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Abstract. This article presents an algorithm computing a border map
of an image that generalizes to the n dimension graph structures used in
image analysis. Such a map represents simple and multiple adjacencies,
inclusion of regions, as well as the frontier type between two adjacent
regions. An algorithm computing a border map, linear to the number of
elements of an image, is defined in 2D, then generalized in 3D and in nD.
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1 Introduction

Before analyzing effectively the contents of an image and starting a process of
recognition or data analysis, it is necessary to extract the valuable informa-
tion and to structure it. This first stage of all analysis process is called image
segmentation. Several approaches exist, here we are interested in regions seg-
mentation which segments the image into connected component of pixels. Once
this partition obtained, it is necessary to structure this information so that more
accurate or specialized processes can be applied. Our aim here is to propose a
graph like structure in order, not only to allow more sophisticated analysis of
the image, but also to allow a modeling and thus facilitating the visualization
and the interactive manipulation of the segmentation result.

A commonly used structure is the region adjacency graph [Ros74]. But such a
graph does not indicate the type of adjacency between regions: it does not specify
neither the possible relations of inclusion between regions, nor if two regions
have one or several common borders. Kropatsch and Macho proposed in [KM95]
a dual planar multi-graphs structure allowing to code all these informations. The
inclusion is coded with the help of a fictive edge that appears as a loop in the dual
graph which allows to differentiate it from classical adjacency edges. Operations
are thus homogeneous but require to maintain two graphs. Brun [Bru96] uses
planar maps to which he adds some fictive edges to code the inclusion. But the
resulting structure is no more homogeneous.

In fact to code information about multiple adjacencies and inclusion leads
to realize the topology of the image. Fiorio [Fio96] has introduced the notion
of topological graph of frontiers (GTF for short). The interest of a GTF is not
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only to define a topological structure richer in information than the classical
structures, but also computable in linear time to the number of pixels of the
image, with only two consecutive lines of the image in memory. The immediate
problem for this optimal algorithm is its extension to 3D images, and nD images.
The purpose of this paper is to propose one solution to this problem. The solution
requires the use of the resulting structure of a regions segmentation, and related
algorithms of topology-based modeling: combinatorial maps [Jac70,Cor75] and
generalized maps [Lie89,Lie91].

We begin, Section 2, by introducing in an informal manner concepts of topol-
ogy and combinatorial maps. Section 3 gives a short presentation of the GTF ,
then Section 4 proposes a simplification of this structure, called border map. Sec-
tion 5 indicates how the algorithm which computes such a structure is extended
to the 3D and then to the nD case. Section 6 summarizes up the main features
of the algorithm presented, and Section 7 gives some examples of applications.
Finally Section 8 concludes this paper.

2 Topology and combinatorial maps

Defining a coherent topology for images that are discrete spaces is not a trivial
problem. Some simple and efficient solutions exist for the binary case (cf [KR89])
but they are not translatable for grey levels or color images, the case that inter-
ests us here. In fact it appears that to define a topology for spaces such as images,
it is necessary to introduce and to define a notion of border. Kovalevsky [Kov89],
first, proposes to no more consider an image as only a set of pixels and intro-
duces border elements (edges and vertices) of pixels as elements of the image.
Khalimsky, Kopperman, and Meyer present in [KKM90] a solution of the same
type where the image is defined like a cartesian product of discrete straight
lines. Based on these works [Fio95] proposes an interpixel approach for image
analysis where he also takes into account border elements (see Figure 1). He
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Fig. 1. Interpixel elements for a 2D and 3D image.

defines a topology well adapted for image analysis: the star-topology [AAF95].
This topology and the one proposed by Khalimsky, Kopperman and Meyer are
combinatorial topologies leaning on the notion of space subdivisions: the space
is partioned into elements and border elements and provides incidence and ad-
jacency relations linked to this notion of border. Thus IR3, for example, will be
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divided into volumes (basic elements), surfaces (border of volumes), curves (bor-
der of surfaces) and vertices (border of curves). A vertex is said to be incident
to a curve if it is a border of the curve. A surface is incident to a volume if it
is a part of its border. Two volumes are adjacent if they are incident to a same
surface.

