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Abstract. In the framework known as digital topology, two different
adjacency relations are used for structuring the discrete space Zn. In
this paper, we propose a model for digital topology based on the notion
of order and discrete topology. We “validate” our model by considering
the two fundamental notions of surface and simple point. At last, we
give the different possible configurations that may appear in 2- and 3-
dimensional surfaces in Z4 which correspond to our model.
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1 Introduction

Perhaps the simplest way for structuring the discrete space Zn is to consider
two graphs, these graphs correspond to two adjacency relations between the el-
ements of Zn: the direct and the indirect adjacency (for example, the 4- and
the 8-adjacency in Z2). This approach, known as digital topology [22,12], is
widely used in Z2 for the applications to image analysis. Nevertheless, severe
limitations appear in the discrete space Z3. For example, in the pioneering work
of Morgenthaler and Rosenfeld [19], a definition of surfaces in Z3 is proposed,
using such adjacency relations. This definition is not based on structural prop-
erties which are fundamental for surfaces (e.g. the neighborhood of each point
should constitute a “cycle” [8]). Hence, it is difficult to appreciate the relevancy
of this definition. Furthermore, this definition seems to be almost impossible to
generalize to higher dimensions.

In this paper, we consider an approach based on the notion of order and
discrete topology [1,10,14,16]. We propose a model for digital topology by asso-
ciating, to each subset of Zn, two orders: the hit (resp. miss) order corresponds
to the indirect (resp. direct) adjacency.

We “validate” our model by considering the two fundamental notions of
surface and simple point.

We show that the notion of surface in these two orders corresponds exactly to
the notion of surface introduced by Morgenthaler and Rosenfeld. We also verify
that the notion of simple point introduced in these two orders agrees with the
corresponding notion in digital topology.

These results are remarkable, since the definitions of surface and simple point
in the digital topology framework are fundamentaly different from ours. These
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differences explain why we used a computer in order to prove these results by
an exhaustive checking. A hand-made proof would be of low interest.

At last, we give the different possible configurations that may appear in 2-
and 3-dimensional surfaces in Z4 which correspond to our model.

2 Basic notions

In this section, we introduce some basic notions relative to orders (see also [6]).
If X is a set, P(X) denotes the set composed of all subsets of X, if S is a

subset of X, S denotes the complement of S in X. If S is a subset of T , we
write S ⊆ T , the notation S ⊂ T means S ⊆ T and S 6= T . If γ is a map
from P(X) to P(X), the dual of γ is the map ∗γ from P(X) to P(X) such
that, for each S ⊆ X, ∗γ(S) = γ(S). Let δ be a binary relation on X, i.e., a
subset of X × X. We also denote δ the map from X to P(X) such that, for
each x of X, δ(x) = {y ∈ X, (x, y) ∈ δ}. We define δ2 as the binary relation
δ2 = δ \ {(x, x);x ∈ X}.

An order is a pair |X| = (X, α) where X is a set and α is a reflexive, anti-
symmetric, and transitive binary relation on X. An element of X is also called
a point. The set α(x) is called the α-adherence of x, if y ∈ α(x) we say that y is
α-adherent to x.

Let (X, α) be an order. We denote α the map from P(X) to P(X) such that,
for each subset S of X, α(S) = ∪{α(x); x ∈ S}, α(S) is called the α-closure of
S, ∗α(S) is called the α-interior of S. A subset S of X is α-closed if S = α(S),
S is α-open if S = ∗α(S).

Let (X, α) be an order. We denote β the relation β = {(x, y); (y, x) ∈ α}, β
is the inverse of the relation α. We denote θ = α ∪ β. The dual of the order
(X, α) is the order (X, β).
Note that ∗α(S) = {x ∈ S; β(x) ⊆ S}, and ∗β(S) = {x ∈ S; α(x) ⊆ S}.

