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Abstract. Precise knowledge of normal vectors to discrete objects is
mandatory in rendering algorithms. This article introduces a new method
for the calculation of normal vectors to a digital object. This technique
relies on discrete geometry theories : the recognition of discrete straight
lines and tangential lines in dimension 2. Results obtained with synthetic
and real objects from medical imagery are presented and commented.

1 Introduction

Well estimating the normal vectors of a digital object is primordial for the sim-
ulation of lighting and special effects in relation with light on digital objects.
But these objects are in general digitized and the normal vectors to volumes are
unknown.

Numerous authors have been interested in the calculation problem of normal
vectors to a digital object by using miscellaneous approaches. A synthesis of
the works undertaken on this subject until 1992 is presented in the article [15].
Since this, other approaches considering the 3D neighborhood of the points has
appeared, one of them [13] uses the volume around the point where the normal
vector is calculated. Another one [10] is based on a generalization of the umbrella
notion [9,4,5,6] at the vertex of a polygonal volume.

The method proposed in this article takes his origin in a DEA practice [8]
and considers that an integer point is represented by a voxel; a cube whose
side is one unit and whose faces are surfels. The neighborhood of each point is
considered according to its regularity, thus plane parts and holes are integrally
rendered without any threshold.

This work introduces a new estimation of the 3D discrete normal vectors
based on the definitions of discrete straight lines and tangential lines in dimension
2 given in [3,2,14,12,11]; to calculate the normal vector at one point to the edge
of a digital object, we use the slices of this object along the three canonical
planes through this point (see Fig. 1). On the outline of each slice, we calculate
the tangential line through the considered point [14] then by combining the 2D
tangential lines obtained (1, 2 or 3) and by applying a vectorial product, we
obtain the 3D normal vector to the point of the voxel object. A surfel approach
is also proposed with a similar method by calculating the normal vector at each
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Fig. 1. Digitized mushroom and its slices

surfel to the edge of the voxel object. Firstly, we recall the results of 2D discrete
geometry necessary for the calculation of the 3D normal vectors. Then, we define
and explicitly give the calculation of normal vectors to any voxel object according
to two methods in 8-connexity for the calculation of a normal vector to a voxel
of the edge then in 4-connexity for a surfel of the voxel object edge. Finally, we
comment the results obtained with synthetic objects and real objects.

2 2D Discrete Straight Lines and Tangential Lines

We present in this section the basic notions of 2D discrete geometry useful for
the determination of 3D normal vectors.

2.1 Discrete Straight Lines

The arithmetical definition of a discrete straight line has been introduced by JP.
Réveillès [12,11] as follows : a discrete straight line whose slope is a

b with
b 6= 0 and a ∧ b = 1, with a lower bound µ, an arithmetical thickness ω, is
the set of points (x, y) of Z2 which satisfies the double diophantine inequation
µ ≤ ax − by < µ + ω, where all parameters are integer.

We call the preceding discrete straight line D(a, b, µ, ω). In the following, we
shall be interested in the naive straight lines which verify ω = sup(|a|, |b|)
and which are 8-connex and, in the standard straight lines which verify ω =
|a| + |b| and are 4-connex (see Fig. 2). In order to simplify the writing, we shall
suppose in the following that the slope coefficients verify 0 ≤ a ≤ b 6= 0.

2.2 Recognition of Discrete Straight Line Segment

Let us consider Σ a segment of D, naive or standard straight line whose char-
acteristics are a, b, µ, ω with 0 ≤ a < b 6= 0 and l is the maximal value of the
segment points on the x axis. Let us suppose that the point M(xM , yM ) (with
xM = l + 1 or xM = l) is added to Σ, is Σ′ = Σ ∪ {M} a segment of the
straight line and, in this case, what are the characteristics a′, b′, µ′? This prob-
lem is solved in [3,2] and relies on some particular points of a discrete straight
line defined hereafter.
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The real straight lines ax−by = µ and ax−by = µ+ω−1 are called leaning
straight lines of the naive discrete straight line D(a, b, µ, ω). An integer point
of these straight lines is called leaning point .