Generalized maps [Lie97] are a combinatorial structure allowing to code this
subdivision, as well as the incidence relations between elements of the space,
thus realizing the topology. “Implementation of these structures (and related
algorithms) can be done without loss of information and without loss of proper-
ties”. In fact maps or generalized maps [Lie89,Lie91] generalize the combinatorial
map notion, which is the first mathematical model for topology-based represen-
tation [Jac70,Cor75].

Generalized maps are therefore concerned with modeling subdivision of ge-
ometric spaces. For example the object in Figure 2.a is modeled by the G-map
of Figure 2.c. This last is obtained by successive decompositions of the object,
starting by distinguishing the faces (the triangle and the rectangle), then the
edges and at last vertices incidents to edges. Finally we get 14 half-edges called
darts. An involution, noted α0 and illustrated on faces by a little stroke, asso-
ciates to a dart the dart of the adjacent vertex of the same edge and of the same
face. Another involution, noted α1 and illustrated by the gray arc, associates to
a dart the dart of the adjacent edge incident to the same vertex and belonging to
the same face. Finally an involution, noted α2 and illustrated by a thick stroke,
associates to a dart the dart of the adjacent face of the same edge and incident to
the same vertex. In short, involution α0 puts into correspondence vertices (cells
of dimension 0) of the object, involution α1 link up edges (cells of dimension 1)
and involution α2 joins two faces adjacent (cells of dimension 2).
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a. 2D object b. darts c. 2-G-map

Fig. 2. From a 2D object to a 2-
G-map

x y

Fig. 3. 3-G-map modeling two adjacent
cubes

In general, an involution αi associates to a dart of a i− cell c the dart of the
i-cell adjacent to c.

G-map of dimension 2, or 2-G-map (in the following, we writes k-x instead
of x to k dimension) realizing the topology of the object of Figure 2.a is the
algebra (B, α0, α1, α2), where B is the set of the 14 darts, resulting from the
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decomposition, and verifying the fact that α0 ◦ α2 is also an involution. The
links between darts are called sewing.

Extending of G-maps to the third dimension is immediate: it consists in
sewing 2-G-maps by an additional involution, noted α3. Figure 3 represents two
cubes sewn along a face (involution α3 is represented by the thick stroke). Defi-
nition of n dimensional G-maps is done in the same way using n + 1 involutions
α0, . . . , αn. A G-map may or not represent some orientable subdivisions [Lie89].
Intuitively, it is sufficient to cross two 2-sewings in order to get the topology of
a Moebius ring.

An orientable subdivision represented by a G-map can be done by a map
with two times less darts that a G-map. Thus, the 2-G-map of Figure 2.b is
translated into the 2-map of Figure 4 by only keeping one dart of 2. Such a
2-map is an algebra (B′, β1, β2), with a permutation β1 = α0 ◦ α1 (grey arcs on
Figure 4) and one involution β2 = α0 ◦ α2 (diagonal stroke Figure 4), where B′

are the thick darts on Figure 4.

Fig. 4. 2-map Figure 2.b

a. 1-cells b. 2-cells c. 3-cells

Fig. 5. Cells of 2-G-map of Figure 2.c

2-G-maps allow to describe all types of subdivisions of 2-manifolds, and in
particular subdivisions of 2D images in regions. They are characterized by the
fact that the set of darts can be partitioned into sets corresponding to vertices,
edges, or again to faces, whereas this is not the case for darts of 2-maps. To get
these sets, it is sufficient to remove respectively involution α0 ((1) of Figure 2.c)
α1 ((2) of Figure 2.c), α2 ((3) of Figure 2.c). This makes easier the writing of
algorithms which need to operate on each of such types of cells. This is why, in
all the following, algorithms are described in terms of G-maps and not maps.

3 Topological Graph of Frontiers

A GTF (see definition in [Fio95,Fio96]) corresponding to an image without
inclusion of region is precisely a 2-map whose vertices represent regions and
whose edges represent frontiers between regions. Such maps are the duals of those
presented in Section 2: permutation on darts describe vertices instead of faces.



