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Abstract. The goal of this paper is to generalize the notion of lighting
function given in [3] in order to integrate strong 26-surfaces [5] into our
framework for digital topology. In particular, the continuous analogue for
strong 26-surfaces introduced in [10] is extended for arbitrary objects.
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1 Introduction

In a series of papers [1,2,3] we introduced an approach to the notion of digital
space within a new framework for digital topology. This framework is presented
as a multilevel architecture which provides a link between a device level, where
the discrete nature of digital objects is represented, and an Euclidean space.
The most elaborate notion of digital space was given in [3] by introducing the
notion of lighting function, which intends to formalize the idea of “continuous
perception” that an observer may take on digital objects. In this way, a digital
space is not only determined by a device model but also by a lighting function
defined on it. In some sense, such a function is providing a method to construct a
continuous analogue from each digital object, which is actually the “continuous
perception” we are considering on that object.

Based on the idea of “face membership rule” from Kovalevsky [9], lighting
functions were originally defined through a set of four axioms, allowing a wide
family of “continuous perceptions” used in literature. In fact, for all α, β ∈
{6, 18, 26} there exist lighting functions providing the (α, β)-connectedness, de-
fined on ZZ3 within the graph-based approach to digital topology [8]; and, more-
over, (α, β)-surfaces [11,7] are also found as surfaces in the corresponding digital
spaces, for (α, β) 6= (6, 6). However these four axioms are not general enough to
replicate the “continuous perception” associated with strong 26-surfaces in [5].

Our main goal in this paper is to introduce a set of axioms for lighting
functions more general than that in [3, Def. 1]. These new axioms allow us
to find a suitable digital space whose surfaces are exactly the set of strong
26-surfaces (Th. 5). Several consequences are derived from this result. Firstly,
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in [10] Malgouyres and Bertrand define a continuous analogue only for strong
26-surfaces, which is now extended for arbitrary objects in our architecture.
Moreover, results (e.g., the Digital Jordan-Brower Theorem) which have been
proved in our framework with fully generality hold for strong 26-surfaces without
further proof. Finally, our main result (Th. 5) provides a proof for possibly
infinite strong 26-surfaces of the local characterization given in [10, Th. 6] only
for finite strong 26-surfaces.

These generalized lighting functions are introduced in Section 2, where we
also recall some of the basic aspects of our framework, as well as some notations
and results used in this paper. In Section 3 we give the appropriate digital space
for which digital surfaces coincide with strong 26-surfaces. This is proved in
Sections 4 and 5.

2 The multilevel architecture

As in [1,2,3] the first level of a digital space, called the device model, is used to
represent the spatial layout of pixels, which are represented by the n-cells of a
homogeneously n-dimensional locally finite polyhedral complex K. Namely, K is
a complex of convex cells (polytopes) such that each cell is face of a finite number
(non-zero) of n-cells. If γ is a face of σ we shall write γ ≤ σ, and γ < σ if in
addition γ 6= σ. If | K | denotes the underlying polyhedron of K, a centroid-map
is a map c : K → | K | such that c(σ) belongs to the interior (as a cell) of σ;
that is, c(σ) ∈ σ − ∂σ, where ∂σ = ∪{γ; γ < σ} stands for the boundary of σ.
The set of all n-cells of K will be denoted by celln(K). Given a device model K,
a digital object in K is a subset of the set celln(K) of n-cells in K.

In this paper we will deal with the device model Rn, called the standard
cubical decomposition of the n-dimensional Euclidean space IRn. This device
model Rn is the complex determined by the collection of unit n-cubes in IRn

whose edges are parallel to the coordinate axes and whose centers are in the
set ZZn. The centroid-map we will consider in Rn associates to each cube σ its
barycenter c(σ). In particular, if dimσ = n then c(σ) ∈ ZZn, where dim σ stands
for the dimension of σ. So that, every digital object O in Rn can be identified
with a subset of points in ZZn. Henceforth we shall use this identification without
further comment.

Now we are ready to introduce the notion of weak lighting function general-
izing lighting functions in [3]. For this we need the following notation.

Given a cell α ∈ K and a digital object O ⊆ celln(K), the star of α in O
and the extended star of α in O are respectively the digital objects stn(α;O) =
{σ ∈ O;α ≤ σ} and st∗

n(α;O) = {σ ∈ O;α ∩ σ 6= ∅}. Notice that if dim α = 0
then stn(α;O) = st∗

n(α;O) for any digital object O in K. The support of O,
supp(O), is the set of all cells α ∈ K such that α = ∩{σ;σ ∈ stn(α;O)}. To
ease the writing, when the digital object is the whole set celln(K) we shall write
supp(K), stn(α;K) and st∗

n(α;K) instead of supp(celln(K)), stn(α; celln(K))
and st∗

n(α; celln(K)), respectively. Finally, we shall write P(A) for the family of
all subsets of a given set A.
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Fig. 1.The w.l.f. f in Example 1 does not satisfy property (F3).

