Skip to main content

Adiabatic Controlled-NOT Gate for Quantum Computation

  • Conference paper
  • First Online:
Book cover Quantum Computing and Quantum Communications (QCQC 1998)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1509))

Abstract

A new variant of the controlled-NOT quantum logic gate is proposed. The gate is based on adiabatic level-crossing dynamics of the q-bits. An important advantage of the adiabatic dynamics, as opposed to the ac-driven Rabi transitions, is its considerable insensitivity to the unavoidable spread of the gate parameters. The gate has a natural implementation in terms of the Cooper pair transport in arrays of small Josephson tunnel junctions. The decoherence rate for this implementation is estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Ekert and R. Jozsa, Rev. Mod. Phys. 68, 733 (1996); C.H. Bennett, Physics Today, October 1995, p. 24; D. DiVincenzo, Science 270, 255 (1995).

    Article  MathSciNet  Google Scholar 

  2. P.W. Shor, in: Proceedings of the 35th Annual Symposium on Foundations of Computer Science, (IEEE Computer Society, Los Alamitos, CA, 1994), p. 124.

    Book  Google Scholar 

  3. L.K Grover, A fast quantum mechanical algorithm for database search, quant-ph/9605043.

    Google Scholar 

  4. S. Haroche and J.-M. Raimond, Physics Today, August 1996, p. 51.

    Google Scholar 

  5. J.I. Cirac and P. Zoller, Phys. Rev. Lett. 74, 4091 (1995).

    Article  Google Scholar 

  6. C. Monroe, D.M. Meekhof, B.E. King, W.M. Itano, and D.J. Wineland, Phys. Rev. Lett. 75, 4714 (1995).

    Article  MATH  MathSciNet  Google Scholar 

  7. Q.A. Turchette, C.J. Hood, W. Lange, H. Mabuchi, and H.J. Kimble, Phys. Rev. Lett. 75, 4710 (1995).

    Article  MathSciNet  Google Scholar 

  8. A. Barenko, D. Deutch, A. Ekert, and R. Jozsa, Phys. Rev. Lett. 74, 4083 (1995).

    Article  Google Scholar 

  9. D. Loss and D. DiVincenzo, cond-mat/9701055.

    Google Scholar 

  10. N.A. Gershenfeld and I.L. Chuang, Science 275, 350 (1997).

    Article  MathSciNet  Google Scholar 

  11. M.F. Bosco, A.M. Herr, and M.J. Feldman, IEEE Trans. Appl. Supercond. 7, 3638 (1997).

    Article  Google Scholar 

  12. C.H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J.A. Smolin, and W.K. Wootters, Phys. Rev. Lett. 76, 722 (1996).

    Article  Google Scholar 

  13. D. Deutsch, A. Ekert, R. Jozsa, C. Macchiavello, S. Popescu, and A. Sanpera, Phys. Rev. Lett. 77, 2818 (1996).

    Article  Google Scholar 

  14. D.V. Averin and K.K. Likharev, in: “Mesoscopic Phenomena in Solids„, ed. by B.L. Altshuler et al. (Elsevier, Amsterdam, 1991), p. 173.

    Google Scholar 

  15. M. Tinkham, “Introduction to Superconductivity„, (McGraw-Hill, New York, 1996), Chapters 6,7.

    Google Scholar 

  16. H. Pothier, P. Lafarge, P.F. Orfila, C. Urbina, D. Esteve, and M.H. Devoret, Physica B 169, 573 (1991).

    Article  Google Scholar 

  17. L.G. Geerligs, S.M. Verbrugh, P. Hadley, J.E. Mooij, H. Pothier, P. Lafarge, C. Urbina, D. Esteve, and M.H. Devoret, Zs. Phys. B 85, 349 (1991).

    Article  Google Scholar 

  18. K.K. Likharev and A.N. Korotkov, Science 273, 763 (1996).

    Article  Google Scholar 

  19. J.M. Martinis, M. Nahum, and H.D. Jensen, Phys. Rev. Lett. 72, 94 (1994).

    Article  Google Scholar 

  20. D.V. Averin and Yu.V. Nazarov, Physica B 203, 310 (1994).

    Article  Google Scholar 

  21. J.G. Lu, J.M. Hergenrother, and M. Tinkham, Phys. Rev. B 53, 3543 (1996).

    Article  Google Scholar 

  22. Y. Nakamura, C.D. Chen, and J.S. Tsai, Czechoslovak Journal of Physics 46,Suppl. 6, 3339 (1996).

    Article  Google Scholar 

  23. T.M. Eiles, J.M. Martinis, and M.H. Devoret, Phys. Rev. Lett. 70, 1862 (1993).

    Article  Google Scholar 

  24. J.E. Lukens, P.D. Dresselhaus, S. Han, L. Ji, K.K. Likharev, and W. Zheng, Physica B 203, 354 (1994).

    Article  Google Scholar 

  25. J.M. Hergenrother, M.T. Tuominen, T.S. Tighe, and M. Tinkham, IEEE Trans. Appl. Supercond. 3, 1980 (1993).

    Article  Google Scholar 

  26. P.D. Dresselhaus, L. Ji, S. Han, J.E. Lukens, and K.K. Likharev, Phys. Rev. Lett. 72, 3226 (1994).

    Article  Google Scholar 

  27. A.W. Kleinsasser, R.E. Miller, W.H. Mallison, and G.B. Arnold, Phys. Rev. Lett. 72, 1738 (1994).

    Article  Google Scholar 

  28. J.P. Kauppinen and J.P. Pekola, Phys. Rev. Lett. 77, 3889 (1996).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Averin, D.V. (1999). Adiabatic Controlled-NOT Gate for Quantum Computation. In: Williams, C.P. (eds) Quantum Computing and Quantum Communications. QCQC 1998. Lecture Notes in Computer Science, vol 1509. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-49208-9_38

Download citation

  • DOI: https://doi.org/10.1007/3-540-49208-9_38

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-65514-5

  • Online ISBN: 978-3-540-49208-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics