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1 Introduction

Several approaches have been proposed for the study of topological properties
of binary digital images:

- the digital topology approach introduced by A. Rosenfeld ([15], [11]). Ele-
ments of Zn are linked by some adjacency relations which allow to define connect-
edness. There is no straightforward way to build a topology which corresponds
to this notion of connectedness ([6],[2]).

- the connected ordered topological space (COTS) approach introduced by E.
Khalimsky ([7], [8], [10]). The smallest neighborhood of each point of Zn differs
from one point to another. This allows to recover the structure of a topology.

- the complex cellular approach. An object is seen as a structure consisting of
elements of different dimensions called cells. As noticed by V. Kovalevsky [12],
it is also possible, with this approach, to recover the structure of a topology.

The topology which is used in the last two approaches is an Alexandroff or a
discrete topology [1] which is a topology such that every intersection of open sets
is open. There is a link between Alexandroff topologies and (partially) ordered
sets (orders), i.e., sets on which a reflexive, antisymmetric, and transitive binary
relation � is defined. Recall that a topological space E is T0-separable if, for any
two elements of E, there exists an open subset O such that exactly one of the
two elements is in O. We may define an order on the points of any T0-separable
topological space. This order is such that x � y if and only if x is in the closure
of {y}. Conversely, an order determines an Alexandroff topology: a set O is open
for this topology if and only if x ∈ O and x � y implies y ∈ O.

This paper is the first of a series which investigate some new notions for
discrete topology. We introduce the notion of unipolar point which may be seen
as the simplest “inessential” element. We propose some discrete definitions for
homotopy, and show there is a link between retraction and unipolar points. Then
we present a generalization of the classical notion of simple point.
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2 Basic notions

If X is a set, P(X) denotes the set composed of all subsets of X, if S is a subset
of X, S denotes the complement of S in X. If S is a subset of T , we write S ⊆ T ,
the notation S ⊂ T means S ⊆ T and S 6= T . If γ is a map from P(X) to P(X),
the dual of γ is the map ∗γ from P(X) to P(X) such that, for each S ⊆ X,
∗γ(S) = γ(S). Let θ be a binary relation on X, i.e., a subset of X × X. The
inverse of θ is the binary relation {(x, y) ∈ X ×X; (y, x) ∈ θ}. We also denote θ
the map from X to P(X) such that, for each x of X, θ(x) = {y ∈ X, (x, y) ∈ θ}.
We define θ2 as the binary relation θ2 = θ \ {(x, x);x ∈ X}. Let x0 and xk be
two elements of X. A θ-path from x0 to xk is a sequence x0, x1, ..., xk of elements
of X such that xi ∈ θ(xi−1), with i = 1, ..., k; the number k is the length of the
path, x0 is its origin.

2.1 Orders and discrete topology

An order is a pair |X| = (X, α) where X is a set and α is a reflexive, antisym-
metric, and transitive binary relation on X. An element of X is also called a
point. The set α(x) is called the α-adherence of x, if y ∈ α(x) we say that y is
α-adherent to x. We also denote α the map from P(X) to P(X) such that, for
each subset S of X, α(S) = ∪{α(x); x ∈ S}, α(S) is called the α-closure of S,
∗α(S) is called the α-interior of S. A subset S of X is α-closed if S = α(S), S
is α-open if S = ∗α(S).

Let (X, α) be an order. We denote β the inverse of α. Sometimes, in order
to recall this notation, we also call an order any triplet (X, α, β) where (X, α)
is an order as defined above and β is the inverse of α. The dual of the order
(X, α, β) is the order (X, β, α). Note that ∗α(S) = {x ∈ S; β(x) ⊆ S}, and
∗β(S) = {x ∈ S; α(x) ⊆ S}.