Definition 1. Given a device model K, a function f : P(celln(K))×K → {0, 1}
is said to be a weak lighting function (w.l.f.) on K if it verifies the following five
properties for all O ∈ P(celln(K)) and α ∈ K.
1. If α ∈ O then f(O, α) = 1.
2. If α /∈ supp(O) then f(O, α) = 0.
3. f(O, α) ≤ f(celln(K), α).
4. f(O, α) = f(st∗n(α;O), α).
5. Let O′ ⊆ O and α ∈ K such that stn(α;O) = stn(α;O′), f(O′, α) = 0

and f(O, α) = 1. Then, the set of cells α(O′;O) = {β < α; f(O′, β) = 0,
f(O, β) = 1} is not empty and connected in ∂α. Moreover, if any digital
object O is such that O ⊆ O, then f(O, β) = 1 for every β ∈ α(O′;O).

Properties (1), (2) and (3) already appeared in [3] as (F2), (F1) and (F4)
respectively; however properties (4) and (5) replace to property

(F3) f(O, α) = f(stn(α;O), α)

in [3]. As the equality stn(α;O) = stn(α; st∗
n(α;O)) holds for every cell α ∈ K

and object O ⊆ celln(K), it is readily checked that property (F3) implies prop-
erty (4). Moreover, if (F3) holds then no cell in K satisfies all hypothesis in (5).
Hence (F3) also implies property (5). So that, w.l.f.’s generalize lighting functions
in [3]. Next example shows that the class of w.l.f.’s strictly contains all lighting
functions.

Example 1. Let f be the w.l.f. defined on R2 by f(O, α) = 1 if and only if:
(a) dimα = 2 and α ∈ O; (b) dimα = 0 and α ∈ supp(O); (c) dimα = 1 and
one of the two following conditions holds:

(c1) st∗
2(α;O) = st∗

2(α;R2)
(c2) α ∈ supp(O) and there exist σ, τ ∈ st∗

2(α;R2)−O such that σ∩τ = ∅.
In order to check that f does not satisfy property (F3), one observes that for the
digital objects O and O′ and the 1-cell α in Fig. 1 the equality st2(α;O) =
st2(α;O′) holds; however the definition of f yields that f(O, α) = 1 while
f(O′, α) = 0.

As in [3], a digital space is defined as a pair (K, f), where K is a device model
and f is a weak lighting function on K. Now, given a digital object O in (K, f)
its levels are defined as follows.

The device level of O is the pair (K(O), fO), where K(O) = {α ∈ K;α ≤ σ,
σ ∈ O} is the subcomplex of K induced by the cells in O, and fO is the restriction
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of f to the set P(O) × K(O). In general, this pair is not a digital space because
fO does not satisfy property (3) in Definition 1; however, fO turns to be a w.l.f.
if it is redefined as fO(O′, α) = f(O, α)f(O′, α), for O′ ⊆ O and α ∈ K(O).

The logical level of O is an undirected graph, Lf
O, whose vertices are the

centroids of n-cells in O and two of them c(σ), c(τ) are adjacent if there exists
a common face α ≤ σ ∩ τ such that f(O, α) = 1.

The conceptual level of O is the digraph Cf
O whose vertices are the centroids

c(α) of all cells α ∈ K with f(O, α) = 1, and its directed edges are (c(α), c(β))
with α < β.

The simplicial analogue of O is the order complex Af
O associated to the

digraph Cf
O. That is, 〈x0, x1, . . . , xm〉 is an m-simplex of Af

O if x0, x1, . . . , xm is
a directed path in Cf

O. This simplicial complex defines the simplicial level for the
object O in the architecture and, finally, the continuous level is represented by
the underlying polyhedron | Af

O | of Af
O. This polyhedron is called the continuous

analogue of O.
For the sake of simplicity, we will usually drop “f” from the notation of the

levels of an object. Moreover, for the whole object celln(K) we will simply write
LK , CK and AK for its levels.