246 Yves Bertrand, Christophe Fiorio, and Yann Pennaneach

0

R1 R2

R3 R4
R5

R0

R1

R2

R3

R5

R4

R

Fig. 6. A Topological Graph of Frontiers

The permutation around a vertex return all the adjacent regions to the region
represented by this vertex. A region adjacent to r enclosed regions is represented
by a vertex where all incident darts belong to not only one permutation, but to
r + 1 permutations. Figure 6 [Fio96], shows two permutations (grey arrows) are
associated to region R4, one corresponding to the external contour of R4, and
the other to the internal contour.

Fig. 7. Precodes

In order to extract a GTF from an image, every pixel is assumed to be asso-
ciated to the region it belongs to. This association is the result of a segmentation
and a region labeling, linear in the number of pixels of the image [FG96]. The
extraction algorithm [Fio96] is a greedy algorithm: it scan the image line by line,
starting with a GTF reduced to one vertex corresponding to the outside region
of the image, noted R0 in Figure 6. The scan is done with a 2 pixels window and
updates the GTF under construction according to 12 possible configurations,
called precodes, shown in Figure 7. The algorithm manages an auxiliary list of
darts that allows to sew the current darts of one line to darts of the previous
line. It is very efficient, since it treats an image of 512×512 in about 0, 5 seconds
on a workstation of entrance range.
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However, this algorithm presents some drawbacks making it difficult to trans-
late to nD:

– Some retroactive corrections are necessary because, given two distinct con-
tours currently processed, we cannot know if they will merge or not (see
Figure 8). Corollarly, the GTF under construction does not necessarily cor-
respond to the part of the image already scanned. The correspondence be-
comes correct only at the end of the process.

– An auxiliary list of darts and precodes is used in order to scan only once the
image and in order to achieve the optimal complexity.

– The inclusion tree obtained is implicit.

current precode current precode

Fig. 8. contours merging

The representation that we propose in this paper as well as the related algo-
rithms become free of these drawbacks so that they facilitate the extension to
nD and allow to code explicitly the inclusion tree. Embedding informations are
also included in our representation in order to be able to allow the display.

4 Border map of regions

4.1 First algorithm

In order to get rid from drawbacks due to the algorithmic optimizations, let us
reconsider the problem and forget momentarily questions of performances. We
shall reintroduce them progressively.

Algorithm 1: Naive algorithm

Input: Image I of n1 × n2 pixels
Output: 2-G-map of whose faces represent regions and edges borders between

regions.

1 Build a 2-G-map G of n1 × n2 squares sewn between them;
2 Merge all adjacent faces couples of a same region;
3 Merge all couples of edges of same direction incident to a vertex of degree 2;
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Algorithm 1 creates the 2-G-map whose faces represent regions and edges borders
between regions.

(a) (b) (c)

Fig. 9. Faces Merging

The merging of two faces along an edge (Figure 9.a) is done by first α1-
unsewing the edge from its four incident darts (Figure 9.b), then by resewing by
α1 the four darts of the two remaining face pieces become 1-free (Figure 9.c).

The steps described above do not manage the case of regions enclosed in
others. A simple manner to describe implicitly the inclusion tree of regions is to
indicate for every dart whether it belongs to an internal or an external contour
of a region. From now on we will say respectively internal or external dart for a
dart belonging to respectively external or internal contour. One couple of darts
2-sewn in which one is internal and the other one is external corresponds to an
edge of the inclusion tree. The informal definition of an internal or external dart
is the following:

– initially, all darts are considered internal,
– the first dart met for a given region is external,
– a dart belonging to a contour with at least one external dart is external.

The space complexity of this algorithm is O(n1n2)1. Since for every dart, the
face it belongs to is scanned in order to determine if it is external or not, the time
complexity of the algorithm is O(n1n2m), where m is the mean number of darts
by face. These high complexities require optimization of the naive algorithm in
time and in space.

