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Abstract. Thinning of a binary object is an iterative layer by layer
erosion to extract an approximation to its skeleton. In order to pro-
vide topology preservation, different thinning techniques have been pro-
posed. One of them is the directional (or border sequential) approach
in which each iteration step is subdivided into subiterations where only
border points of certain kind are deleted in each subiteration. There
are six kinds of border points in 3D images, therefore, 6–subiteration
parallel thinning algorithms were generally proposed. In this paper, we
present two 8–subiteration algorithms for extracting “surface skeletons”
and “curve skeletons”, respectively. Both algorithms work in cubic grid
for (26,6) images. Deletable points are given by templates that makes
easy implementation possible.

1 Introduction

Thinning is a common pre–processing operation in pattern recognition. Its goal
is to reduce binary objects to their “skeletons” in a topology–preserving way [4].
Border points of the binary object that satisfy certain topological and geometric
constraints are deleted in iteration steps. Deletion means that 1’s (object ele-
ments) are changed to 0’s (background elements). The entire process is repeated
until only the “skeleton” is left.

A thinning algorithm does not preserve topology if
– any object in the input picture is split (into two or more ones) or completely

deleted,
– any cavity in the input picture is merged with the background or another

cavity, or
– a cavity is created where there was none in the input picture.

There is an additional concept called hole in 3D pictures. A hole (that dough-
nuts have) is formed by 0’s, but it is not a cavity [4,5]. Topology preservation
implies that eliminating or creating any hole is not allowed.

A simple point is an object point whose deletion does not alter the topology
of the picture [10]. Sequential thinning algorithms delete simple points which
are not end points, since preserving end–points provides important information
relative to the shape of the objects. Curve thinning preserves line–end points
while surface thinning algorithms do not delete surface–end points.

Parallel thinning algorithms delete a set of simple points. A possible approach
to preserve topology is to use directional strategy; each iteration step is composed
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of a number of parallel subiterations where only border points of certain kind
can be deleted in each subiteration. There are six kinds of border points in 3D
images on cubic grid, therefore, 6–subiteration parallel thinning algorithms were
generally proposed [2,3,6,11,13,15] (with the exception of [12]).

In this paper, 8–subiteration directional algorithms are proposed for curve
thinning and surface thinning. Our approach demonstrates a possible way for
constructing non–conventional directional thinning algorithms.

2 Basic notions and results

Let p be a point in the 3D digital space ZZ3. Let us denote Nj(p) (for j =
6, 18, 26) the set of points j–adjacent to point p (see Fig. 1 (a)). The sequence
of distinct points 〈x0, x1, . . . , xn〉 is a j–path of length n ≥ 0 from point x0 to
point xn in a non–empty set of points X if each point of the sequence is in X
and xi is j–adjacent to xi−1 for each 1 ≤ i ≤ n. (Note that a single point is a
j–path of length 0.) Two points are j–connected in the set X if there is a j–path
in X between them. A set of points X is j–connected in the set of points Y ⊇ X
if any two points in X are j–connected in Y .
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Fig. 1. The frequently used adjacencies in ZZ3 (a). The set N6(p) contains the central
point p and points marked U, N, E, S, W, and D. The set of points N18(p) contains
the set N6(p) and points marked “?”. The set of points N26(p) contains the set N18(p)
and points marked “�”.
The usual 6 directions (b) corresponding to N6(p) and the proposed 8 deletion direc-
tions (c) corresponding to N26(p)\N18(p).

The 3D binary (m,n) digital picture P is a quadruple P = (ZZ3, m, n, B) [4].
Each element of ZZ3 is called a point of P. Each point in B ⊆ ZZ3 is called a
black point and value 1 is assigned to it. Each point in ZZ3\B is called a white
point and value 0 is assigned to it. Adjacency m belongs to the black points
and adjacency n belongs to the white points. A black component (or object) is
a maximal m–connected set of points in B. A white component is a maximal
n–connected set of points in B ⊆ ZZ3.

We are dealing with (26,6) pictures. It is assumed that any picture contains
finitely many black points.

A black point is said to be border point if it is 6–adjacent to at least one white
points. (Note that this definition is correct only for the special cases m = 26 and
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m = 18.) A border point p is called U–border point if the point marked by U
in Fig. 1 (a) is white. We can define N–, E–, S–, W–, and D–border points in
the same way. The set N6(p) are subdivided into three kinds of opposite pair of
points (U,D), (N,S), and (E,W).