The set Oα composed of all α-open subsets of X satisfies the conditions for
the family of open subsets of a topology, the same result holds for the set Oβ

composed of all β-open subsets of X; we denote respectively Tα = (X, Oα) and
Tβ = (X, Oβ) these two topologies. These topologies are Alexandroff topologies,
i.e., topologies such that every intersection of open sets is open [1].

An order (X, α) is countable if X is countable, it is locally finite if, for each
x ∈ X, θ(x) is a finite set. A CF-order is a countable locally finite order.

Let (X, α) be a CF-order. Let x0 and xk be two points of X. A path from x0
to xk is a sequence x0, x1, ..., xk of elements of X such that xi ∈ θ(xi−1), with
i = 1, ..., k.

It may be seen that a CF-order (X, α) is connected for Tα (or for Tβ) if and
only if it is path-connected, i.e, if for all x, y in X, there is a path from x to y.

When (X, α) and (X ′, α′) are orders, a map f from X to X ′ is order pre-
serving, or isotone, if y ∈ α(x) implies f(y) ∈ α′[f(x)]. We say that f is an
isomorphism from (X, α) to (X ′, α′), if f is a bijection so that y ∈ α(y) if and
only if f(y) ∈ α′[f(x)], for all x, y in X.
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If (X, α) is an order and S is a subset of X, the order relative to S is the
order |S| = (S, α ∩ (S × S)).

Let (X, α) be an order. An element x such that α2(x) = ∅ is said to be
α-terminal (for X). A point y is an α-terminal of x if y is an α-terminal and
y ∈ α(x).
If (X, α) is an order, we define α• as the relation on X such that y ∈ α•(x) if and
only if y ∈ α2(x) and α2(x)∩β2(y) = ∅. The set α•(x) is called the α-closeness
of x, if y ∈ α•(x) we say that y is α-close to x.

Let (X, α) be a CF-order and let x be a point of X. We say that x is α-
unipolar if α•(x) consists in exactly one point. We say that x is α-free if there is
a sequence x0, ..., xk with xk = x, such that x0 is α-unipolar and xi is α-unipolar
for the order |X \{x0, ..., xi−1}|, i = 1, ..., k. A point which is not α-free is called
an α-link. The α-kernel of X is the subset of X composed of all α-links of X.
Two orders (X, α) and (X, α′) are said to be α-equivalent if the orders induced
by their α-kernel are isomorphic.

We use a general definition for n-dimensional surfaces which has been pro-
posed by Evako, Kopperman and Mukhin [7]. This notion is close to the notion
of manifold used by Kovalevsky [17]; nevertheless it does not involve the neces-
sity to attach a notion of dimension to each element of X, which allows to have
a simpler definition (in particular, no use of isomorphism is made).

Definition 1: Let |X| = (X, α) be a non-empty CF-order.
- The order |X| is a 0-surface if X is composed exactly of two points x and y
such that y 6∈ α(x) and x 6∈ α(y).
- The order |X| is an n-surface, n > 0, if |X| is connected and if, for each x in
X, the order |θ2(x)| is an (n − 1)-surface.
- A (closed) curve is a 1-surface, a (closed) surface is a 2-surface.

We will use the following notion of simple point as a model for the classical
corresponding notion in Z2 and Z3 :

Definition 2: Let |X| = (X, α) be a non-empty CF-order.
- The order |X| is 0-contractible if X is composed of a single point.
- A point x is αn-simple if |α2(x)| is (n − 1)-contractible, n > 0.
We denote Xαn the set composed of all points of X which are not αn-simple
points for |X|.
- The order |X| is n-contractible, n > 0, if there is a sequence X0, . . . , Xk with
X0 = X and Xk = {a}, a ∈ X, such that Xi = Xi−1

αn if i is odd, and Xi = Xi−1
βn

if i is even, for i = 1, . . . , k.

