w is the least number such
that ϕp(w) 6= f(w), then for Case 2 to happen, w − n ≤ m ≤ w). Thus, Case
2 can happen for a total of at most h(x) ∗ (n + 1) different m ≤ x. Let c
be such that h(c) > MinProg(f). Thus, Case 1 or Case 2 can happen for at

17

most c + h(x) ∗ (n + 1) different m. Now, limx→∞
c+h(x)∗(n+1)

x+1
= 0 (since c and

n are constants and limx→∞ h(x)/x = 0). Since f was arbitrary computable
function, theorem follows. 2

Since general purpose learners are always quite erroneous (of course the density
of erroneous, near future intervals can be made small), it is interesting to
consider which classes a general purpose learner may additionally identify in
a better or stricter sense.

Definition 29 [Min76,BB75,CJNM94]

(a) M is said to be reliable iff, for all f such that M(f)↓, M Ex-identifies f .

(b) M is said to reliably Ex-identify C, iff M is reliable and M Ex-identifies
C.

(c) RelEx = {C | some machine reliably Ex-identifies C}.

Intuitively, reliable machines do not deceive us by converging falsely. As noted
above, r.e. classes of computable functions (such as the class of polynomial
functions and the class of primitive recursive functions) as well as the class of
total run time functions can be reliably Ex-identified.

The following theorem shows that for any class S in RelEx, one can create a
general purpose learning machine which Ex-identifies S!

Theorem 30 Suppose S ∈ RelEx. Then there exists an M such that M

Bc∗-identifies R and Ex-identifies S.

Proof.

Suppose MH is a machine which Bc∗-identifies R. Below P ranges over finite
sets of programs. Let Prog be a recursive function such that ϕProg(P,f [n]) may
be defined as follows.

ϕProg(P,f [n])(x)
1. If there exists a y ≤ x and i, j ∈ P such that

Φi(y) ≤ x, Φj(y) ≤ x and ϕi(y) 6= ϕj(y).
Then let ϕProg(P,f [n])(x) = ϕMH(f [n])(x).

2. Else, search for an i ∈ P such that ϕi(x)↓. If and when such an i is found,
let ϕProg(P,f [n])(x) = ϕi(x).

End

Claim 31 For all f ∈ R, for all n, for all P ,

18

[(∃p ∈ P)[ϕp = f] ∧ (∀p ∈ P)[ϕp ⊆ f]] ⇒ [ϕProg(P,f [n]) = f].

Proof. Fix f ∈ R, and n ∈ N . Suppose, (∃p ∈ P)[ϕp = f] ∧ (∀p ∈
P)[ϕp ⊆ f]. Fix any input x. Since (∀p ∈ P)[ϕp ⊆ f], ‘If’ clause in step
1 of ϕProg(P,f [n])(x) fails. Also, there exists a p′ ∈ P , such that ϕp′(x)↓. It
follows that search in step 2 of ϕProg(P,f [n])(x), succeeds. Thus, ϕProg(P,f [n])(x)↓.
ϕProg(P,f [n])(x) = f(x) now follows from the hypothesis that (∀p ∈ P)[ϕp ⊆ f].
2 (Claim 31)

Claim 32 For all f ∈ R, for all but finitely many n, for all P ,

(∃p ∈ P)[ϕp = f] ⇒ [ϕProg(P,f [n]) =∗ f].

Proof.

Fix f ∈ R. Let n0 be such that, for all n ≥ n0, ϕMH(f [n]) =∗ f .

Suppose there exists a p ∈ P such that ϕp = f . If, (∀p ∈ P)[ϕp ⊆ f], then by
Claim 31 ϕProg(P,f [n]) = f .

