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Abstract. Keller’'s Geometrical Theory of Diffraction [§] allows to ren-
der scenes with dihedron diffraction account. The Diffraction algorithm
presented in [2] is too slow, since its complexity is linear with respect
to the number of dihedra. In order to accelerate it, we propose to re-
duce the complexity with a discrete based algorithm. Considering that
diffraction mainly occurs inside the n-first FRESNEL’s ellipsoids [11]], we
can limit the diffraction computation to dihedra inside such ellipsoids.
For efficiency we propose to use an ellipsoid approximation, the discrete
tube. We describe two different algorithms for computing such a discrete
tube. Their results are discussed, and show an important acceleration
compared to the previous method.

Keywords: Discrete Algorithm — Rendering techniques — Diffraction —
GTD — Ray-Tracing

1 Introduction

Diffraction is the electromagnetic phenomenon which explains the wave scat-
tering in object vicinity [3]. At visible wavelength this effect is generally of low
importance and is usually neglected. Some physical simulations however imply to
compute the wave propagation as accurately as possible, e.g. in avionic system,
or in architectural design.

Since for high wavelengths diffraction is of great importance, an other demand
comes from wireless phone providers : to ensure good communications at every
location in their covering areas, they need to put many transceivers in cities.
In order to reduce their number, they have to compute the transmission quality
between a fixed transmitter and a mobile one (a wireless phone). Their goal is
to minimise the fixed transceiver number while keeping a good city coverage.

In order to render image synthesis scenes with diffraction account, we have
proposed [2] a solution based on KELLER’s Geometrical Theory of Diffraction [§].
This solution allows to compute energy transport with diffraction account not
only at the camera like in NAKAMAE’s method [I0], but also at each scene points.
In image synthesis this solution allows for instance to compute shadows with
more precision. Nervertheless our solution required an important computation
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Fig. 1. Ray classification : direct rays are continuous, reflected rays are dotted

time : at each point, computation complexity is linear with respect to the number
of dihedra. Rendering complex scenes implies high computation time. Since the
diffraction mainly occurs in the n-first FRESNEL’s ellipsoids, we propose to use
a regular grid and limit dihedron edge diffraction to a discrete tube which is
the parallelepipedic cover of an ellipsoid. We choose to use such a tube since
the computation of a discrete ellipsoid is much more complex and appears to be
superfluous.

After describing two algorithms that compute such discrete tubes, we present
some results and discuss the acceleration factors we have obtained.

2 The problem

2.1 Diffraction and Ray-Tracing

The Ray-Tracing algorithm [12] is based on classical optics which is a geometric
theory where light is propagated in vacuum or in an homogeneous medium along
straight lines called rays. The foundation of this theory is FERMAT’s principle
which assumes that light path lengths are extrema. A ray classification can be
made by separating direct rays, which are straight lines between the source points
and the receiver points, and reflected rays which are straight lines between the
reflection points and the receiver points. Thus light paths can be composed of a
single direct ray, or a direct and one or more reflected rays (cf. fig. [d).

Classical optics does not allow to compute a realistic light propagation. In-
deed the diffraction phenomenon, which explains light scattering in an object
vicinity, cannot be rendered this way. Other theories, like KIRCHHOFF’s [3], or
LORENTZ’s microscopic one [7], allow to include such phenomena into simula-
tions. They imply however the implementation of a new algorithm class, that
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produces results at a cost of a very large computation time. Our experiences
have shown that they have a very bad convergence (so computation time is ex-
ceedingly large) and need high floating point precision. Therefore they can not
be used directly in image synthesis because of their complexity.

We have chosen an other approach in order to produce realistic images. In-
deed, the introduction of the diffraction phenomenon in the ray-tracing algo-
rithm [2] is based on KELLER’s Geometrical Theory of Diffraction (or GTD) [§]
[A]. This theory extends the Geometrical Optics with a new class of rays, the
diffracted rays, which are emitted by points localized on the object outline called
the diffraction points. The foundation of this model is the extension of FERMAT’s
principle. It assumes that light paths, which can be composed of a direct ray,
or a direct and a combination of reflected rays and diffracted rays, still have ex-
tremum lengths. With a direct application of the extended FERMAT’s principle,
such paths can be found by minimising the light paths for simple geometrical
shapes, like dihedra [2].