A black point is called simple point if its deletion does not alter the topology
of the picture. We make use the following result for (26,6) pictures:

Theorem 1. Black point p is simple in picture (ZZ3, 26, 6, B) if and only if all
of the following two conditions hold [9,14]:
1. The set (B\{p}) ∩ N26(p) contains exactly one 26–component.
2. The set (ZZ3\B) ∩ N6(p) is not empty and it is 6–connected in the set

(ZZ3\B) ∩ N18(p).

We need to consider what is meant topology preservation when a number of
black points are deleted simultaneously. Ma [7] and Kong [5] gave sufficient condi-
tions for parallel reduction operations of 3D (26,6) pictures. Those require some
additional concepts to be defined. Let P be a picture. The set D = {d1, . . . , dk}
of black points is called a simple set of P if D can be arranged in a sequence
〈di1 , . . . , dik

〉 in which each dij is simple after {di1 , . . . , dij−1} is deleted from
P, for j = 1, . . . , k. (By definition, let the empty set be simple.) A unit lattice
square is the set of four corners of a unit square embedded in ZZ3; a unit lattice
cube is the set of eight corners of a unit cube embedded in ZZ3.

Theorem 2. A 3D parallel reduction operation is topology preserving for (26,6)
pictures if all of the following conditions hold [5,7]:
1. Only simple points are deleted.
2. If two black corners, p and q, of a unit lattice square are deleted, then the

set {p, q} is simple.
3. If three black corners, p, q, and r, of a unit lattice square are deleted, then

the set {p, q, r} is simple.
4. If four black corners, p, q, r, and s, of a unit lattice square are deleted, then

the set {p, q, r, s} is simple.
5. No black component contained in a unit lattice cube can be deleted completely.

3 The new algorithms

Each 6–subiteration directional thinning algorithm uses the six deletion direc-
tions that can delete certain U–, D–, N–, E–, S–, and W–border points, re-
spectively [2,3,6,11,13,15]. In our 8–subiteration approach, three kinds of border
points can be deleted in each subiteration. The 8 directions are denoted by
USW, UWN, UNE, UES, DSW, DWN, DNE, and DES. Note that each
triple corresponds to the three points that are 6–adjacent to the point p and
18–adjacent to each others (see Fig. 1 (a)). The usual 6 and the proposed 8
deletion directions are illustrated in Fig. 1 (b) and Fig. 1 (c), respectively.

Suppose that the 3D (26,6) picture to be thinned contains finitely many
back points. Therefore, it can be stored in a finite 3D binary array. (Outside
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of this array every point is white.) Reduction operations associated with the
8 subiterations are called deletion from USW, ... , deletion from DES. We are
now ready to present the 8–subiteration approach formally.
Input: binary array X that represents the picture to be thinned
Output: binary array Y that represents the thinned picture

8-subiteration thinning(X,Y )
begin

Y = X;
repeat

Y = deletion from USW(Y );
Y = deletion from DNE(Y );
Y = deletion from USE(Y );
Y = deletion from DNW(Y );
Y = deletion from UNE(Y );
Y = deletion from DSW(Y );
Y = deletion from UNW(Y );
Y = deletion from DSE(Y );

until no points are deleted ;
end.

Note that choosing another order of the deletion directions yields another
algorithm. The proposed order shows a kind of symmetry, therefore, the thinned
objects are in their geometrically correct positions (i.e., the “middle” of the
original objects).

Now, the successive parallel reduction operations are to be given. We pro-
pose a curve thinning algorithm and a surface thinning algorithm. The deletable
points (that are simple points and not end points) are given by sets of 3 × 3 × 3
matching templates. A black point is deletable if at least one template in the set
of templates matches it.

We now give the characterizations of the curve–end points and the surface–
end points.

Definition 3. A black point p is a curve–end point in a picture (ZZ3, 26, 6, B) if
the set (N26(p) ∩ B)\{p} is singleton (i.e., p is 26–adjacent to exactly one black
point).

Definition 4. A black point p is a surface–end point in a picture (ZZ3, 26, 6, B)
if the set N6(p)\B contains at least one opposite pair of points (see Fig. 2).
(Note that each curve–end point is a surface–end point.)

Note that different surface–end point characterizations have been proposed
by various authors [1,2,3,6,8,15].

A set of seven base templates Bc
USW is given by Fig. 3. The set of templates

T c
USW is assigned to the first subiteration of our curve thinning algorithm. It can

be get from the base templates by the following rules:

1. if template t ∈ Bc
USW, then t ∈ T c

USW,
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Fig. 2. The three configurations assigned to surface–end points. Every position marked
“•” is a black point, every position marked “◦” is a white point, and every “·” (“don’t
care”) may be either a black or a white point.

2. if template t1 ∈ T c
USW and template t2 is the reflected version of t1 with

respect to the three symmetry planes illustrated in Fig. 4, then t2 ∈ T c
USW.
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Fig. 3. The set of 7 base templates Bc
USW assigned to the first subiteration of curve

thinning. Notations: every position marked “•” matches a black point, every position
marked “◦” matches a white point, every “·” (“don’t care”) matches either a black or
a white point, at least one position marked “x” matches a black point.

It is easy to see that T c
USW contains 22 templates for deleting certain U–, S–,

or W–border points that are not curve–end points. Note that template positions
marked “x” are used for preserving curve–end points. These templates define the
parallel reduction operation deletion from USW. The deletion rules assigned to
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the other seven subiterations can be derived from the appropriate rotations and
reflections of the templates in T c

USW.
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Fig. 4. The three symmetry planes for reflecting templates. Points belonging to the
given planes are marked “∗”.

The set of four base templates Bs
USW given by Fig. 5 belongs to the first

subiteration of our surface thinning algorithm. The whole set of templates T s
USW

can be derived in the same way as it was in the case of the curve thinning
algorithm (with the help of the 3 symmetry planes). It is easy to see that T s

USW

contains 15 templates for deleting certain U–, S–, or W–border points that
are not surface–end points. Note that template positions marked “x” and “y”
are used for preserving surface–end points. The sets of templates assigned to
the other seven subiterations can be derived from the appropriate rotations and
reflections of the templates in T s

USW. Mention is to be taken that the set of
templates T s

USW is derived from T c
USW by changing the end point criterion.

Both sets of templates (T c
USW and T s

USW) were constructed for deleting some
simple points which are neither end points nor extremities of curves/surfaces.
Note that the same template is included in more sets of templates: for instance,
template B3 in Bc

USW is in sets of templates assigned to deletion directions
UWN, UNE, and UES, too.

4 Discussion

Different shapes of objects have been tested by the new algorithms. Here we
present only three examples (see Figs. 6–7).

The behavior of the proposed algorithms has been also investigated. Here
we present an example in Fig. 8 for thinning a “noise–free” solid doughnut of
size 40 × 40 × 20 and its noisy version. Noise was added to the boundary (i.e.,
some border points are deleted from the original noise–free object and some
white points 26–adjacent to a border point are changed to black). Note that we
consider a model of noise which consists of deleting and adding simple points.
We can state that the proposed curve thinning algorithm is robust under noise.
Unfortunately, the 8–subiteration surface point algorithm is rather sensitive to
boundary noise, since a noisy boundary may contain a number of surface–end
points to be preserved.
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Fig. 5. The set of base templates Bs
USW is derived from Bc

USW. It is assigned to the
first subiteration of surface thinning. Notations: every position marked “•” matches a
black point, every position marked “◦” matches a white point, every “·” (“don’t care”)
matches either a black or a white point; at least one position marked “x” matches a
black point, at least one position marked “y” matches a black point.

The proposed algorithms go around the object to be thinned according to
the 8 deletion directions. One can say that the 8–subiteration approach seems
to be slower than the 6–subiteration one. It is not necessarily true. Suppose that
our sample object is a cube of size 16 × 16 × 16. An iteration step of any 6–
subiteration algorithm can generate a 14 × 14 × 14 cube from the original one.
A cube of size 8 × 8 × 8 is created by the 8–subiteration algorithms. According
to our experiments, less iteration steps are required by the proposed algorithms.

The proposed 8–subiteration algorithms are topology preserving for (26, 6)
images. It is sufficient to prove that reduction operation given by the set of
templates T c

USW is topology preserving. If the first subiteration of the curve is
topology preserving, then the other seven ones are topology preserving, too, since
the applied rotations and reflections of the deletion templates do not alter the
topological properties. Therefore, the entire curve thinning algorithm is topology
preserving, since it is composed of topology preserving reductions. The surface
thinning algorithm is topology preserving, too, since its subiterations can delete
less kinds of border points.

Instead of using Theorem 2, we propose the following more general theorem
that provides new sufficient conditions for 3D parallel reduction operations to
preserve topology.

Theorem 5. Let T be a parallel reduction operation on (26, 6) pictures. Then
T is topology preserving, if for all picture P = (ZZ3, 26, 6, B), all of the following
conditions hold:



332 Kálmán Palágyi and Attila Kuba
            

            

Fig. 6. Thinning of two synthetic objects (left); the results of surface thinning (centre);
the results of curve thinning (right). (Cubes represents black points.)