4.2 Algorithm 1 optimizations: the border map

A first optimization of our algorithm consists to start with a G-map including
only one square for the first pixel of the image and then, for every new created
square immediately try to merge it with the current G-map. The first two steps
of the naive algorithm are thus grouped in one. Figure 10 shows the current pixel
in gray (Figure 10.a), that has been merged with the part of G-map containing
a pixel on the previous line belonging to the same region, but not with the
previous pixel on the same line since it is white and does not belong to the
same region. The processing of a pixel consists therefore to apply, depending
on the horizontally and vertically adjacent regions, zero, one or two times, the
illustrated merge operation of Figure 10. This process requires to know the darts
1 Reminder: the processed image contains n1 × n2pixels.
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pixelcurrent

(a) (b)

Fig. 10. Current pixel merging

of the image already processed with which the pixel must be sewn. For that, one
dart of the pixel previously processed pixel (vertical dart in black on Figure 10.b)
is memorized, as well as a dart in the beginning of the current line (horizontal
dart in black on Figure 10.b), in the case of the current pixel being the first
of the line. These darts belong to the set of darts represented in black to the
figure 10.a that closes the G-map . It corresponds to the auxiliary list of darts
of [Fio96].

The complexity in space is proportional to the number of darts of the G-map,
which is about n1 or n2 for images with a weak number of regions, and about
n1n2 for images having a high number of regions. In practice, the number of
darts is weaker than n1n2 (about 6 to 10 times less darts).

A second optimization consists in not creating the current pixel explicitly,
but foreseing all possible configurations. These are only 4, due to the fact that
the current pixel (i, j) can or cannot be merged either with the pixel (i − 1, j),
or with the pixel (i, j − 1). We obtain thus an algorithm with four precodes (see
Figure 11).
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(a) (b) (c) (d)

Fig. 11. 4 precodes

Figure 12 illustrates for each of the four cases of Figure 11 the corresponding
operations to do on the G-map (Figure 12 .e). In the case (a), no dart is modified,
only the coordinates of the vertex are changed, while the creation of a full pixel
and the application of two merging operations have created and destroyed eight
darts. For the case (d), eight darts are effectively created, and four are 2-sewn.
For cases (b) and (c), identical up to the orientation, four darts are created
and two are 2-sewn. The theoretical complexity in time does not change, but in
practice, the time is highly reduced because, contrarily to the previous algorithm,
that darts that are near be destroyed by merging are not created.

A third optimization consists in grouping steps based on 4 precodes and steps
of edges merging. It requires then to consider the 12 studied cases by [Fio96].
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(e)

(a) (b)

(c) (d)

Fig. 12. Operations on the G-maps related to the 4 precodes

We can at the same time examine 3 additionnal precodes, corresponding to
cases where regions are not 2-manifolds, these cases are examined exhaustively
in [Pen97].

4.3 Inclusion tree

The algorithm of internal and external dart computation can be improved by
indicating that all darts of a contour are external as soon as a first external dart
has been met. But so, the inclusion tree remains implicit.
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Fig. 13. Example of inclusion tree

In order to construct effectively an inclusion tree (an example of an inclusion
tree is shown Figure 13), it is necessary to scan again the G-map connected
component by connected component (see Algorithm 2). Algorithm 2 starts by
assigning the outside region (line 1) (so-called infinite region) as root of the tree.
Then it calls the AddRegionsFilles recursive procedure (line 3) which marks
recursively the regions enclosed in others and so can add the corresponding
vertex to the inclusion tree. This procedure starts with the first dart of the map
(line 1). This dart is necessarily a dart of an internal contour of the region R.
By applying α2 (line 2) the dart of an external contour of an enclosed region in
R is recovered. From this dart the connected component it belongs to is scanned
by applying in any order any number of times involutions α0, α1, α2 (line 3). All
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Algorithm 2: Creation of the inclusion tree

Input: Image I with a connected component labeling;
The G-map G of the image I

Output: Inclusion tree T O
1 R←∞;
2 A ← R;
3 AddRegionsFilles(A,R);

Procedure AddRegionsFilles(T O: an inclusion tree, R: root of the
tree)

if G 6= ∅ then
1 b← first dart of G;
2 b′ ← α2(b);
3 foreach darts bext of the connected component of b′ do
4 let Rf be the region of bext;
5 if Rf was not already met then
6 to add an edge R→ Rf to A;

to suppress the dart bext of G;
foreach regions Rf direct descendent from R in A do

AddRegionsFilles(A,Rf);

region Rf met during this scan lead to the creation of an edge R → Rf (lines 4
to 6 of the AddRegionsFilles procedure).