If, (∃p ∈ P)[ϕp 6⊆ f], then using (∃p ∈ P)[ϕp = f], it follows that, there exist
i, j ∈ P , x0, y0 ∈ N , such that y0 ≤ x0, and Φi(y0) ≤ x0, Φj(y0) ≤ x0 and
ϕi(y0) 6= ϕj(y0). Thus, for all x ≥ x0, ϕProg(P,f [n])(x) = ϕMH(f [n])(x). It follows
that, for n ≥ n0, ϕProg(P,f [n]) =∗ ϕMH(f [n]) =∗ f . Claim follows. 2 (Claim 32)

We now show the theorem using above claims. Suppose M′ RelEx-identifies S.
Without loss of generality assume S = Ex(M′), and for all n, M′(f [n]) ≤ n.
Let SB(f [n]) = max({M′(f [x]), card({m < n − 1 | M′(f [m]) 6= M′(f [m +
1])})}). Note that if M′(f)↓, then limn→∞ SB(f [n])↓ ≥ M′(f); if M′(f)↑,
then lim infn→∞ SB(f [n]) = ∞. Also SB(f [n]) ≤ n.

Now M(f [n]) outputs Prog(P f
n , f [SB(f [n])]), where P f

n = {i ≤ SB(f [n]) |
ϕi,n ⊆ f}.

Claim 33 If f ∈ S then M Ex-identifies f .

Proof.

Suppose f ∈ S. Thus, limn→∞ SB(f [n])↓. Let SB(f) denote limn→∞ SB(f [n]).
Note that SB(f) ≥ MinProg(f). Let n0 be such that, for all n ≥ n0,
SB(f [n]) = SB(f), and (∀p ≤ SB(f) | ϕp 6⊆ f)[ϕp,n0 6⊆ f]. It follows that
for all n ≥ n0, P f

n = {p ≤ SB(f) | ϕp ⊆ f}. Since MinProg(f) ≤ SB(f),
it follows that MinProg(f) ∈ P f

n . Thus, M(f)↓ = Prog(P f
n0

, f [SB(f)]). Now,
using Claim 31 we have that ϕProg(P f

n ,f [SB(f)]) = f . Claim follows. 2 (Claim 33)

Claim 34 If f ∈ R− S, then M Bc∗-identifies f .

19

Proof. Suppose f ∈ R − S. Then, lim infn→∞ SB(f [n]) = ∞. Now fix n0

such that

(i) for all n ≥ n0, SB(f [n]) ≥ MinProg(f), and

(ii) for n ≥ n0, for all P , (∃p ∈ P)[ϕp = f] ⇒ [ϕProg(P,f [n]) =∗ f].

Note that by Claim 32, n0 satisfying (ii) exists. Note that by (i), and definition
of P f

n , for all n ≥ n0, P f
n contains MinProg(f).

It follows from (ii) that, for all n ≥ n0, [ϕProg(P,f [n]) =∗ f]. This proves the
claim. 2 (Claim 34)

Theorem follows from Claim 33 and 34. 2(Theorem 30)

On the other hand, Corollary 36 below shows that RelEx cannot be replaced
by finite identification.

Definition 35 [Gol67]

(a) M finitely-identifies f , iff there exists an n and a p such that, ϕp = f ,
M(f [m]) =?, for m < n, and M(f [m]) = p, for m ≥ n.

(b) M finitely-identifies C, iff M finitely-identifies each f ∈ C.

(c) C is finitely-identifiable iff some M finitely-identifies C.

Let S0 = {f | ϕf(0) = f}. Note that S0 is finitely-identifiable.

Corollary 36 Suppose n ∈ N and M Bc∗-identifies R. Then there exists an
f ∈ S0 such that M does not Bcn-identify f .

Proof. Suppose M is as given in the hypothesis. Let g(x) = n. Then, proof
of Theorem 4 gives an f ∈ S0, such that for infinitely many x, ϕM(f [x]) 6=n

f . 2

It would be interesting to study what other useful properties a suitable general
purpose learner can be made to satisfy.

6 Conclusions

Harrington [CS83] surprisingly constructed a general purpose learner, i.e., a
machine which Bc∗-identifies all the computable functions. However, the pro-
grams output by Harrington’s machine become more and more degenerate,

20

i.e., in general, the finite set of anomalies in each final program grows without
bound. In this paper we showed that this is unavoidable (Theorem 4 above).