3 Orders associated to Zn

We give now a presentation of some orders which may be associated to Zn.
Let E be a set and let En be the Cartesian product of n copies of E. An

element a of En may be seen as a map from {1, ..., n} to E, a(i) is the i-th
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coordinate of a, i = 1, ..., n. If S is a subset of En, the i-th projection of S is the
set S(i) = {a(i); a ∈ S}, i = 1, ..., n.

Let Z be the set of relative integers. We consider the families of sets H1
0 , H1

1 ,
H1 such that, H1

0 = {{a}; a ∈ Z}, H1
1 = {{a, a + 1}; a ∈ Z}, H1 = H1

0 ∪ H1
1 .

A subset S of Zn which is the Cartesian product of exactly m elements of H1
1

and (n − m) elements of H1
0 is called a m-cube of Zn. We denote Hn the set

composed of all m-cubes of Zn, m = 0, ..., n.
An m-cube of Zn is called a singleton if m = 0, a unit interval if m = 1, a unit
square if m = 2, a unit cube if m = 3.

In this paper, the basic order associated to Zn is the order (Hn, α), where
α =⊇, thus y ∈ α(x) if x ⊇ y. In Fig. 1, an example of a subset S of H2 is
given. The object S is made of two connected components S1 and S2. It may be
seen that S1 contains one α-terminal and four α-free elements (three α-unipolar
elements and one element which is an α-unipolar element after the removal of
these three elements). It follows that the α-kernel of S1 is composed of a single
element: |S1| is α-equivalent to an isolated point. In a similar way |S2| is α-
equivalent to an open curve made of three elements.
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Fig. 1.A subset S of H2 (a), and its dual in ∗H2 (b).

In the framework of 2D-image analysis, an element of an object is called
a pixel. In a square grid, a pixel is sometimes seen as an element of Z2 and
sometimes as an elementary square of R2. In fact, there is an equivalence between
the two approaches. This comes from the fact that there is a “geometrical”
duality in a square grid: if we consider the four elementary squares which contain
an element of Z2, these four squares may be considered in turn as “constituting
a unit square”. Note that we do not have such a duality in an hexagonal grid.
In order to make more explicit this kind of duality, we propose the following
construction.
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We define the dual of Z as the set ∗Z = {p+1/2; p ∈ Z}. The dual of Zn is
the set ∗Zn = [∗Z]n. We consider the families of sets ∗H1

0 , ∗H1
1 , ∗H1 such that,

∗H1
0 = {{a}; a ∈ ∗Z}, ∗H1

1 = {{a, a + 1}; a ∈ ∗Z}, ∗H1 = ∗H1
0 ∪ ∗H1

1 .
A subset S of ∗Zn which is the Cartesian product of exactly m elements of ∗H1

1
and (n − m) elements of ∗H1

0 is called a m-cube of ∗Zn, we denote ∗Hn the set
composed of all m-cubes of ∗Zn, m = 0, ..., n.
We denote f , the map from Hn to ∗Hn, such that, for each x of Hn, if x(i) =
{p, p + 1}, then [f(x)](i) = {p + 1/2}, and if x(i) = {p}, then [f(x)](i) =
{p − 1/2, p + 1/2}, i = 1, ..., n. The dual of a m-cube of Hn is the image under
f of this m-cube, it may be seen that the image of a m-cube is a (n − m)-cube.
The dual of a subset S of Hn is the subset of ∗Hn composed of the duals of
all m-cubes in S. It may be seen that the map f is an isomorphism between
the two orders (Hn,⊇) and (∗Hn,⊆). In Fig. 1, the dual of a subset S of H2 is
represented.

To conclude this section, we introduce some adjacency relations among ele-
ments of Zn which may be naturally derived from the order Hn.

Two elements p and q of Zn are said to be m-adjacent if there exists a m-cube
of Hn which contains both x and y. Two elements of Zn are strictly 0-adjacent
if they are 0-adjacent (i.e. if they are equal), they are strictly m-adjacent if they
are m-adjacent and not (m − 1)-adjacent, with m = 1, ..., n.