5 Border map of regions of an 3D image

The computation of the inclusion tree given to Section 4.3 stays in any dimension,
with no modifications. Therefore we keep it to extend the construction of the
G-map.

The first algorithm is extended easily to dimension 3 for an image of n1 ×
n2 × n3 voxels. The creation of the initial 2-G-map is replaced by the one of a
3-G-map of n1 × n2 × n3 voxels. Faces merging is replaced by volumes merging,
edges merging by faces merging, and an edges merging is added.

The first optimization is translated just as merely: it is sufficient to replace
the two possible faces merging by three possible volumes merging along the
three faces of the current voxel in contact with the 3-G-map under construction.
Figure 14 shows an example of merging: one new cube is created (a), 3-sewn
along three of its faces (b), then the merging with the cube to the left is done
(c).
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(a) (b) (c)

Fig. 14. Example of volumes merging

Fig. 15. 8 precodes for the construction of a 3-G-map

The extension of the second optimization consists only in replacing the
4 pixels-based precodes by 8 voxels-based precodes (see Figure 15 and Algo-
rithm 4), this is due to the fact that each of the three faces of the current voxel
in contact with the 3-G-map are either deleted or are not volumes merging.

Algorithm 4: Algorithm with 8 precodes

Input: Image I of n1 × n2 × n3 voxels
Sortie: The corresponding 3-G-map

Create a first cube corresponding to the first voxel;
foreach voxel do

Apply operations related to the current precode to 3-G-map;

foreach edge of the obtained 3-G-map incident to only two faces f, f ′ do
Merge the faces f and f ′ (Figure 16);

foreach Incident vertex to two edges e and e′ not on the same line do
Merge the edges e and e′;

The faces merging (illustrated Figure 16), consists to apply twice the pre-
viously described one for the dimension 2, whereas in 2D the merging edges is
carried on couples of darts (one for each of the two faces), in 3D the merging is
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(a) (b) (c)

Fig. 16. 3D faces merging

carried on 4-tuple of darts (one couple for every double-face). Therefore the first
three algorithms are easily extended to 3D.

The extension to nD of the 3D algorithm above consists in replacing the 8
precodes by 2n precodes of 4 cubes of dimension n, and to replace the volumes,
faces and edges merging by the merging of n-,(n − 1)-,..., 1-cells. This extension
may have a convenient in 4D to process animated sequences of 3D images.

The extension of the last optimization is more difficult. A first approach
consists in enumerating all possible precodes.

Let Nd be the number of precodes to the dimension d, Nd can be computed
thanks to numbers Sk

n, called numbers of Stirling of first order. Sk
n gives the

number of surjections of a set of n elements in a set of k elements. Sk
n

k! gives
then the number of partitions in k subsets of a set of n elements. In general
n = 2d , it is then sufficient to add partitions of one set, two, ..., n sets to

get the number of precodes. One has therefore: Nd =
∑2d

k=1
Sk

2d

k! knowing that

Bn =
∑n

k=1
Sk

n

k! where Bn are Bell numbers given by the recurrence formula:
Bn =

∑n−1
i=0

Bi×ns!
i!×(n−i)! with B0 = B1 = 1.

We can easily compute the number Nd of precodes for the dimension d. In
2D we have the 15 precodes (the 12 precodes of Figure 7 + the 3 cases of no
manifold). In 3D, we get:
1 precode if only one color is present, 127 precodes for 2 colors, 966 precodes
for 3 colors, 1701 precodes for 4 colors, 1050 precodes for 5 colors, 266 precodes
for 6 colors, 28 precodes for 7 colors, 1 precode for 8 colors, thus a set of 4140
precodes (including cases of no-manifold)!

In 4D there are more than 10 000 millions of precodes, so that even without
the non-manifold cases we cannot to consider an optimized solution based on
precodes as the one for the GTF algorithm in [Fio96].

An approach under study for the 3D case consists in decomposing the process
for eight voxels in the 2×2×2 window into three processes of 4 voxels, analogous
to the 2D precodes. Thus the number of configuration are limited to 36, with
the possibility, to do the merging of edges in the same steps.