The set Oα composed of all α-open subsets of X satisfies the conditions for
the family of open subsets of a topology, the same result holds for the set Oβ

composed of all β-open subsets of X; we denote respectively Tα = (X, Oα) and
Tβ = (X, Oβ) these two topologies. These topologies are Alexandroff or discrete
topologies [1], i.e., topologies such that every intersection of open sets is open.
The closed subsets for Tα (resp. Tβ) are the α-closed (resp. β-closed) subsets as
defined above. The α-adherence (resp. β-adherence) of a point x is the smallest
neighborhood for the topology Tβ (resp. Tα).

When (X, α) and (X ′, α′) are orders, a map f from X to X ′ is order pre-
serving or isotone if y ∈ α(x) implies f(y) ∈ α′[f(x)]. We say that f is an
isomorphism from (X, α) to (X ′, α′), if f is a bijection so that y ∈ α(y) if and
only if f(y) ∈ α′[f(x)], for all x, y in X.

Let (X, α, β), (X ′, α′, β′) be two orders and let f be an isotone map from
X to X ′. Let us consider an element U ′ ∈ Oα′ . Let x be a point of f−1(U ′),
that is f(x) ∈ U ′, and let y ∈ β(x). We have f(y) ∈ β′[f(x)], hence f(y) ∈ U ′

and y ∈ f−1(U ′). Thus, f−1(U ′) ∈ Oα. So, the inverse of any α′-open set is an
α-open set: any isotone map is continuous. The converse may be easily verified:
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If (X, α) and (X ′, α′) are orders, a map f from X to X ′ is isotone if and only
if f is continuous with respect to Tα and Tα′ .

If (X, α) is an order and S is a subset of X, the order relative to S is the
order |S| = (S, α ∩ (S × S)); we denote αS = α ∩ (S × S)). When no confusion
may arise, we also denote |S| = (S, α).

2.2 CF-orders

An order (X, α, β) is countable if X is countable, it is locally finite if, for each x
of X, [α ∪ β](x) is a finite set. A CF-order is a countable locally finite order. If
|X| = (X, α, β) is a CF-order, a path in |X| is a θ-path with θ = α ∪ β.

It may be seen that a CF-order (X, α, β) is connected for Tα (or for Tβ) if
and only if it is path-connected, i.e, if for all x, y in X, there is a path from x
to y.

Let (X, α) be a CF-order. An element x such that α2(x) = ∅ is said to be
α-terminal. A point y is an α-terminal of x if y is an α-terminal and y ∈ α(x).
If (X, α, β) is an order we define α• as the relation on X such that y ∈ α•(x)
if and only if y ∈ α2(x) and α2(x) ∩ β2(y) = ∅. The set α•(x) is called the
α-closeness of x, if y ∈ α•(x) we say that y is α-close to x.
Note that α• is antireflexive (∀x ∈ X, x /∈ α•(x)), antisymmetric, and antitran-
sitive (∀x, y, z ∈ X, if y ∈ α•(x) and z ∈ α•(y), then z /∈ α•(x)). In fact, α is
the smallest reflexive and transitive relation containing α•. We also note that
the relation β• is the inverse of the relation α•.
Let S be a subset of X. It should be pointed out that, in general, α•

S is different
from α• ∩ (S × S). In fact, if x and y are points of S, y ∈ α•

S if and only if
y ∈ α(x) and α2(x) ∩ β2(y) ⊆ S. Thus if x, y ∈ S and if y ∈ α•(x), then
y ∈ α•

S(x), the converse is, in general, not true.
Let |X| = (X, α) be a CF-order. The α-decomposition of |X| is the family

F = {X0, X1, ..., Xk} such that:
i) X0 is composed of all α-terminals; and
ii) Xi is composed of all αS-terminals, with S = X \∪{Xj ; j = 0, ..., i− 1}; and
iii) Xk 6= ∅ and X = ∪{Xi; i = 0, ..., k}.
The α-rank of a point x is the number rα(x) = i such that x ∈ Ei.
The family F is a disjoint family of non-empty subsets of X whose union is X:
F is a partition of X.
We note that rα(x) is the length of a longest α2-path having x as origin.
If y ∈ α(x) and rα(y) = rα(x) − 1, then y ∈ α•(x), the converse is, in general,
not true.