Next we recall the notion of connectedness given in [3]. Let O and O′ be two
disjoint digital objects in a digital space (K, f). Two distinct n-cells σ, τ ∈ O
are said to be O′-adjacent in O if there exists a common face α ≤ σ ∩ τ such
that f(O′, α) = 0 and f(O ∪ O′, α) = 1. An O′-path in O from σ to τ is a finite
sequence {σi}m

i=0 ⊆ O such that σ0 = σ, σm = τ and σi−1 is O′-adjacent in O to
σi, for i = 1, . . . , m. Then, a digital object O will be said O′-connected if for any
pair of n-cells σ, τ ∈ O there exists an O′-path in O from σ to τ . And finally, an
object C ⊆ O is an O′-component of O if for any pair σ, τ ∈ C there exists an
O′-path in O from σ to τ and none element in C is O′-adjacent in O to some
element of O − C. Observe that any O′-component is O′-connected itself.

Given a digital object O in the digital space (K, f) the previous definitions
provide an entire family of notions of connectedness for O in relation to another
object O′, when O′ is allowed to range over the set of all subsets of celln(K) − O.
The extreme cases, when O′ = ∅ and O′ = celln(K)−O, represent the connected-
ness of the digital object O itself and the connectedness of O as the complement
of celln(K) − O, respectively. Theorem 2 shows how these notions of connected-
ness are stated at each level of our architecture. Below, given two subcomplexes
L1 and L2 of a simplicial complex L, the simplicial complement of L2 in L1 will
be denoted by L1 \ L2 = {α ∈ L1;α ∩ | L2 | = ∅}.

Theorem 2. Let O and O′ be two disjoint digital objects in a digital space. The
family F of O′-components of O can be described in any of the following ways
1. Conceptual level: F = {OG}, where OG = {σ ∈ O; c(σ) is a vertex of G},

and G ranges over the family of components of the digraph CO∪O′ \ CO′ .
2. Simplicial level: F = {OA}, where OA = {σ ∈ O; c(σ) ∈ A}, and A ranges

over the family of components of the simplicial complement AO∪O′ \ AO′ .
3. Continuous level: F = {OX}, where OX = {σ ∈ O; c(σ) ∈ X}, and X ranges

over the family of components of the space | AO∪O′ | − | AO′ |.
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The proof of this result follows the same sketch given in [3], using next Lemma
to prove part (1).

Lemma 3. Let O, O′ be two disjoint objects in K and α ∈ K any cell such that
f(O∪O′, α) = 1, f(O′, α) = 0 and stn(α;O∪O′) = stn(α;O′). Then there exists
β < α such that f(O ∪ O′, β) = 1, f(O′, β) = 0 and stn(β;O ∪ O′) 6= stn(β;O′).
Moreover, if β′ < α also satisfies the above properties then there exists a path
{c(γi)}2m

i=0 in CO∪O′ \ CO′ from c(β) to c(β′) such that γ2j−1 ∈ O, 1 ≤ j ≤ m.

We finish this Section giving an intuitive motivation about the replacement
of property (F3) in the definition of lighting functions by properties (4) and
(5) given for w.l.f.’s. Properties (F3) and (4) state that whether a cell α is
lighted for a given object O depends on a ‘digital neighbourhood’ N(α;O) of
α in O. In property (F3) N(α;O) is chosen to be stn(α;O); i.e., the smallest
neighbourhood of α in O. However the continuous analogue | Astn(α;O) | needs
not to be, in general, a ‘continuous neighbourhood’ of the centroid c(α) in | AO |.
Due to this, N(α;O) is required to be st∗

n(α;O) in property (4). With this choice
the centroids of two isolated n-cells σ1, σ2 ∈ celln(K)−O, σ1∩σ2 = ∅, can belong
to the same component of the continuous space | AK | − | AO | even though σ1
and σ2 are each one completely surrounded by n-cells in O. Thus, our continuous
analogue would not provide the right representation of the continuous perception
we take on digital objects. So, we require in addition axiom (5) to prevent this
undesirable property.

3 Main results

In the multilevel architecture given in Section 2 the continuous analogue provides
the “continuous perception” of digital objects. Thus, the following definition
arises naturally. A digital object S in a digital space (K, f) is said to be a digital
manifold if its continuous analogue | AS | is a combinatorial manifold without
boundary. In case S is a digital surface (2-manifold) in (R3, f) we say that S is
an f-surface.