The leaning straight line located above (resp. under) D has the following
equation ax − by = µ (resp. ax − by = µ + ω − 1), it is called upper leaning
straight line (resp. lower leaning straight line) of D. Some leaning points
are particularly important along the recognition of a straight line segment, they
are the ones located at the extremities of the segment whose recognition is in
progress. We note UB (resp. LB) the upper leaning point (resp. lower) whose
value on the x axis is minimal. In the same way, we note UF (resp. LF) the upper
leaning point (resp. lower) whose value on the x axis is maximal (see Fig. 2).

Fig. 2. On the left hand side, the naive straight line D(5, 8,−1, 8) for x ∈ [0, 15]
and on the right hand side, the standard straight line D(5, 8, 0, 13) for x ∈ [0, 15],
the upper leaning points of these straight lines are in dark gray and the lower
leaning points in light gray.

Theorem 1 ([3,2]). Let us consider r(M), the remainder at the point M(x, y)
as a function of D defined by :

r(M) = ax − by

(i) If µ ≤ r(M) < µ + ω, then M ∈ D(a, b, µ), Σ ∪ {M} is a segment of the
straight line D.

(ii) If r(M) = µ − 1, then Σ ∪ {M} is a segment of the straight line whose slope
is given by the vector UBM with UB the upper leaning point of D whose value
on the x axis is minimal.

(iii) If r(M) = µ+ω, then Σ ∪{M} is a segment of the straight line whose slope
is given by the vector LBM with LB the lower leaning point of D whose value
on the x axis is minimal.

(iv) If r(M) < µ − 1 or r(M) > µ + ω, then Σ ∪ {M} is not a segment of a
discrete straight line.

This theorem allows to obtain an incremental algorithm of discrete straight line
segment recognition [3,2] by scanning series of pixels 8 or 4-connex called dis-
crete way . The algorithm in 8-connexity has been adapted by A.Vialard [14]
in order to determine a notion of discrete tangential line .
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2.3 Discrete Tangential Line at a Point to a 2D Curve Line

The discrete tangential line at a point M to a discrete way C is defined [14]
as the longest part of C centered to M which is a segment of a discrete straight
line.

The algorithm of discrete straight line segment recognition centered to a
point is used in order to determine the longest discrete segment centered to M
by adding at each step a point to each extremity. If the couple of added points
does not permit to enlarge the segment, none of them is added.

Addition of a point at the front extremity of a segment of the naive or standard
straight line D(a, b, µ, ω) of the first octant

r = axM − byM ;
If µ ≤ r < µ + ω

If r = µ then UF = M Eif
If r = µ + ω − 1 then LF = M Eif

else
If r = µ − 1 then

LB = LF ; UF = M ;
a = |yM − yUB | ; b = |xM − xUB | ;
µ = axM − byM ;

else
If r = µ + ω then

UB = UF ; LF = M ;
a = |yM − yLB | ; b = |xM − xLB | ;
µ = axM − byM − ω + 1 ;

else
the new point cannot be added to the segment

Eif
Eif

Eif

To add a point at the rear extremity of the segment, the preceding algorithm
must be used by exchanging LF and LB as well as UF and UB.

We define the right tangential line (resp. left) at a point M to a discrete
way C as the longest part of C following (resp. preceding) the point M which is
a segment of a discrete straight line. The calculation of the right (resp. left) tan-
gential lines uses the algorithm to add a point at the front (resp. rear) extremity
of a segment of a naive or standard straight line given above.

3 Calculation of the 3D Normal Vectors at each Point of
a Voxel Object Edge

The calculation of the normal vectors at all points of a voxel object relies on the
study of outlines associated with each point of the object located on the object
slices through the considered point. We call slice in x (resp. y, z) at the
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point M , with M(xM , yM , zM ), the set of points of the object having the same
co-ordinate xM (resp. yM , zM ) (see Fig. 1).