3 Unipolar and free points

We introduce the notion of unipolar point. Intuitively an unipolar point may
be seen as the “simplest inessential” element of an order, in the sense that its
removal does not “change the topology” of the order. The introduction of the
notion of free point is motivated by the Property 4 which indicates that the
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adherence of such points has a specific structure (see [5] for a presentation of
this structure).

Definition 1: Let (X, α) be a CF-order. We say that a point x of X is
α-unipolar if α•(x) consists in exactly one point.

Thus, a point x is α-unipolar if and only if there exists a point y ∈ X such
that α2(x) = α(y).

Definition 2: Let |X| = (X, α) be a CF-order and let x be a point of X.
We say that x is α-free if x is α-unipolar or if there is a sequence x0, ..., xk with
xk = x, such that x0 is α-unipolar and xi is αi-unipolar, with αi = α∩ (Si ×Si),
Si = X \ {x0, ..., xi−1}, i = 1, ..., k. A point which is not α-free is called an
α-link. The α-kernel of X is the subset of X composed of all α-links of X. Two
orders (X, α) and (X ′, α′) are said to be α-equivalent if the orders relative to
their α-kernel are isomorphic.

If there is a unique point y which is the α-terminal of x, with y 6= x, then
it may be seen that x is necessarily α-free. The converse of this property is not
true.

Property 3: Let (X, α) be a CF-order, f be an α-unipolar point, and let
x be a point of X, with x 6= f . If x is α-unipolar, then x is αS-unipolar for
S = X \ {f}.

Proof: Suppose x is α-unipolar. We denote x′ (resp. f ′) the unique point of
α•(x) (resp. α•(f)).
i) Suppose f 6= x′. Then x′ ∈ α•

S(x). Suppose there exists a point y, with y 6= x′

and y ∈ α•
S(x); thus α2

S (x) ∩ β2
S (y) = ∅. We must have α2(x) ∩ β2(y) 6= ∅, this

implies that α2(x) ∩ β2(y) = {f}, and α2(x) ∩ β2(f) = ∅, f would belong to
α•(x) which is impossible. Thus x is αS-unipolar.
ii) Suppose f = x′ . Then it may be seen that we must have α•

S(x) = {f ′}. 2

Note that the converse of Prop. 3 is, in general, not true: if x is αS-unipolar
for S = X \ {f}, then x is not necessarily α-unipolar.

Property 4: Let (X, α) be a CF-order, f be an α-unipolar point, and let x
be a point of X, with f 6= x. The point x is α-free if and only if x is αS-free for
S = X \ {f}.

Proof: If x is α-unipolar we are in the conditions of Prop. 3. If x is α-free
and not α-unipolar there is a sequence x0, ..., xk with xk = x, such that x0 is α-
unipolar and xi is a αi-unipolar, with αi = α∩ (Si ×Si), Si = X \{x0, ..., xi−1},
i = 1, ..., k. Suppose f 6= xi, with i = 1, ..., k. By using k times Prop. 3, f
is α1-unipolar,..., αk-unipolar. Let S = X \ {f}, S′

i = S \ {x0, ..., xi−1}, α′
i =

α ∩ (S′
i × S′

i). The point x0 is αS-unipolar, xi and f are αi-unipolar, thus xi is
α′

i-unipolar, i = 1, ..., k (Prop. 3). Hence xk is αS-free.
If f = x0, xk is αS-free, suppose f = xi, for some i = 1, ..., k. The point x0 is
αS-unipolar, if 1 ≤ j < i, xj is α′

j-unipolar (by the preceding analysis) and if
i < j ≤ k, trivially xj is α′

j-unipolar. Thus xk is αS-free.
On the other hand, by the very definition of α-free points, if x is αS-free, with
S = X \ {f}, then x is α-free. 2.

We may reformulate the Prop. 4 in the following way: if (X, α) is a CF-order
and if x ∈ X is α-unipolar, then the αS-kernel for S = X\{x}, is precisely the α-
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kernel. This indicates a way for computing the α-kernel: we choose arbitrarily an
α-unipolar point and we remove it; we repeat this operation until idempotence.