In this section we state our main result. Namely, we find a digital space for
which an object is a digital surface if and only if it is a strong 26-surface in the
sense of Bertrand and Malgouyres [5]. This digital space is defined on the device
model R3, the standard cubical decomposition of the Euclidean 3-space IR3, by
the w.l.f. fBM , which is given by fBM (O, α) = 1 if and only if: (a) dimα = 3
and α ∈ O; (b) dimα = 0, 2 and α ∈ supp(O); (c) dimα = 1 and one of the
following conditions holds:

(c1) st3(α;R3) ⊆ O
(c2) α ∈ supp(O) and st∗

3(α;O) = st3(α;O)
(c3) α ∈ supp(O) and there exist σ, τ ∈ st∗

3(α;O) with σ ∩ τ = ∅.

Remark 4. According to [3, Def. 11], it is not difficult to prove that the w.l.f.
fBM provides the (26, 6)-connectedness. That is, given a digital object O in
(R3, fBM ), the components of O are exactly the 26-components of O; and more-
over, O′ is a 6-component of cell3(R3) − O if and only if it is an O-component.

Our main result is now stated as follows.
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Theorem 5. A connected object S in the digital space (R3, fBM ) is an fBM -
surface if and only if S is a strong 26-surface.

In [10] Malgouyres and Bertrand characterize strong 26-surfaces within the
family of strongly separating objects. We shall use this characterization in the
proof of our Theorem 5 rather than the original definition of strong 26-surfaces,
which is given in terms of strong homotopy [5]. For this we need some more
notation from [10]. Here we use the identification of the grid ZZ3 ⊆ IR3 with the
set cell3(R3) of 3-cells in R3.

Given a digital object O in R3 let Nk(σ;O) denote the set of 3-cells τ ∈ O
(σ 6= τ) which are k-adjacent to σ (k = 6, 18, 26), and let G6(σ;O) be the set of
3-cells τ ∈ N26(σ;O) such that there exists a 6-path in st∗

3(σ;O) from σ to τ of
length less than or equal to 2. If Nk(σ;O) 6= ∅ we say that σ is k-adjacent to O.
Observe that N26(σ;O) = st∗

3(σ;O) − {σ}. Finally, we recall that an object O
is said to be strongly separating if ZZ3 − O has two 6-components and moreover
each σ ∈ O is 6-adjacent to both components (see [5]).

Definition 6. ([10, Defs. 6 and 7]) Let S be a 26-connected object in ZZ3. Then
S is said to be a near strong 26-surface if the following four properties hold for
all σ ∈ S.
1. N26(σ;ZZ3 − S) has exactly two 6-components Aσ

1 and Aσ
2 which are 6-

adjacent to σ.
2. G6(σ;ZZ3 − S) has exactly two 6-components.
3. For each τ ∈ N26(σ;S) the sets N26(τ ;Aσ

1 ) and N26(τ ;Aσ
2 ) are non-empty.

4. For each τ ∈ N6(σ;S) the sets G6(σ;Aσ
1 ∪ {τ}) and G6(σ;Aσ

2 ∪ {τ}) are
6-connected.

Then, strong 26-surfaces are characterized as follows.

Theorem 7. ([10, Th. 4]) Let S be a 26-connected strongly separating object in
ZZ3. Then S is a strong 26-surface if and only if it is a near strong 26-surface.

Moreover, in [10] it is also proved

Proposition 8. ([10, Pr. 1]) Any strong 26-surface is strongly separating.

In the rest of the paper we will derive Theorem 5 from Theorem 7 and
Proposition 8 as follows. In Section 4 we prove that any near strong 26-surface is
an fBM -surface; and then, in Section 5, we show that any fBM -surface is both
a near strong 26-surface and strongly separating.

It is worth pointing out that, although the notion of near strong 26-surface is
local, the characterization given in Theorem 7 is not completely local because the
notion of strongly separating is a global one. To obtain a local characterization of
strong 26-surfaces it remains to prove that any near strong 26-surface is strongly
separating. This is done in [10, Th. 6] for the class of finite strong 26-surfaces.
As a consequence of our main result (Th. 5) this local characterization is now
extended to possibly infinite strong 26-surfaces. Namely,

Theorem 9. (Extension of Malgouyres-Bertrand Theorem) Let S be a
26-connected object in ZZ3. Then S is a strong 26-surface if and only if it is a
near strong 26-surface.
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Fig. 2. A non-simple maximal elementary cube and its canonical cycle.

4 Near strong 26-surfaces are fBM -surfaces

In [10], Malgouyres and Bertrand define a continuous analogue ΣS for any near
strong 26-surface S which is, in fact, a triangulation of a surface embedded in
IR3. Hence, to prove that S is an fBM -surface it will be enough to show that
the simplicial analogue AS of S is a subdivision of ΣS . For this we recall more
notations and results from [10] in the following paragraphs.