4 The i/d adjacency approach

In this section we give formal notions which correspond to the graph-theoretic
approach introduced by Rosenfeld, this approach is based on two adjacencies
relations, the i- and d-adjacencies.

Two elements p and q of Zn are said to be indirectly adjacent or i-adjacent
(resp. directly adjacent or d-adjacent) if they are n-adjacent (resp. 1-adjacent).
It is well known that, in order to avoid connectivity paradoxes, we never use the
same adjacency on both S and S. If we use the i-adjacency (resp. d-adjacency)
for S, we must use the d-adjacency (resp. i-adjacency) for S. In the sequel the
a-adjacency indicates the i- or the d-adjacency, i.e., we have a = i or a = d.
Let p be an element of Zn. We denote Γa(p) the set composed of all elements
of Zn which are a-adjacent to p. The a-neighborhood of p is the set Γ ∗

a (p) =
Γa(p) \ {p}. An element q of Γ ∗

a (p) is called a a-neighbor of p.
For example, each p ∈ Z2 has 8 i-neighbors and 4 d-neighbors, each p ∈ Z3 has
26 i-neighbors and 6 d-neighbors.
An a-path is a sequence p0, ..., pk, pi being a-adjacent to pi−1, i = 1, ..., k.
A subset S of Zn is a-connected if for all p, q of S there is an a-path from p to
q which is composed solely of elements of S.
A subset S of Zn is a simple closed a-curve if S is a-connected and if the a-
neighborhood of each element of S is made of exactly two elements.

Let us consider the digital plane Z2. This set must be interpreted as a (non-
bounded) surface. Thus it might be desirable that the neighborhood of each
point of Z2 could be interpreted by something like a simple closed curve. We
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see that the d-neighborhood of a point is made of four elements, and that any
couple of these elements are not d-adjacent. In this sense the d-neighborhood of
a point is “under-connected”. In a similar way, we see that the i-neighborhood of
a point is “over-connected”. These peculiarities explain many of the difficulties
encountered when using the i/d adjacency approach. Since the basic notion
of a neighborhood is not appropriate, only ad-hoc definitions are possible. For
example, the notion of surface in Z3 is far from being clear. Morgenthaler and
Rosenfeld (MR) proposed the following definition (see [19], [20], [21], [11]).

Let (a, a) = (i, d) or (d, i).
A MR a-surface is a finite connected subset S of Z3 such that, for each p ∈ S,
we have:
i) [Γ ∗

i (p) ∩ S] has exactly one a-component a-adjacent to p; and
ii) [Γ ∗

i (p) ∩ S] has exactly two a-components which are a-adjacent to {p}, we
denote C and D these components; and
iii) ∀q ∈ [Γ ∗

a (p) ∩ S], q is a-adjacent to both C and D.
We conclude this section by giving a characterization of simple points in Z3

([13,5]).
Let S ⊂ Z3 and p ∈ Z3. Let (a, a) = (i, d) or (d, i).

We denote Γ2(p) = {q ∈ Z3, q is strictly 2-adjacent to p}.
The geodesic a-neighborhood GS

a (p) of p inside S is defined by:
GS

i (p) = Γ ∗
i (p) ∩ S

GS
d (p) = (Γ ∗

d (p) ∩ S) ∪ {q ∈ Γ2(p) ∩ S; card(Γ ∗
d (p) ∩ Γ ∗

d (q) ∩ S) = 2}
A point p ∈ Z3 is a-simple (for S) if and only if the number of a-components in
GS

a (p) and the number of a-components in GS
a (p) both equal one.

5 The h/m order approach

In order to build consistent topological notions for a subset S of Zn, we associate
to S a subset Ψ(S) of Hn; thus we recover the structure of a (discrete) topolog-
ical space by considering the order (Hn,⊇). In this paper, the transformation
Ψ is chosen in such a way that the induced topological notions may be seen as
a “model” for the notions derived from the i/d adjacency framework. A natural
idea for defining Ψ is to consider “hit or miss” transformations [23]. Thus we
consider the set Sh composed of all elements of Hn which have a non-empty
intersection with S. In a dual way, we consider the set Sm composed of all ele-
ments of Hn which are included in S. Our model for the i/d adjacency approach
consists in considering the α-kernels of the two sets Sh and Sm as counterparts
for the i- and d-adjacencies.