With this theory, the diffraction treatment can be added into the ray-tracing
algorithm [12]. More precisely, we can compute the direct diffracted illumination
at a point by finding all the diffracted paths (with only diffraction points, no
reflection point) between a source point and a receiver one. This computation is
done in the WHITTED’s shade [12][6] function, the goal of which is to evaluate
the radiance received at a given point.

2.2 Complexity of the Diffraction Algorithm

The Diffraction Algorithm [2] can be written as :

1 For all ordered combination of n dihedron edges do
2 Compute the corresponding light path
8  If this path exist

4 Compute the carried radiance
5  EndIf
6 EndFor

Fig. 2. The diffraction algorithm

The main advantage of such a solution is to be faster than a basic Monte-
Carlo approach based on KIRCHHOFF’s Theory [3]. However, the use of KELLER’s
theory implies large computation even with low complexity scenes. The profil-
ing of our diffraction algorithm shows that we spend an important part of the
time in the search of diffracted paths. As for WHITTED’s ray-tracing algorithm,
the complexity is directly related to the number of scene objects. This appears
obvious if we consider the first line of the diffraction algorithm (fig. 2)). In order
to produce realistic images with diffraction account, we have to accelerate this
algorithm.



416 Lilian Aveneau, Eric Andres, Michel Mériaux

The first idea is to use a similar acceleration method than for the Ray-
Tracing algorithm, i.e. an algorithm based on a spatial structure (e.g. octree,
BSP, regular grid ...). Such an algorithm works for the classical Ray-Tracing
because the light transport between two reflection points is a straight line. In
the case of diffraction computations, the light transport between two points is
more complex. Therefore this method can not be used directly in our diffraction
algorithm.

Our idea is to search only for the diffraction paths that are inside an ellipsoid.
Indeed with the HUYGENS-FRESNEL construction [3], it can be shown that the
main part of the electromagnetic energy is propagated into the n-first FRESNEL’s
ellipsoids (95% in the first one). Moreover, it is easy to see that the GTD formu-
lation keeps these properties. In our diffraction algorithm, we propose to limit
the computations between a point source and a receiver point to paths that are
strictly inside such an ellipsoid. This can be done since we have the following
restriction : it is only necessary to consider path parts with no reflection point ;
indeed, in this case such a path can transport a very important radiance whereas
at least one of these points are not in the first ellipsoids.

2.3 Towards a discrete solution

We have seen that we can limit diffraction computation to dihedra that are inside
an ellipsoid. This implies a small error on the received radiance, but we assume
that, if we take for instance the ten first FRESNEL’s ellipsoids, this error will
be invisible for the human eye. The naive method for such a limitation is based
on the analytical finding of the intersection of a dihedron and such an ellipsoid.
There are two reasons that make it a bad solution. Firstly it implies to work
with all the dihedra, so the complexity will be roughly the same than for the old
Diffraction Algorithm. Secondly the cost of the analytical intersection between
a line and an ellipsoid is close to the cost of the algorithm which computes and
verifies the existence of a diffracted path. Our goal is to work with as few dihedra
as possible in order to reduce the diffraction treatment complexity.

We thus propose to store all the dihedra into a regular grid. This may allow
us to efficiently find those that are important in the computation of the light
propagation between two points. By finding the intersection of the ellipsoid and
the regular grid, we will reduce the number of dihedra involved in the diffraction
transport. Thus, we will get an acceleration for our diffraction algorithm.

Our problem can be sumed up as the ability to compute the intersection of
an ellipsoid and a regular grid as fast as possible. This problem is equivalent
to finding the most efficient discretization of an ellipsoid. Because our goal is
to produce an acceleration for the diffraction algorithm, instead of computing a
discrete ellipsoid, we propose to compute a discrete parallelepipedic cover that
we call the “discrete tube”. This is simpler to compute and thus faster, and it
is easy to see that this does not mean more errors in the diffracted radiance
computation since we may only get more dihedra, and thus more precision than
with the actual ellipsoid.
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3 The discrete tube

In this section we present two algorithms that allow us to compute such a tube.
Both their complexities are quite similar, but the second one is slightly faster.
However a modified version of the first algorithm could be used for the accelera-
tion of beam tracing [5]. These algorithms are based on the efficient computation
of a 3D six-connected line [4].