An elementary cube is a closed unit cube with vertices in ZZ3. Notice that the
vertices of an elementary cube C are the centroids of eight 3-cells in R3 which
share a common 0-cell, and this 0-cell is the center of C. Given a digital object
O, we say that an elementary cube C is maximal with respect to O if C ∩O 6= ∅
and C ∩ O = C ′ ∩ O whenever C ∩ O ⊆ C ′ ∩ O for some other elementary cube
C ′. Finally, a maximal elementary cube C is said to be simple if for any 3-cell
σ ∈ C ∩ O the difference C ∩ ZZ3 − O consists of 3-cells in 6-components of
N26(σ;ZZ3 − O) which are 6-adjacent to σ; otherwise C is said non-simple.

Given a maximal elementary cube C with respect to a near strong 26-surface
S, the vertices of C ∩S can be arranged in a canonical cycle. If C is simple such
a cycle is defined in [10, Lemma 5] as the subgraph induced by the vertices of
C ∩ S in the 1d-adjacency graph of S; two 3-cell σ, τ ∈ S are said to be 1d-
adjacent if either they are 6-adjacent or they are 18-adjacent and no 3-cell in S
is 6-adjacent to both σ and τ . Now assume C is non-simple. Lemma 3 in [10]
ensures that, up to symmetries or rotations, the only possible configuration of
C ∩ S is that in Fig. 2(a), where σ ∈ S and τ ∈ C ∩ ZZ3 − S is the only 3-cell
in a 6-component of N26(σ;ZZ3 − S) other than Aσ

1 and Aσ
2 in Definition 6.

Moreover, both components Aσ
1 , Aσ

2 have representatives in the set of 3-cells
(C ∩ ZZ3) − (S ∪ {τ}). Without lost of generality, assume that τ1, τ2 are in Aσ

1
(see Fig. 2(a)). Then, the proofs of Lemmas 6 and 7 in [10] actually show that
the eight cells depicted in Fig. 2(a) on the left and right hands of C are all in
ZZ3 − S. Now, in [10, Lemma 8] a canonical cycle in C ∩ S is defined as it is
sketched in Fig. 2(b).

By the use of canonical cycles, Malgouyres and Bertrand show in [10, Th. 5]
that the simplicial complex ΣS is a topological surface in IR3. Each triangle
T ∈ ΣS has as vertices two successive points of the canonical cycle of C ∩ S,
where C is a maximal elementary cube with respect to S containing T ; and its
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third vertex is either the center of the common 2-face of C and C ′, if there exists
a maximal elementary cube C ′ 6= C such that C ′ ∩ S = C ∩ S, or the center of
C otherwise.

In order to compare ΣS with the simplicial analogue AS we need the following
lemmas.

Lemma 10. Let O be a digital object in R3 and C an elementary cube such that
C ∩ O 6= ∅. The following two properties are then equivalent.
1. If C ′ is another elementary cube such that C ∩ O ⊆ C ′ ∩ O, then C ′ = C.
2. If α ∈ R3 is the 0-cell in the center of C, then α ∈ supp(C ∩ O).

In particular, if any of these conditions holds, the elementary cube C is maximal
with respect to O and c(α) ∈ AO.

The proof of Lemma 10 is immediate from the definitions of elementary cube
and the support of an object. We use also the next lemma concerning centroids
of 1-cells.

Lemma 11. Let S be a near strong 26-surface and α an 1-cell in R3. Then
c(α) ∈ AS if and only if the two elementary cubes C1, C2 which meet in the
2-face whose center is c(α) are both maximal with respect to S and, moreover,
one of the two following conditions holds:
1. C1 ∩ S = C2 ∩ S = st3(α;R3)
2. st3(α;S) = {σ, τ} and σ, τ are successive in the canonical cycles of both

C1 ∩ S and C2 ∩ S.

Proof. Assume c(α) ∈ AS . Then, the definition of fBM yields that one of the
following cases occurs: (a) st3(α;R3) ⊆ S; (b) α ∈ supp(S) and st∗

3(α;S) =
st3(α;S) 6= st3(α;R3); and, (c) α ∈ supp(S) and there exist σ1, σ2 ∈ st∗

3(α;S)
with σ1 ∩ σ2 = ∅.

In case (a) both elementary cubes C1 and C2 are maximal and C1 ∩ S =
C2 ∩ S = st3(α;R3). Otherwise only one of such cubes is maximal and simple
with no canonical cycle in it. Here we use Lemma 3 in [10].