Since, in a CF-order, connectedness is equivalent to path-connectedness, we
see that, if we remove from X an α-unipolar point, we do not change the num-
ber of connected components of X. Thus, by induction, we have the following
property:

Property 5: A CF-order (X, α) is connected if and only if the order relative
to its α-kernel is connected.

4 Collapse and free points

Let E be a set. An (abstract) simplicial complex on E is a family F of finite and
non-empty subsets of E, called simplexes, such that (see [14]):
i) if x ∈ E, then {x} ∈ F ; and
ii) if S ∈ F , then each non-empty subset of S belongs to F .
If S ∈ F has precisely k + 1 elements (k ≥ 0), k is the dimension of S. If E 6= ∅
the dimension n of F is the largest k such that F contains an n-simplex. Any
T ⊆ S, with S, T ∈ F is a face of S, if T is a proper subset of S, T is a proper
face of S. A principal simplex of F is a simplex which is not a proper face of any
simplex in F . For any S ∈ F , a free face of S is a proper face R of S which is
not a proper face of any simplex of F besides S. If F has a principal simplex S
which has a free face T , the family G = F \ {S, T} is a simplicial complex, we
say that this complex has been obtained from F by an elementary collapse. A
sequence of elementary collapses is a collapse.

To any simplicial complex F on E we may associate the CF-order |X| =
(X, α, β), with X = F and α =⊇, thus G ∈ α(F ) if F ⊇ G. It may be seen
that a principal simplex is a β-terminal, a free face R is a β-unipolar element.
Nevertheless, the notion of unipolar point in an order as it has been introduced
is different from the notion of free face used in simplicial complexes. In simplicial

e d

c b
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e d
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d

b c b
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(1) (2)

(3) (4)

Fig. 1. Kernels of an order associated to a simplex
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complexes we cannot remove free faces in “parallel” (the resulting object would
not be a simplicial complex), so it is not possible to define, for example, the
equivalent of the notion of α-kernel. In Fig. 1 (1), we give an illustration of
an order |X| associated to a 2D simplicial complex: we have E = {a, b, c, d, e},
F = {{a}, {b}, {c}, {d}, {e}, {a, b}, {b, c}, {b, d}, {c, e}, {c, d}, {d, e}, {b, c, d},
{c, d, e}}. An element x of F which contains 1 (resp. 2, 3) elements of E is
represented by a black dot (resp. segment, triangle). The order |X| contains no
α-free points. In Fig. 1 (2), the β-kernel of |X| is depicted, in Fig. 1 (3) the α-
kernel of the precedent order is given, then we have the β-kernel of the precedent
order (Fig 1 (4)) which consists in the element {b, c, d} which is not a simplex. We
see that the notion of dimension is different from the one which is often associated
to orders and which corresponds to the dimension of simplicial complexes. In this
framework, an element of an order is considered as a 0-dimensional entity.

5 Some orders associated to Zn

We give now a presentation of some orders which may be associated to Zn, these
orders are equivalent to the ones obtained in the framework of connected ordered
topological spaces introduced by E.D. Khalimsky [7].

Let E be a set and let En be the Cartesian product of n copies of E. An
element a of En may be seen as a map from {1, ..., n} to E, a(i) is the i-th
coordinate of a, i = 1, ..., n. If S is a subset of En, the i-th projection of S is the
set S(i) = {a(i); a ∈ S}, i = 1, ..., n.
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Fig. 2. An object in the set representation (a), and in the array representation (b)

Let Z be the set of relative integers. We consider the families of sets H1
0 , H1

1 ,
H1 such that, H1

0 = {{a}; a ∈ Z}, H1
1 = {{a, a+1}; a ∈ Z}, H1 = H1

0 ∪H1
1 . A

subset S of Zn which is the Cartesian product of exactly m elements of H1
1 and

(n−m) elements of H1
0 is called a m-cube of Zn, we denote Hn the set composed
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of all m-cubes of Zn, m = 0, ..., n. A m-cube of Zn is called a singleton if m = 0,
a unit interval if m = 1, a unit square if m = 2, a unit cube if m = 3.