The exhaustive process of precodes is optimal in time, but impracticable.
On the contrary, the solution with 8 precodes is simple, but requires to create
numerous darts that will be immediately destroyed by merging. The solution of
the 36 precodes seem to be able to be a good compromise between the difficulty
of implementation work and performances in time.
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6 Discussion

We indicate here what brings on our algorithm as opposed to the drawbacks
evoked for the computation of a FTG in Section 3. Our algorithm constructs
a G-map of closed contours in one first scan, and then the inclusion tree in
the second. All the time during the construction process, the G-map describes
the part of the image already scanned, and bring on our algorithm to be well-
adapted to process infinite images. The algorithm of computation of a GTF
does not possess this characteristic. Indeed the current map is not closed (darts
corresponding to the closing are in the auxiliary list) but it is the price to pay
in order to have an optimal algorithm.

Note that the second scan which build the inclusion tree takes place on the
G-map, and does not require the image any more. But it requires a time propor-
tional to the number of darts of the G-map, whereas the number of operations
done by the one of [Fio96] is weaker since it is proportional to the number of
contours. The counterpart is that the latter creates only an implicit inclusion
tree, whereas the marking of darts allows to create an explicit inclusion tree.

The proposed 2D algorithms provides 2-g-maps with embedded straight darts,
so it allows immediate display of the map. The counterpart is that the number
of darts is bigger than in the GTF case. To get a map having a dart number
analogous to the FTG, it is sufficient to avoid the test of alignment. Besides, this
characteristic implies in 3D that only the G-map and the current voxel have to
be memorized, whereas, without embedding, two slices of the image have to be
kept in memory in addition. Moreover, the 2-G-map with straight darts allows
to analyse the three cases where the regions are not manifolds.

7 Application

The use of G-maps contributes to simplify and to generalize the algorithm. For
the sake of performance in space, algorithms can be translated in terms of maps.
Due to the actual memory capacity of workstations, this translation seems to be
necessary as soon as we have 3D images.

The 2D algorithm provides performances comparable in time to the [Fio96]
one. An image processed in 0, 57s by the latter, requires 0, 71s for our algorithm,
which however provides in addition the inclusion tree and an embedable map.
From a segmentation of a 512 × 512 × 192 scanner image the computation of
the border map of a stomach (Figure 17.a) requires 496s and 22576 darts. The
one of the border map of lungs (Figure 17.b) requires 538s and 135466 darts.
The different optimizations have all been written and tested in CaML. This
implementation allowed to measure gains in time for each optimization stage.
The final version is written in C.

8 Conclusion

The use of results inf topology-based geometric modeling has allowed to pro-
pose for image analysis a modeling of nD image by a border map. Successive
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(a) Stomach (b) Lungs

Fig. 17. 3-maps of a stomach and a lung

optimizations of a naive algorithm have shown different aspects of the problem
of the construction of a border map of an image allowing in the same time to
simplify, optimize and extend the algorithms to nD.

[Fra95,Fra96] showed that concepts and methods developed in topology-
based modeling self-apply to discrete geometry. The topology-based modeling
often privileges the cellular models (in 2D, faces have any number of sides, and
in 3D volumes have any number of faces), whereas the discrete geometry and
image analysis are led by nature to simplicial structures [May67,LL95].

The experiments in 3D show that the algorithm is efficient in time, but that
the size of images is strongly limited by the memory space available. It comes
from the fact that cellular structures used are too general. They do not take into
account that all cells are orthotrop. It seems to us that in order to partially clear
of this limitation hybrid structures (i.e. simplicial for cells of some dimensions
and cellular for others) should be used.

More generally, using general cellular and simplicial structures should allow
not only to solve problems of structuring information in image analysis, and
especially in 3D more comfortably than with ad hoc structures, but also to unify
methods of structuration actually different as the polyedrisation proposed by
[KIE96], border map presented here and the different levels of representations
proposed by [ADFQ96].
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Fra95. J. Franşon. Discrete combinatorial surface. Graphical Models and Image
Processing, 57(1):20–26, january 1995.
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