Case (b) cannot occur for a near strong 26-surface S since it implies that C1
and C2 are maximal and simple, by [10, Lemma 3], with no canonical cycle in
them.

Finally, if case (c) occurs then both C1 and C2 are maximal, by Lemma 10.
If, in addition, st3(α;S) contains only two 3-cells, these are 1d-adjacent and so
they are successive vertices in the canonical cycles of C1 ∩ S and C2 ∩ S (being
C1 and C2 simple or not).

We finish the proof by showing that st3(α;S) does not contain three 3-cells
(four 3-cells is case (a)). Otherwise we have 3-cells σ, τ, ρ ∈ S and δ /∈ S
as in Fig. 3. By property (3) in Definition 6, ρ must be 26-adjacent to both
6-components Aσ

1 and Aσ
2 which are 6-adjacent to σ. From this one readily de-

rives that x ∈ S or y, y′ ∈ S. As both C1 and C2 are maximal and simple, δ
belongs to either Aτ

1 or Aτ
2 , and hence µ /∈ S; here we use Lemma 3 in [10].

Now, we claim that µ1, µ2 /∈ S. Otherwise, if µ1 ∈ S one applies property (3) in
Definition 6 to µ1 and ρ and gets that µ2 ∈ S. Hence, δ /∈ Aτ

1 ∪ Aτ
2 , which is a
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Fig. 3. The center of a 2-face of an elementary cube which has exactly three of its
vertices in a near strong 26-surface S is not lighted for S.

contradiction; and similarly for µ2 ∈ S. Finally, π ∈ S by hypothesis and there
is no canonical cycle in C2 ∩ S.

Conversely, it is straightforwardly proved that condition (1) in the hypothesis
implies case (a), and condition (2) together with the maximality of C1 and C2
yields case (c).

We are now ready to prove

Proposition 12. Let S be a near strong 26-surface in ZZ3. Then, the simpli-
cial analogue AS of S in (R3, fBM ) is a subdivision of ΣS. So that, S is an
fBM -surface.

Proof. To prove this result it is enough to show that: (1) Any triangle of ΣS is
the union of two triangles of AS ; and (2) any simplex in AS is contained in some
triangle of ΣS .

First we prove (1). By definition of ΣS , its triangles can be drawn inside
an elementary cube in exactly three ways (up to rotations or symmetries) as
sketched in Fig. 4. In this figure, black dots are points in S, while circles are
points not in S. Moreover, in Fig. 4(a) the only vertices of the elementary cubes
belonging to S are exactly the four black dots, but in Fig. 4(b) and (c) there
must exist at least another vertex in S in addition to the two black dots. Now,
it readily follows from Lemmas 10 and 11 that the triangles in Fig. 5 are in AS

and subdivide the corresponding triangles of ΣS .
To prove (2) we first observe, from Lemmas 10, 11 and the definition of fBM ,

that all the vertices of AS belong to | ΣS |. We next prove that any triangle
α ∈ AS with vertices in centroids of cells α1 < α2 < α3, is contained in | ΣS |.

If dimα3 = 2, and thus dimα1 = 0 and dimα2 = 1 then, Lemmas 10, 11
and the definition of fBM yield that the elementary cube with center c(α1) is
maximal and simple with no canonical cycle in it; here we also use Lemma 3
in [10]. Thus, this case cannot occur, and hence there are no tetrahedrons in
AS . Therefore dimα3 = 3, and α lie inside an elementary cube (up to rotations
or symmetries) in the three patterns depicted in Fig. 5. Moreover it is readily
checked from Lemmas 10, 11 and the definition of fBM that the corresponding
triangles of Fig. 4 are in ΣS . Hence (2) holds for triangles. Similarly for edges.
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(a) (b) (c)

Fig. 4. The triangles of ΣS .

(a) (b) (c)

Fig. 5. The triangles of AS .

5 fBM -surfaces are strong 26-surfaces

In this section we prove that any given fBM -surface S in R3 is a strongly sepa-
rating set, and moreover, the four properties in Definition 6 hold for all σ ∈ S. So
that, by Theorem 7, S is a strong 26-surface. In this proof we use the following
properties of fBM .

Remark 13. Let O be a digital object in (R3, fBM ) and let α < σ ∈ O with
fBM (O, α) = 0. If dimα = 2 then α = σ ∩ τ with τ a 3-cell in cell3(R3) − O.
Moreover if dimα = 0 then the definition of fBM yields that α /∈ supp(O), and
from Lemma 10 it follows that the elementary cube C with center in α = c(α)
contains a 2-face whose four vertices are (the centroids of) 3-cells in cell3(R3)−O.
Finally, if dimα = 1 then two cases are possible:

Case a: α /∈ supp(O). Then c(α) is the center of a 2-face A common to two
elementary cubes, and the vertices of an edge of A are (centroids of) two 3-cells
in cell3(R3) − O.