Since the programs output by any general purpose learning machine make
large number of errors on infinitely many functions, it is interesting to study
how these errors are or can be distributed. Based on this motivation we defined
new criteria of inference called Bcn

m, and completely resolved the relationship
between different Bcn

m criteria of inference. Among other results, we showed
that any general purpose learning machine is poor in predicting near future
values. In particular any general purpose learning machine M predicts the next
n values wrongly infinitely often. In contrast, though, we show that the density
of such bad prediction points can be made vanishingly small (Theorem 28
above).

We constructed a general purpose learning machine M such that, on any
computable function input, all but finitely many of the programs output by
M are for total functions. Hence, almost all of its conjectures satisfy Popper’s
Refutability Principle.

We also showed that for every class of computable functions, S, which can
be Ex-identified by a reliable machine [Min76,BB75,CJNM94] (see definition
in Section 5 above), some general purpose learning machine additionally Ex-
identifies S. We further show, though, that reliable identification in the just
above statement cannot be replaced by finite identification.

It would be interesting to study which other useful properties a general purpose
learner can or cannot have.

References

[Bār71] J. Bārzdiņš. Complexity and Frequency Solution of Some Algorithmically
Unsolvable Problems. PhD thesis, Novosibirsk State University, 1971. In
Russian.

[Bār74] J. Bārzdiņš. Two theorems on the limiting synthesis of functions. In
Theory of Algorithms and Programs, vol. 1, pages 82–88. Latvian State
University, 1974. In Russian.

[BB75] L. Blum and M. Blum. Toward a mathematical theory of inductive
inference. Information and Control, 28:125–155, 1975.

[Blu67] M. Blum. A machine-independent theory of the complexity of recursive
functions. Journal of the ACM, 14:322–336, 1967.

[Cas74] J. Case. Periodicity in generations of automata. Mathematical Systems
Theory, 8:15–32, 1974.

21

[CJNM94] J. Case, S. Jain, and S. Ngo Manguelle. Refinements of inductive
inference by Popperian and reliable machines. Kybernetika, 30:23–52,
1994.

[CS83] J. Case and C. Smith. Comparison of identification criteria for machine
inductive inference. Theoretical Computer Science, 25:193–220, 1983.

[FBW98] R. Freivalds, O. Botuscharov, and R. Wiehagen. Identifying nearly
minimal Gödel numbers from additional information. Annals of
Mathematics and Artificial Intelligence, 23:199–209, 1998.

[FW79] R. Freivalds and R. Wiehagen. Inductive inference with additional
information. Journal of Information Processing and Cybernetics (EIK),
15:179–195, 1979.

[Gol67] E. M. Gold. Language identification in the limit. Information and
Control, 10:447–474, 1967.

[JORS99] S. Jain, D. Osherson, J. Royer, and A. Sharma. Systems that Learn: An
Introduction to Learning Theory. MIT Press, Cambridge, Mass., second
edition, 1999.

[Min76] E. Minicozzi. Some natural properties of strong identification in inductive
inference. Theoretical Computer Science, pages 345–360, 1976.

[Pod74] K. Podnieks. Comparing various concepts of function prediction, Part
I. In Theory of Algorithms and Programs, vol. 1, pages 68–81. Latvian
State University, Riga, Latvia, 1974.

[Pop68] K. Popper. The Logic of Scientific Discovery. Harper Torch Books, New
York, second edition, 1968.

[Ric80] G. Riccardi. The Independence of Control Structures in Abstract
Programming Systems. PhD thesis, SUNY/Buffalo, 1980.

[Ric81] G. Riccardi. The independence of control structures in abstract
programming systems. Journal of Computer and System Sciences,
22:107–143, 1981.

[Rog58] H. Rogers. Gödel numberings of partial recursive functions. Journal of
Symbolic Logic, 23:331–341, 1958.

[Rog67] H. Rogers. Theory of Recursive Functions and Effective Computability.
McGraw-Hill, 1967. Reprinted by MIT Press in 1987.

[Roy87] J. Royer. A Connotational Theory of Program Structure, volume 273 of
Lecture Notes in Computer Science. Springer-Verlag, 1987.

22