We denote ∗Z = {a + 1/2; a ∈ Z} and Z+ = Z ∪ ∗Z. We consider the map
Ψ1 on H1 to Z+ such that, for each x of H1, Ψ1(x) = a if x = {a}, a ∈ Z and
Ψ1(x) = a + 1/2 if x = {a, a + 1}, a ∈ Z.
We also consider the map Ψn on Hn to Zn

+ such that, for each x of Hn, the
i-th coordinate of Ψn(x) is the image of the i-th coordinate of x under Ψ1,
i.e., [Ψn(x)](i) = Ψ1[x(i)], i = 1, ..., n. Note that Ψn is a bijection. If S ⊂ Hn,
Ψn(S) = {Ψn(x), x ∈ S} may be seen as an array representation of S.

We consider the basic order associated to Zn as the order (Hn, α), where
α =⊇, thus y ∈ α(x) if x ⊇ y. Let us examine the Fig 2 (a) where a subset S
of H2 is depicted, using the usual representation for sets. The same subset S
is represented in Fig. 2 (b) as an array representation. We see that the subset
S is made of two connected components S1 and S2. We note that S1 has two
α-terminals, one α-free point, one β-terminal, three β-free points. The set S1 is
β-equivalent to an isolated point.

6 Homotopy and deformation retract

We propose some definitions relative to homotopy which may be seen as dis-
crete equivalents of the classical continuous ones [14]. In order to make such a
transposition, we first give few preliminary notations.

Let |X| = (X, α) and |X ′| = (X ′, α′) be two CF-orders. The Cartesian
product of the two orders |X| and |X ′| is the order |X × X ′| = (X × X ′, α × α′)
where α × α′ is the relation on X × X ′ such that for each (x, x′) ∈ X × X ′,
(α × α′)(x, x′) = {(y, y′) ∈ X × X ′; y ∈ α(x) and y′ ∈ α′(x′)}. We define
Ik = {{i}, {i, i + 1}; i ∈ Z and 0 ≤ i ≤ k}, with k ∈ Z, k ≥ 0. We consider the
CF-order |Ik| = (Ik,⊇), |Ik| is the order associated to an interval of the set of
integers.

Let |X| = (X, α, β) and |X ′| = (X ′, α′, β′) be two CF-orders. As in the
continuous framework, we could say that two isotone maps f , g: X → X ′ are
homotopic if there is a homotopy h between them, i.e., an isotone map h :
X × Ik → X ′ with h(x, {0}) = f(x) and h(x, {k, k + 1}) = g(x) for all x ∈ X,
and for some k ≥ 0. In fact h is isotone if ∀x ∈ X, ∀a ∈ Ik, if y ∈ α(x)
and a ⊇ b, we have h(y, b) ∈ α′[h(x, a)]. Let us denote hi = h(x, {i}), and
hi+1/2 = h(x, {i, i + 1}), i = 0, ..., k.
i) If a = {i}, with i ≥ 0, then we have b = {i}. The condition is reduced to
hi(y) ∈ α′[hi(x)], we get the isotone condition for hi.
ii) If a = {i, i + 1} with i ≥ 0, then we have b = {i}, b = {i + 1}, or b =
{i, i + 1}. If b = {i, i + 1} we get the isotone condition for hi+1/2. It remains
the two conditions hi(y) ∈ α′[hi+1/2(x)], and hi+1(y) ∈ α′[hi+1/2(x)] which are
equivalent to hi+1/2(x) ∈ β′[hi(y)], and hi+1(y) ∈ α′[hi+1/2(x)].

This leads to the following definitions:
Definition 10: Let |X| = (X, α, β), |X ′| = (X ′, α′, β′) be two CF-orders and

let f and g be two isotone maps from X to X ′. We say that g is α-homotopic
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to f if ∀y ∈ α(x), g(y) ∈ α′[f(x)]. We say that f and g are homotopic if there
is a homotopy between them, i.e., a sequence of isotone maps from X to X ′:
h0, ..., hk, with h0 = f , hk = g, and such that hi is α- or β-homotopic to hi−1,
with i = 1, ..., k. In this case we write f ' g.