3.1 First algorithm : Discrete Line Scanning (DLS)

The main idea here is to construct discrete rectangles which have to be, firstly,
centered on each voxel of a 6-connected discrete line and, secondly, orthogonal
to this line. If we do that for all the voxels of a 6-connected discrete line segment,
we obtain a discrete tube. For this construction we have to define the discrete
plane that will become the support of such rectangles. As we will see later, we
choose to use the naive plane, which is a particular case of the discrete analytical
plane [T, for an efficient rectangle construction :

Definition 1. (8D Discrete analytical plane [1]) A 3D discrete analytical plane
P = Psy(ag,...,as,w) is the set of points X = (1,2, 23)" € Z* that verify this
equation :

3
0<ag +Zaixi < w,
i=1

where w € IN" is called the arithmetical thickness, (a1, s, a3) € Z3 are called
the coefficients, ag € Z is called the translation constant of the plane, with
ged(ag, ag, a3) = 1.

Definition 2. (Naive plane [1]) A 3D plane is called a 3D naive plane if w =
maxizli.,3(|ai|).

Such a naive plane has an interesting property that will ensure we do not
miss any discrete tube voxel. Indeed, a proposition from E. ANDRES states that
the discrete 3D planes (and so the 3D naive planes) tile the space y/ Al

Proposition 1. (Tiling of Z* [1])

“+o00
ZB — H—J P3(a0+tw,a1,a27a3vw)'

t=—o00

Moreover, since 3D planes do not have 6-tunnels, by scanning the voxels of the 6-
connected line, we ensure that we do not miss some planes, and so some discrete
tube voxels.

All these theoretical bases allow us to write our algorithm. After an initialisa-
tion stage, an incremental part does the scanning of the discrete 3D line between
the transmitter point E and the receiver point R.
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Initialisation stage In the stage, we first have to initialize the computation
of the line segment between the points E and R. This is equivalent to the well-
known algorithm for drawing such a discrete line [4].

Next we continue with the preparation of the computation of the successive

parallel naive planes P;. We thus determine the first voxel Vy = (29,29, 29)7
that contains the point F.
P, is the naive plane perpendicular to the direction ER which includes VW :
its coefficients (a1, a9, a3) are in a first step set to the discrete coordinates
(a,b,c) of the vector ER ; in a second step they are reduced in such a way that
ged(aq, ag, a3) = 1. The translation coefficient of Py is easy to compute since
the voxel V; belong to Py ; indeed we have af = — Z?=1 a;x;. The arithmetical
thickness w of Py is computed according to the definition [2l.

Incremental stage This stage is based on the 3D 6-connected discrete line
construction.

For each voxel V; of our discrete line £, we compute the naive plane P;
which, firstly, contains V;, and, secondly, is parallel to the first naive plane P,
defined abovdll. This plane has the same coefficients than Py. It differs only by
its translation coefficient o) (see proposition [I). We have :

Vi>0, af = af '+ w
with

si— JLitVi & P
1 0 otherwise.

If the intersection of the naive planes P; and P;y; is null, we have to compute
the current rectangle. Assuming that the largest coefficient of our naive planes
is a1, the rectangle projection on the (y,z)-plane allows us to compute it easil.
The rectangle is centered on the voxel V;. We compute the projected rectangle
width as :

. dR-X—,ﬂ
width = | ——EE
{ IER|]

where dp is the discrete tube diameter, X3 is the x-coordinate of the IR3-vector

E—R), and the braces denote the ceiling functiord. Since the rectangle belongs to
a naive plane, and since the arithmetical thickness w is equal to aq, each pixel of
our projected rectangle leads to its corresponding 3D voxel in a non-ambiguous
manner. We have :

L1t is important to notice that two consecutive naive plane P; and P;y; based on
two consecutive voxels can be identical. So the recursive algorithm has to work both
on the discrete line voxel V; and on the successive naive planes term ¢ defined in
proposition [l

2 Construction is similar with a2 or as equal to max(|aa], |ae|, |as|).

3 The ceiling function IR — Z returns [z] =inf(n € N | n >=z)
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o _ag-y+a3~z+w
= o

where the braces denote the floor functiond. We get all the x-coordinates with a
double loop on the y and z coordinates.