Definition 3: Let S ⊂ Zn. We denote Sh = {x ∈ Hn; x ∩ S 6= ∅}, and
Sm = {x ∈ Hn; x ⊆ S}. The h-set associated to S is the set Ψh(S) which is the
α-kernel of Sh. The m-set associated to S is the set Ψm(S) which is the α-kernel
of Sm. The h-order relative to S is the order (Ψh(S), α), the m-order relative to
S is the order (Ψm(S), α), with α =⊇.
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(a) (b)

Fig. 2.(a): a subset S of Z2 (the seven black dots) and the set Sh (black elements);
(b): the h-order relative to S.

We note that:
- Sm = [S]h;
- The set Sh is α-open, the set Sm is α-closed;
- We have Ψm(S) = Sm;
- The set Ψh(S) is, in general, neither α-open nor α-closed.

The proofs of the two following properties will be given in a forthcoming
paper:

Property 4: Let S ⊂ Zn. The set Ψh(S) is composed of all elements {p}, p ∈ S,
and all m-cubes of Zn which contain two strictly m-adjacent points q and q′ of
S, m = 1, ..., n.

Property 5: Let S ⊂ Zn. The dual of Ψh(S) is composed of the duals of all
elements {p}, p ∈ S, and all the m-cubes of Zn which are the intersection of the
dual of {q} and the dual of {q′} for some q, q′ ∈ S.

In Fig. 2 (a), a set Sh is represented. The original set S is represented by the
seven black dots. We use the following conventions: a singleton is depicted by
a circle ( ), a unit interval by a rectangle ( ), and a unit square by a square
( ). Two elements a, b are linked by a straight line if a ∈ α•(b) or b ∈ α•(a).
In Fig. 2 (b), Ψh(S), the α-kernel of the set Sh, is given.

It may be easily seen that:

Property 6: Let S ⊂ Zn.
The set S is a closed curve for the h-order (resp. m-order) if and only if S is a
closed i-curve (resp. closed d-curve).

The following property has been proven by an exhaustive checking with the
help of a computer:

Property 7: Let S ⊂ Z3, let x be a point of S.
The point x is i-simple if and only if {x} is α3-simple for the h-order. The point
x is d-simple if and only if {x} is α3-simple for the m-order.
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6 The h-surfaces and m-surfaces in Z3

Let S ⊂ Z3, we say that S is an h-surface (resp. an m-surface) if S is a closed
surface for the h-order (resp. m-order).

In this section, we show that h-surfaces (resp. m-surfaces) are equivalent to
the Morgenthaler and Rosenfeld (MR) i-surfaces (resp. d-surfaces) [19,20,21].
By construction, the MR’s definition cannot be extended in higher dimensional
spaces. Furthermore, it may be asked whether it is possible to recover the fon-
damental structure of a combinatorial 2D-manifold ([8]) where each element is
“surrounded by a cycle”. In fact an answer to this question has been given by
Ayala and Al. (see [2], [3], [4]) in an original framework which provides a link be-
tween digital spaces and Euclidean spaces. A digital object is defined as a digital
manifold if its continuous analogue is a combinatorial manifold. In this frame-
work, it has been shown that Morgenthaler’s surfaces are combinatorial surfaces.
In a previous work, Kong and Roscoe [11] had proposed a structural necessary
and sufficient condition based on specific point configurations, that characterizes
the MR surfaces. Their approach is also based on continuous analogs.

On the opposite, our approach is purely discrete. By drawing the inferences of
the definition of a 2-surface, we recover very simply the local point configurations
that may appear in h- or m-surfaces. We can even exhibit in the next section,
the different configurations that may appear in h-surfaces in Z4, as well as in
3-surfaces for h-orders in Z4.