Case b: α ∈ supp(O). If β1, β2 ∈ R3 are the two 0-cells with β1, β2 < α, then
the definition of fBM implies that fBM (O, βi) = 1 and fBM (O, βj) = 0, where
{i, j} = {1, 2}.

Lemma 14. Let O be a digital object in (R3, fBM ) and α < σ ∈ O. If c(α) /∈ AO

then st3(α;R3) − O and G6(σ; st3(α;R3) − O) are respectively contained in a
6-component of st∗3(σ;R3)−O and G6(σ;ZZ3−O), which are 6-adjacent to σ. Fur-
thermore, G6(σ; st3(α;R3) − O) = ∅ if and only if dimα = 1 and c(γ1), c(γ2) ∈
AO, where γ1, γ2 < σ are the two 2-cells with α = γ1 ∩ γ2.

Proof. For st3(α;R3) − O the lemma is immediate from Remark 13. Also Re-
mark 13 directly implies the result for G6(σ; st3(α;R3) − O) except in the case



A Digital Lighting Function for Strong 26-Surfaces 101

dimα = 0, for which it suffices to check the essentially distinct six patterns of
O in st∗

3(α;R3). Moreover, the characterization of G6(σ; st3(α;R3) − O) = ∅ is
also derived from Remark 13.

Another important ingredient in the proofs below is the notion of relative
ball in (IRn, M), where M ⊆ IRn is a combinatorial (n − 1)-manifold; see [2].
More explicitly, a relative ball in (IRn, M) is a pair of balls (Bn, Bn−1) such that
Bn−1 ⊆ Bn, Bn−1 ∩ ∂Bn = ∂Bn−1 and Bn ∩ M = Bn−1.

Remark 15. Let f be a w.l.f. on Rn with | ARn | = IRn. Assume that M is a
connected digital (n−1)-manifold without boundary. Then the classical Jordan-
Brouwer separation theorem states that | ARn |− | AM | = IRn −| AM | has two
connected components. Moreover, any relative ball (Bn, Bn−1) in (IRn, | AM |)
verifies that Bn −Bn−1 has exactly two components, each of which is contained
in a distinct component of IRn − | AM |; see [2]. Furthermore, the components
of IRn − | AM | determine the M -components of celln(Rn) − M according to
Theorem 2.

In particular, as fBM (cell3(R3), α) = 1 for all α ∈ R3, the continuous ana-
logue | AfBM

R3 | is IR3. Thus fBM -surfaces satisfy a digital Jordan property; that
is, if S is an fBM -surface then cell3(R3) − S has two S-components, and, ac-
cording to Remark 4, two 6-components. Moreover, if (B3, B2) is a relative ball
in (IR3, | AfBM

S |) then the components of B3 − B2 determine the 6-components
of cell3(R3) − S.

For the following proposition recall that given a simplicial complex K the star
and the link of a vertex v ∈ K are the sets st(v;K) = {σ ∈ K;σ ≤ τ ∈ K, v ∈ τ}
and lk(v;K) = {ρ ∈ st(v;K); v /∈ ρ}, respectively.

Proposition 16. Let f be a w.l.f. on Rn such that f(M, α) = 1 whenever
stn(α;Rn) is contained in the digital object M . If M is a digital (n−1)-manifold
in (Rn, f) then the pair (| st(c(α);ARn) |, | st(c(α);AM ) |) is a relative ball in
(IRn, | AM |) for each cell α ∈ Rn with c(α) ∈ AM .

Proof. It is readily derived from the hypothesis that | ARn | = IRn. Then, as
| AM | is a combinatorial (n − 1)-manifold without boundary, st(c(α);AM ) ⊆
st(c(α);ARn) are balls of the corresponding dimensions. In fact, st(c(α);AM ) =
st(c(α);ARn) ∩ AM since AM ⊆ ARn is a full subcomplex. The same argu-
ment yields lk(c(α);AM ) = lk(c(α);ARn)∩AM . Notice that lk(c(α);AM ) is the
boundary of st(c(α);AM ).

Remark 17. According to Remark 15, Dα = | st(c(α);ARn) | − | st(c(α);AM ) |
has two components. Moreover, it is easy to prove that for a component C there
always exists a cell β ∈ Rn with c(β) ∈ C. For this one uses that AM is full in
ARn .