It is important to notice that this method for computing such rectangles works
well since we choose to use naive planes. With a greater arithmetical thickness,
e.g. for standard planes, the previous method cannot be used since for some
couples (y,z) there are more than one solution for x.

3.2 Second algorithm : Discrete Rectangle Scanning (DRS)

The second discrete tube generation algorithm is a variation of the previous one.
The main idea here is to extrude the first rectangle centered at V; along the
6-connected discrete line [4] that passes through the transmitter point F and
the receiver point R.

Initialisation stage It begins as for the DLS algorithm by the definition of the
naive plane Py. We then compute the 6-connected discrete line segment (OP)
which is the translation of the discrete line segment (ER) to the coordinates
system origin (i.e. OP = E_R)) Next we stordd the result in a voxel list £. Such
a voxel list can be considered as a displacement list.

Incremental stage For each voxel of the naive plane Py we compute the voxels
corresponding to the translated line L.

The incremental stage is really easy to implement : this explains that this second
algorithm is a little more efficient than the previous one. An important question
must be asked : did we miss, with this procedure, some voxels of the discrete
tube ? In fact we do not miss any voxel, since we use a 6-connected line and a
naive plane. Indeed the intersection of a naive plane and a 6-connected line is
at least one voxel [I]. Our algorithm can be considered as a rectangle extrusion.
On the contrary, some voxels are identified twice or more. Fortunately it is
not a problem : the regular grid mapping of dihedron edges and the diffraction
treatment imply to mark the edges that are inside a discrete tube. Indeed an
edge can be included in two or more discrete tube voxels, but needs only to be
treated once in the diffraction algorithm.

* The floor fonction IR — Z returns || = sup(n € N | n <= z)

5 A possible way for optimizing an algorithm is to minimize the dynamic memory
allocation. Fortunately it can be noticed that the regular grid size is fixed. Thus it is
possible to allocate once and for all this voxel list memory if we consider the greatest
6-connected discrete line : the maximum number of voxels for such a line is smaller
or equal to sy + sy + Sz, where (Sz, Sy, s») are the side lengths of the grid.
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Algorithm|Total time|Diffraction Computation|Acceleration
Classical 6h 57’ 6h 41’ -

DLS 51 35’ 11.5
DRS 42’ 26’ 15.5

Table 1. Comparison between the three Diffraction Algorithms for the interior scene

Algorithm|Total time|Diffraction Computation|Acceleration
Classical 12h 22’ 12h 18’ -

DLS 3 33” 17 44300
DRS 3’ 33” 17 44300

Table 2. Comparison between the three Diffraction Algorithms for the car scene

4 Discussion

These two algorithms have been implemented in our Ray-Tracing software. For
the discrete tubes diameter d,., we use a function of the ellipsoid diameter, which
depends on the shortest distance d(E, R) between the transmitter point E and
the receiver point R, the wavelength A of the propagated wave (we take the
maximum of the light wavelengths, i.e. A\ = max;(\;) ~ 780 - 107?m), and the
power @ radiated at E :

Vn-@-\-d(E,R)
%R:Hmm 1,{ - J ,

where s is the grid size. We chose such a solution in order to ensure the fact that
we do not miss any continuous tube voxels.

Our experiences show that with n = 1 we obtain a good realism. In order
to ensure to take almost 100 percent of the diffracted radiance in all cases, we
chose to take n = 10 in our implementation (so the ten first ellipsoids). As our
images show (cf. figure [3), this approximation is good since the human eye can
not see any differencd between the first one which is computed with the classical
diffraction algorithm, and the second one which is computed with our spatial
acceleration (DRS and DLS algorithms produce the same results).