In the following, the slice at a point according to one co-ordinate may be
viewed as an object in two dimensions. The outlines associated with an object
slice are composed of the closed 8-connex series of pixels of the slice edges (see
Fig. 5).

We shall call associated pixel to M the 2D points corresponding to the
projected points of M along the co-ordinate planes. Normal vectors at each point
of the object are calculated as a function of the outlines which these points belong
to.

3.1 Voxel Position on the Edge of the Object

We have voluntarily adopted a realistic viewpoint by wanting to calculate the
best normal vector estimation to obtain an efficient rendering. Thus the voxel
approach, which consist in considering an integer point as a cube with 6 faces,
leads to problems due to the point position on the edge of the object. In the
general case called regular cases, voxels possess 1, 2, or 3 faces called surfels,
not opposite 2 to 2 others, on the edge of the object. In the other cases called
non regular , we find two types of voxel configuration :

– voxels having at least two opposite faces adjacent to the edge, ie. belonging
to the ”fine” locations of the object with a 1-voxel thickness, (Fig. 3 right)

– corner or side voxels (Fig. 3 left) corresponding to the object discontinuities.

Fig. 3. On the left hand side, in gray regular voxels and in white non regu-
lar voxels. On the right hand side, an example of a fine object with a 1-voxel
thickness.

The different configurations are simply detectable in dimension 2 on the outlines
calculated at the M considered point. Let us suppose that each outline is coded
through a Freeman code [7]. For each outline through M , we note dB (resp dF )
the direction which represents the move to the following (resp. preceding) pixel
associated to M on the outline according to the trigonometric way.

The general configuration of the voxel M is if, in each slice through M ,
there is at the most one outline through a pixel associated to M and if :

dB ≡ dF + 3[8] or dB ≡ dF + 4[8] or dB ≡ dF + 5[8]
In the other case,
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– if, in a same slice, there are several outlines through a pixel associated to
M , the point M is located at a ”fine” location of the object,

– if, on an outline through M , the directions dB and dF are not compliant,
the voxel object shows a discontinuity at this location.

3

04

5

Fig. 4. On this figure, dF = 0, the only possible back directions to be in the
general configuration are dB = 3, 4 or 5.

Examples of these three point types are shown on one of the outlines asso-
ciated to a slice of the digitized mushroom of Fig. 5. For instance, at the pixel
R, dF = 0 and dB = 7 are two directions which are not compliant, thus there
is a discontinuity at the related point. It is clear that no unique normal vector
may be assigned to a voxel in a non regular configuration, the decomposition
in surfels of this voxel must then be considered. Normal vector calculation for
these different configurations are described in the following paragraph.

Q

R
L O

P

M

N

Fig. 5. The outlines of that mushroom slice are in dotted lines. Pixels L to M
and M to N are non regular pixels because there are two outlines through these
points; it is the same for pixels O, P , Q and R because directions dF and dB

associated to these pixels are not compliant. The other pixels of the outlines (in
gray color) are regular.

3.2 Definitions

In the general case , we define normal vector at the point M of the voxel
object edge as the sum of (one, two or three) vectors obtained through the
following steps :
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− seek in each slice associated to the point M , on the outline through M , the
2D tangent vector to the pixel associated to M ,

− if 2 or 3 tangent vectors are obtained, compute the vectorial product of
these vectors, if not take the perpendicular vector to the only tangent vector
obtained.

The research of the 2D tangent vectors needs several phases :

(i) Determine the 3 slices which the point M belongs to.
(ii) Seek, in the list of outlines associated to each of these 3 slices, the outlines

through M .
(iii) For each outline through M , consider this outline as a discrete way and

calculate the tangent line to the pixel associated to M by using the algorithm
in 8-connexity described in Sect. 2.

The normal vector obtained is then associated to each surfel of the voxel belong-
ing to the edge of the object.