Definition 11: Let |X| = (X, α, β), |X ′| = (X ′, α′, β′) be two CF-orders.
An isotone map f from X to X ′ is called a homotopy equivalence between X and
X ′ if it possesses a homotopy inverse, i.e., an isotone map g from X ′ to X with
g ◦ f ' IdX and f ◦ g ' IdX′ . In this case we say that X and X ′ are homotopy
equivalent. A CF-order is contractible if it is homotopy equivalent to an order
which consists solely in one point.

It may be seen that a CF-order is contractible if and only if there is a constant
map c : X → {a}, with a ∈ X, such that c and IdX are homotopic.

Definition 12: Let |X| be a CF-order and let S ⊆ X. The subset S is a
retract of X if there is a retraction, i.e. an isotone map from X to S such that
r(x) = x for each x ∈ S. If a retraction r is homotopic to the identity as a
map from X to X, then r is called a deformation retraction and S is called a
deformation retract of X. If this homotopy h0, ..., hk between r and the identity
can be chosen so that hi(x) = x for all x ∈ S and all i with 0 ≤ i ≤ k, S is called
a strong deformation retract of X.

Definition 13: Let |X| be a CF-order, S ⊆ X be a retract of X and r be the
corresponding retraction. If r is α-homotopic to the identity as a map from X
to X, i.e., if ∀x ∈ X, ∀y ∈ α(x), r(y) ∈ α(x), then r is called an α-deformation
retraction and S is called an α-deformation retract of X.

Let S0, ..., Sk be a sequence of subsets of X, with S0 = X, Sk = S, and let
r0, ..., rk, r0 = IdX , rk = IdS , be a sequence of maps such that ri is an α- or a
β-deformation retract on Si, Si being the image of Si−1 under ri−1. Then it may
be seen that ri ◦ ... ◦ r0 is homotopic to ri−1 ◦ ... ◦ r0, therefore S is a (strong)
deformation retract of X.

We can associate to each α-unipolar point a an elementary α-deformation
retraction. Let α•(a) = {b}: we can consider the map r with r(a) = b and
∀x ∈ X \ {a}, r(x) = x. In fact, we also have:

Property 14: Let |X| = (X, α) be a CF-order and let r be an α-deformation
retraction. If r(x) 6= x, then x is an α-free point.

Proof: We have ∀x ∈ X, ∀y ∈ α(x), r(y) ∈ α[r(x)] and r(y) ∈ α(x).
Let x be a point with r(x) 6= x, we denote y = r(x), we have y ∈ α2(x). The
α-rank of x cannot be 0. If the α-rank of x is 1, we easily see that x is necessarily
α-unipolar. Thus the property is true for all points x with rα(x) ≤ 1. Suppose the
property is true for all points x such that rα(x) ≤ (i − 1). Let x with rα(x) = i.
Let us consider the set Y = α2(x) \ α(y). By isotony of r, all points z in Y are
such that r(z) ∈ α(y), thus r(z) 6= z. All these points have an α-rank lower than
x, by hypothesis, they are α-free. We have α•

S(x) = {y}, with S = X \Y . Let us
denote Z the set of points which appear in the sequences corresponding to the
definition of free points (Def. 2) and relative to the points of Y . It may be seen
that we have α•

T (x) = {y′}, with T = X \ Z and for some y′ ∈ α(y). Thus the
point x is αT -unipolar. 2
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7 Simple points

We propose now a notion of simple point based on contractible subsets.
Definition 15: Let |X| = (X, α) be a CF-order. A point x of X is α-simple

for |X| if α2(x) is contractible.
Let |X| = (X, α) and |X ′| = (X ′, α′) be two CF-orders. We say that |X ′| is
lower σ-equivalent to |X|, or that |X| is upper σ-equivalent to |X|′, if there is
a sequence X0, ..., Xk, with X0 = X, such that Xi is obtained from Xi−1 by
removing an α- or a β-simple point for |Xi−1|, i = 1, ..., k, and such that |Xk|
is isomorphic to |X ′|. We say that |X| and |X ′| are σ-equivalent, if there is a
sequence |X0|, ..., |Xk|, with |X0| = |X|, |Xk| = |X ′|, such that |Xi| is lower or
upper σ-equivalent to |Xi−1|, i = 1, ..., k.