In the subsequent figures, we use the same conventions as for the two-
dimensional case, in addition, a unit cube is represented by a cube ( ).

The following property is a direct consequence of Def. 1:

Property 8: If S ⊂ Z3 is an m-surface, then each β-terminal element x of
Ψm(S) is a unit square, and θ2(x) is a closed curve composed of four singletons
and four unit intervals (see b1, Fig 3).

Property 9: A subset S of Z3 is a MR d-surface if and only if S is an m-
surface.

In the sequel, we will use “utrs” as an abbreviation for “up to rotations and
symmetries”.

b1 b2 b3

Fig. 3.The 3 possible configurations for the set θ2(x) of a β-terminal x in an h-surface.
The β-terminal x is the front central unit square in b1, the central unit cube in b2 and
b3.
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Property 10: If S ⊂ Z3 is an h-surface, then
i) for each β-terminal element x of Ψh(S), θ2(x) corresponds (utrs) to one of
the 3 configurations bi (i = 1 . . . 3) depicted in Fig. 3, and
ii) for each α-terminal element x of Ψh(S), θ2(x) corresponds (utrs) to one of
the 13 configurations ai (i = 1 . . . 13) depicted in Fig. 4.

The proof of this property is easily obtained by enumerating the different
possible cases.

It may be seen that each of the configurations ai corresponds (utrs) to one
of the configurations that may appear in a MR i-surface (see for example [3],
Fig. 3). We have indeed:

Property 11: A subset S of Z3 is a MR i-surface if and only if S is an h-
surface.

a1 a2 a3 a4

a5 a6 a7

a8 a9 a10 a11

a12 a13

Fig. 4.The 13 possible configurations for the set θ2(x) of an α-terminal x in an h-
surface. The α-terminal x is the central singleton.
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x

y y

(a) (b)

Fig. 5.(a): a configuration in which y satisfies the MR’s definition, but which may not
appear in a MR i-surface; (b): the set θ2(y) for the h-order.

Remark: let us consider the configuration (a) in Fig. 5. We remark that y
is an i-surface point, according to MR’s definition. But it is not possible that
x satisfies the conditions of the MR’s definition, whatever neighborhood it may
have; in other words, the configuration (a) is not extensible (see [18] for a precise
definition of this notion).

With Def. 1, the configuration (a) is directly rejected from the list of con-
figurations that may appear in an h-surface: θ2(y) is not a closed curve (see
Fig. 5 (b)).

7 The 2-surfaces and 3-surfaces for h-orders in Z4

In the Fig. 6, 7, the set θ(x), x being a 4-cube of Z4, is represented by three
diagrams of 27 elements, s1, s2, s3 (from left to right). For each of these three
diagrams, we use the same conventions as for the figures of the previous section,
concerning the inclusion relation of the order (H4,⊇). In addition, let us consider
the two vectors

→
a and − →

a in Fig. 6: each element x of s1 is included in x′, the
translated of x by

→
a , and each element y of s3 is included in y′, the translated of y

by − →
a . For example in Fig. 6 (c4), we have: x ⊂ y, x ⊂ z, x ⊂ x′, z ⊂ z′, x′ ⊂ z′.

Property 12: If S ⊂ Z4 is an h-surface, then for each β-terminal element x
of Ψh(S), θ2(x) corresponds (utrs) to one of the 6 configurations ci (i = 1 . . . 6):
c1, c2, c3 correspond respectively to b1, b2, b3 depicted in Fig. 3, and c4, c5, c6 are
depicted in Fig. 6.

Property 13: If S ⊂ Z4 is a 3-surface for the h-order, then for each β-terminal
element x of Ψh(S), θ2(x) corresponds (utrs) to one of the 5 configurations di

(i = 1 . . . 5) depicted in Fig. 7.
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