In the non regular cases, the research of tangent vectors and the allocation
of the normal vectors to the surfels are different; surfels of the edge of a same
voxel will not have the same normal vector. Thus three tangent lines (one by
slice) may be associated to each surfel of a voxel, the research algorithm of the
normal vectors to the surfels is the following one :
In the three slices which the point M belongs to,

− If the pixel associated to M is isolated, the standard tangent lines are as-
signed to each of these sides then forwarded to the corresponding surfels (see
the study of point B in the plane Oxz of Fig. 6).

− If not, for each outline through a pixel associated to M ,
• If the outline has a discontinuity at this point (dF and dB not compliant),

calculate the left and right tangent lines to the considered pixel by using
the algorithms in 8-connexity described in Sect. 2. The allocation of
the tangent lines to the pixel sides then to the corresponding surfels is
undertaken in the following way :

∗ The surfel which corresponds to the side adjacent to the direction
(dF ) in the trigonometric way inherits the half-tangent line which
corresponds to the front half-outline.

∗ Symmetrically, the surfel which corresponds to the side adjacent to
the direction (dB ) in the inverse trigonometric way shall get the
value of the tangent line associated to the rear half-outline.

∗ Finally if, by scanning the set of directions in the trigonometric way
from dF to dB , one of the pixel sides is on the edge of the object and
does not possess any tangent line in this slice, assign to it the sum
of both half-tangent lines oriented in the same way.

• If not, the outline has no discontinuity at this point, calculate the tangent
line to the pixel associated to M by using the algorithm described in Sect.
2. This tangent line is associated to each surfel (represented by a side of
the pixel) included in the part of the plane associated to this outline.
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Fig. 6. Study of two voxels A and B non regular on a voxel object. On the left
hand side, the voxel representation of this object with its slices. On the right
hand side, the tangent lines obtained on each outline for the points A and B.

As a function of the tangent lines assigned to the surfels, the normal vectors to
the surfels are calculated by vectorial products.

Remarks

1. The non regular cases only represent a very small part of the synthetic or real
voxel objects; results are given in section 5. But taking into account these
particular cases allows to obtain a very realistic rendering on the extremities
of the objects even in case of irregularities (see Fig. 8).

2. Trials have been done by using variants [14] of the discrete tangent line
definition given in paragraph 2 :
– Reduced tangent line : points of the segment extremities are deleted.
– Asymmetrical tangent line : prolongation of the tangent line at one ex-

tremity.
– Asymmetrical reduced tangent line : combination of the two preceding

definitions.

These different definitions have not given satisfactory results and do not bring
any improvements to the first definition.

4 Calculation of the 3D Normal Vectors at each Surfel
on the Edge of a Voxel Object

After the definition of the preceding chapter, it seems to be natural to be inter-
ested in a surfel approach, by calculating the normal vector at each surfel on the
edge of a voxel object. The general idea remains identical but a few supplemen-
tary definitions are necessary : The pixel sides are called lignels and its vertices
are called pointels. The pointel outlines associated to a slice of the object
are composed of the 4-connex series of pointels of pixels on the edge of the slice
(see Fig. 7). The normal vector at a surfel on the edge of a voxel object is
the vector obtained after the following steps :
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– Seek the two slices it belongs to. For instance if the surfel is parallel to the
plane Oxy, both slices shall be parallel to the planes Oxz and Oyz.

– Determine for each slice the pointel outline through the lignel associated to
the surfel, then calculate the discrete 4-connex tangent lines to each pointel
which delimits the lignel associated to the considered surfel. The tangent
line to the lignel is obtained by calculating the average tangent line to the
pointels.

– The vectorial product which is the result of the tangent lines calculated in
each slice is the normal vector to the surfel.

x
BA

y

z

A

B
x y

zz
y

zz

x

Fig. 7. Study of two surfels A and B on a voxel object. On the left hand side,
the voxel representation of this object with its slices. On the right hand side,
the tangent lines to the pointels obtained on each pointel outline for the surfels
A and B.

Remarks

1. For each surfel on the edge, four calculations of the discrete tangent lines are
necessary (only one is necessary in the voxel approach in the regular cases).