The raison d’étre of these two algorithms is to get an acceleration of the
diffraction treatment for a polygonal scene. To study if such an acceleration is
obtained, we tested it on different images. The table [[l shows the results for a
simple scene, the interior scene (see figureB)). In this case the acceleration factors
for our two algorithms are greater than 10. They are relatively small since,
firstly, they are only 346 dihedra, and, secondly, the discrete tube diameters

6 In fact this difference is below 1 percents
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Fig. 3. The interior scene rendered with (top-right) and without (bottom-right) grid
acceleration. We can observe on the wall diffraction by the sun through a shutter. We
can observe on the two right images that there are no difference between the previous
and the new result.

are relatively large. Indeed the diffraction is due to the sun, which has a great
radiance power ; moreover the distances between the transmitter points and the
receiver points are very large since the room lies on earth.

An other test scene (see figure ) is composed of a car in a closed room. The
light transmitter is a lamp inside the room, of relatively poor power (60 Watts).
The scene contains 10476 polygons and 15710 dihedra. As the table Rlshows, our
algorithms produce an impressive acceleration. The reason of such an accelera-
tion is very simple : the power emitted, the distances between the transmitters
and the receivers, and the light power are small ; so the tube diameters are very
small too ; therefore we avoid most of the dihedron edges at each diffraction
computation because the car is a very complex object, composed of more than
ten thousand polygons.

In fact when a scene is composed of many polygons, a regular grid and the
discrete tube algorithm lead to a really important acceleration factor.

In order to choose between the two proposed algorithms in an implemen-
tation, we need to discuss on which is the fastest one. The figure Bl shows the
comparisons of these two algorithms with the interior scene (see figure B]). The
x-axis denotes the grid size. It varies between 1 to 100. An attentive reading
of this figure shows that the DRS algorithm becomes faster than the DLS one
when the grid size becomes larger than 35. Therefore the authors prefer to use
the DRS algorithm for its efficiency. In terms of implementation time, this al-
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Fig. 4. The car scene, composed of 10476 polygons which lead to 15710 dihedra.
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Fig. 5. Computation times for the interior scene for various grid dimension. Image size
is 512 x 512. One ray per pizel. The z-axis denotes the grid size. The y-azis denotes the
computation time, in seconds. The continuous lines denotes the DLS algorithm. The
dotted lines denotes the DRS algorithm.
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gorithm seems also to be the better choice : it is simpler to implement than the
DLS one. The problem of the DRS algorithm behaviour is that we can not use
an infinit grid size since computer memories have limits.

5 Conclusion

Diffraction is an electromagnetic phenomenon usually ignored in image synthesis.
People considered that it was too complex for a low visual importance. Never-
theless some situations imply to render this phenomenon. For that purpose, we
have proposed a solution in [2], that we call the Diffraction Algorithm. This
method has however a major problem : it is very computation time consuming.

In this paper we present two new algorithms that make diffraction in im-
age synthesis available at a reasonnable computation time cost. They are based
on discrete considerations, and their results are quite similar to the classical
Diffraction Algorithm. With respect to this last one, they show an acceleration
factor that can be really large when diffraction is of low importance in the scene.
As a conclusion, it is possible now to include the diffraction treatment into a
Ray-Tracing based software : when the diffraction phenomenon is visible in the
scene, like for instance in the interior scene, our two algorithms produce good
results at a reasonnable cost with respect to the Ray-Tracing cost ; on the other
hand when the diffraction account do not induce any more realism, fortunately
our new algorithms induce a negligible computation time.

Even though we recommend the use of the DRS algorithm, the DLS one can
be extended to produce an acceleration of the pyramidal beam tracing [5]. In
order to do this, and like for a classical Ray-Tracing method, we need to find
the intersection of a pyramidal beam with the first scene object it meets. The
classical method is to test it for all the scene objects. As D. GHAZANFARPOUR
has shown in [5], a better solution is to compute a discrete beam. His method
is not based on the discretization of such a beam, but on a grid manipulation
that handles too many voxels, and so too many object intersection tests. Authors
think that the DLS algorithm can be modified in order to compute such a discrete
beam. An important advantage of such a construction would be to detect when
an object completely occludes the beam : in these cases it is not interesting to
make intersection tests with objects behind the occluder. Moreover this solution
leads to less voxel manipulations, so it may be faster.
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