1. for all points p ∈ B that are deleted by T and for all sets Q ⊆ (N18(p)\{p})∩
B that are deleted by T , p is simple in the picture (ZZ3, 26, 6, B\Q); and

2. no black component contained in a unit lattice cube can be deleted completely
by T .

Proof. (sketch) We show that condition 1 of Theorem 3 implies conditions 1–4
of Theorem 2.

It is obvious that the set N18(p) contains any unit lattice squares in which p
is a corner. Point p is to be regarded as the last element of the simple sequence
of corners while the preceding ones are in set Q. If Q = ∅, then we get Condition
1 of Theorem 2.

Condition 2 of Theorem 3 corresponds to condition 5 of Theorem 2. ut
In order to prove both conditions of Theorem 3, we classify the elements of

templates and state some properties of the set of templates T c
USW.

The element in the very centre of a template is called central . A non–central
template element is called black if it is marked “•”. A non–central template
element is called white if it is marked “◦”. Other non–central template element
which is not white and not black, is called potentially black . A black or a poten-
tially black non–central template element is called non–white.

Let us state some properties of the set of templates T c
USW.
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Fig. 7. Thinning of a ventricle extracted from a (greyscale) 3D MR brain study (left);
the result of surface thinning (centre); the result of curve thinning (right).

Observation 6. Let us examine the configuration of 3×3×3 points illustrated
in Fig. 9. If point q is black or each point marked r is white, then black point p
cannot be deleted by T c

USW.

Observation 7. Let us examine the configurations of 3×3×3 points illustrated
in Fig. 10. If both points p and q are black and q can be deleted by T c

USW, then
point r is black and each point marked s is white.

Observation 8. Let us examine the configurations of 3×3×3 points illustrated
in Fig. 11. If both points p and q are black and q can be deleted by T c

USW, then
one of the following cases holds:
– point r1 is black and both points marked s1 are white and both points

marked s2 are white and both points marked s3 are white;
– point r2 is black and both points marked s1 are white and both points

marked s4 are white and both points marked s5 are white;
– point r3 is black and each point marked si (i = 1, . . . , 5) is white;
– both points r1 and r2 are black and both points marked s1 are white and

both points marked s2 are white;
– both points r1 and r2 are black and both points marked s1 are white and

both points marked s4 are white.

Observation 9. Let us examine the configuration of 3×3×3 points illustrated
in Fig. 12. If black point p can be deleted by T c

USW, then at least one point
marked q is black.

Theorem 10. Reduction operation given by the set of templates T c
USW is topol-

ogy preserving.

Proof. (sketch) It is easy to see that each template in T c
USW deletes only simple

points of (26,6) pictures.
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Fig. 8. Noise sensitiveness of the proposed algorithms. Thinning of a “noise–free” solid
doughnut and its noisy version (left); the results of surface thinning (centre); the results
of curve thinning (right).
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Fig. 9. Configuration assigned to Observation 1.

The first statement is to verify that there exists a 26–path between any two
non–white positions (condition 1 of Theorem 1). It is sufficient to show that
any potentially black position is 26–adjacent to a black position and any black
position is 26–adjacent to another black position (if the template contains at
least two black positions). It is obvious by careful examination of the templates
in T c

USW.
Let us examine condition 2 of Theorem 1. To prove it, it is sufficient to show

for each template in T c
USW
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Fig. 10. Configurations assigned to Observation 2.
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Fig. 11. Configurations assigned to Observation 3.

1. that there exists a white position 6–adjacent to the central position,
2. that for any two white positions 6–adjacent to the central position p are

6–connected in the set of white positions 18–adjacent to p,
3. and that for any potentially black position 6–adjacent to the central position

p, there exists a 6–adjacent white 18–neighbour which is 6–adjacent to a
white position 6–adjacent to p.

The three points are obvious by a careful examination of the templates in
T c

USW.
It can be stated that the value of any point coincides with a potentially black

template position does not alter the simplicity of p. Therefore, it is sufficient to
deal with sets Q containing points that can be deleted by T c

USW and coincide
with black template positions. It is easy to see with the help of Observations 1–4
that deletion of such sets Q does not alter the simplicity of point p. Therefore,
Condition 1 of Theorem 3 is satisfied.

Condition 2 of Theorem 3 can be seen with the help of Observation 1. ut
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