2. The proposed method may always be applied, there is no particular cases.
3. Two tangent lines are assigned for each surfel ; in the preceding method, up

to three tangent lines might be assigned.

5 Results

The evaluation of the normal vectors is realized in two ways ; on synthetic objects
by comparing the obtained normal vectors to the theoretical normal vectors and
by visualizing them on digitized objects. The Figs. 9 to 15 show in the left hand
side the voxel object and in the right hand side the rendering obtained thanks
to the normal vectors calculated at each voxel of the object.

We have compared the normal vectors obtained to the theoretical normal
vectors calculated as follows:

− A plane P (a, b, c, µ, ω) is defined by the set of integer points (x, y, z) which
verifies µ ≤ ax + by + cz < µ + ω where all parameters are integer. The
theoretical normal vector is the vector (a, b, c).
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− A sphere with an integer radius r is defined by the integer points (x, y, z)
which verifies x2 +y2 +z2 < r(r+1) [1]. The theoretical normal vector is the
vector starting from the center of the sphere through the voxel (resp. surfel)
centers in the case of the voxel (resp. surfel) approach.

− The theoretical normal vector to a voxel (resp. surfel) of a cube is the normal
vector to the face it belongs to.

The angle between the theoretical normal vector and the estimated one is cal-
culated at each point of the tested objects. The average value and standard
deviation of these values are presented in the following table according to the
methods presented in Sects. 3 and 4. We observe more important errors with the
second method on objects as the cube (see Fig. 8); corners are smoothed.

Table 1. Discrete normal vectors vs theoritical normal vectors

8-connexity method (Sect. 3) 4-connexity method (Sect. 4)
Object Avg. error Std. deviation Avg. error Std. deviation
Sphere radius = 5 4.83 3.63 6.95 5.23
Sphere radius = 15 2.87 2.20 3.01 1.86
Sphere radius = 25 2.84 2.24 3.22 1.92
Cube side = 15 0.00 0.00 8.18 4.82
Plane (1,2,-5,-10) 1.78 0.00 1.78 0.00
Plane (3,4,-5,-5) 1.02 0.00 1.02 0.00

In order to estimate the cost of both methods, the following table gives,
for each presented object, the resolution, the number of voxels and surfels of
the edge, the number of non regular voxels as well as the computing time of
Freeman’s codes of the object slices and computing time of the normal vectors.
Computing time has been obtained on a Silicon Graphics R10000 195 Mhz.
Moreover the pre-processing step for the calculation of object slices outlines has
not been optimized yet.

Table 2. Computation times

Object Resolution Edge voxels Surfels Non regular Outlines Normals
Blood veins 266x285x241 40912 89238 11232 438 s 40 s
Brain 128x128x128 32259 60052 16907 47 s 96 s
Head 128x128x128 36108 62006 1910 15 s 53 s
Mushroom 86x100x56 15253 26392 714 2 s 14 s
Knight 249x157x156 121540 246714 69026 47 s 251 s
Sphere 50x50x50 6342 11646 0 0.6 s 4 s
Sphere 100x100x100 25746 46950 72 5 s 28 s
Sphere 200x200x200 103734 188382 0 50 s 198 s
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6 Conclusion

We have presented an original, simple and efficient method for the calculation
of the normal vectors to a voxel object. It relies on strong theoretical bases, the
arithmetic definitions of discrete straight lines. Numerous examples have been
tested by using real data coming from medical imagery; the algorithms used
have proven their consistency and quickness. They are currently used by voxel
object handlers. Nevertheless an accurate comparative study between the differ-
ent methods existing in the literature [10,13,15] still needs to be done to estimate
which one shall be the most efficient.
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Fig. 8. Rendered in 4 and 8 connexity Fig. 9. Sphere 50x50x50

Fig. 10. Knight 39x25x25 Fig. 11. Knight 249x157x156

Fig. 12. Brain 128x128x128 Fig. 13. Head 128x128x128

Fig. 14. Mushroom 86x100x56 Fig. 15. Vein of human liver
266x285x241
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