Proposition 18. Any connected digital fBM -surface S in (R3, fBM ) is strongly
separating.
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Proof. Since S is an fBM -surface we know, by Remark 15, that ZZ3 − S =
cell3(R3) − S has two 6-components. So, it suffices to check that each σ ∈ S is
6-adjacent to both of them. By Remark 15, one also knows that the 6-components
of ZZ3 − S are determined by the (continuous) components C1, C2 of Dσ =
| st(c(σ);AR3) | − | st(c(σ);AS) |; see Proposition 16. Then, the result follows
from the existence of c(αi) ∈ Ci, i = 1, 2 (see Remark 17) and Lemma 14.

Proposition 19. Any connected digital fBM -surface S in (R3, fBM ) is a near
strong 26-surface

Proof. It will suffice to prove that properties (1)-(4) in Definition 6 hold for each
σ ∈ S.

Property (1) will follow if we prove that N26(σ;ZZ3 − S) = st∗
3(σ;R3) − S

has at most two 6-components which are 6-adjacent to σ, since it has at least
two as S is strongly separating. And this follows by showing that if σ1, σ2 /∈ S
are 6-adjacent to σ, the existence of a path c(σ ∩ σ1) = c(γ0), . . . , c(γk) =
c(σ ∩ σ2) in the difference Dσ = | st(c(σ);AR3) | − | st(c(σ);AS) | implies that
σ1 and σ2 are in the same 6-component of N26(σ;ZZ3 − S). Without lost of
generality assume γi < γi−1. Then st3(γi−1;R3) − S ⊆ st3(γi;R3) − S and
moreover they are non-empty sets since fBM satisfies fBM (O, α) = 1 whenever
st3(α;R3) ⊆ O. Then Lemma 14 and an inductive argument on k show that
{σ1, σ2} ⊆ ∪k

i=0st3(γi;R3) − S is contained in some 6-component of N26(σ;ZZ3−
S) which is 6-adjacent to σ.

To prove property (2) it will suffice to check that G6(σ;ZZ3 − S) contains at
most two 6-components, since it has at least two by property (1). This is proved
following the same pattern as for the proof of property (1) above if we show that
G6(st3(γi;R3)−S) are non-empty sets, which is readily derived from Lemma 14.

For the proof of property (4), let us consider the two 6-components Aσ
1 and

Aσ
2 of N26(σ;ZZ3 − S) which are 6-adjacent to σ. Then, it is not difficult to

prove that the two 6-components of G6(σ;ZZ3 − S) are G6(σ;Aσ
i ), i = 1, 2. So,

property (4) will follow by proving that any τ ∈ N6(σ;S) is 6-adjacent to both
G6(σ;Aσ

1 ) and G6(σ;Aσ
2 ). For this we consider the 2-cell γ = σ ∩ τ (notice that

c(γ) ∈ AS) then one observes that any centroid c(α) in the difference Dγ also
belongs to Dσ. As the components of both Dγ and Dσ determine the components
of | AR3 |− | AS | then two cells α1, α2 < γ can be found with c(αi) ∈ Ci, where
Ci (i = 1, 2) are the components of Dσ. Notice also that the proof of property
(1) above actually shows that C1 and C2 determine the two 6-components Aσ

1 ,
Aσ

2 . In fact, for a cell α ∈ R3, c(α) ∈ Ci if and only if st3(α;R3) − S ⊆ Aσ
i .

Now Remark 13 ensures that if dimαi = 0 or dimαi = 1 and αi /∈ supp(S) then
there exists a 3-cell in G6(σ; st3(αi;R3)−S) which is 6-adjacent to τ . Otherwise,
if dimαi = 1 and αi ∈ supp(S), from Remark 13 there is a 0-cell β < α with
fBM (S, β) = 0 and one applies the previous case to β.

Finally we prove property (3). From the definition of fBM we first derive
that for any τ ∈ N26(σ;S) there exists ατ < τ ∩ σ with c(ατ ) ∈ ∂st(c(σ);AS).
If dimατ = 2 the proof above of property (4) yields the result. Otherwise, if
dimατ < 2, one finds a centroid c(αi) in each component Ci ⊆ Dσ (i = 1, 2)
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such that αi < ατ or ατ < αi. In any case all 3-cells in st3(αi;R3) − S ⊆ Aσ
i

are 26-adjacent to τ . Here we use again the fact that fBM (S, α) = 1 whenever
stn(α;R3) ⊆ S.
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