Let us consider Fig. 3 (a) where an order is depicted. Black points and
segments constitute the elements of the order |X1|, as usual we consider that
y ∈ α(x) if x ⊇ y. The only difference between the order X2 of Fig. 3 (b) and
X1 is an element s which is represented by a square. We see that α2(s) is con-
tractible: there is a sequence of α- and β-unipolar points which reduces α2 to a
single point; so X2 is upper σ-equivalent to X1. We note that all elements inside
s are β-simple except the four corners and that the order X3 (Fig. 3 (c)) is lower
σ-equivalent to X2, X4 (Fig. 3 (d)) is upper σ-equivalent to X3, we see that we
cannot remove the square s since α2(s) is not contractible. The order X5 (Fig.
3 (e)) is upper σ-equivalent to X3 and we can remove s which leads to X6 (Fig.
3 (f)). We note that this notion of equivalence allows to consider objects with
different cardinality and thus it takes into account a difficult problem in discrete
spaces. We also see that the intersection of several curves may be “moved” with

(a) (b) (c)

(d) (e) (f)

Fig. 3. Illustration for simple points
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this notion of equivalence. Having this last example in mind, it is also possible to
check that a “dunce hat” is σ-equivalent to a point. Dunce hat is a well-known
counter-example for collapse operation. The dunce hat is an object which may
be realized in a three-dimensional space and which has “no holes and cavities”,
i.e., its homology groups are all trivial. At last it could be seen that it is possible
to “simulate” the collapse operation with the notion of simple point.

Several more specific notions of simple points may be derived from the pre-
ceding definition including some previous notions of simple points ([3], [9]). Here,
we propose the following specific notion.

Definition 16: Let |X| = (X, α, β) be a non-empty CF-order. The order |X|
is 0-contractible if it is composed of a single point. A point x is αn-simple for
|X| if |α2(x)| is (n−1)-contractible, n ≥ 1. We denote Xαn the set composed of
all points of X which are not αn-simple for |X|. The order |X| is n-contractible,
n > 0, if there is a sequence X0, ..., Xk, with X0 = X, Xi = Xi−1

αn if i is odd,
Xi = Xi−1

βn if i is even, for i = 1, ..., k, and such that Xk = {a}, a ∈ X.
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Fig. 4. Illustration of α3-simplicity

The notion of α1-simple (resp. α2-simple, α3-simple) point is appropriate
for H1 (resp. H2, H3), see [4]. For n sufficiently large, there is the possibility
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that some patterns like the dunce hat may appear in the adherence of a point,
αn-simple points cannot handle these cases. Nevertheless αn-simple points are
sufficient for a lot of cases and they have some interesting features:
- The checking of an αn-simple point can be made by using polynomial algo-
rithms;
- From this notion, thinning algorithms may be easily designed (see [13]). We
may thin an object by removing alternatively αn and βn-simple points;
- αn-simple points allow to have powerful parallel algorithms. The problem of
removing in parallel simple points is a difficult problem in Z3.

Fig. 4. gives an example where we test if a point x is α3-simple or not for a
subset S of H3, x is the central element. We have used the array representation
with the same conventions as for H2. In Fig. 4 (a) black dots represent α2(x)∩S.
In Fig. 4 (b), α2-simple points of S have been eliminated, then β2-simple points
(Fig. 4 (c)), and α2-simple points (Fig. 4 (d)): x is α3-simple for S. Note that
the same Fig. 4 may also be considered as an illustration of thinning an object
S, with S = α2(x).
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