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Summary

This paper shows how a basic property of unitary transformations can be used for meaningful computations. This approach

immediately leads to search-type applications, where it improves the number of steps by a square-root - a simple minded search

that takes steps, can be improved to approximately steps. The quantum search algorithm is one of several immediate con-

sequences of this framework. Several novel search-related applications are presented.

1. Introduction Several interesting problems in computer science can be looked upon as search problems. There

are two categories of such problems. First, where the search depends on data in memory - this is the database search

kind of problems. Alternatively, the search could be based on a function known in advance - many NP-complete prob-

lems and cryptography problems can be expressed in this form. For example the SAT problem of NP-completeness

asks whether there exists a combination of binary variables that satisfies a specified set of Boolean equations - this

can be looked upon as a search of the state space of the binary variables. In cryptography, the well-known 56-bit DES

code (Data Encryption Standard) can be cracked by an exhaustive search of  items [BBHT][Phone].

It aroused considerable interest when it was shown that it was possible to improve upon the obvious classical

bound for exhaustive search by resorting to quantum mechanics [Search][BBHT] - the intuitive reason for this

improvement was that quantum mechanical systems can be in multiple states and simultaneously explore different

regions of configuration space. This improved the number of steps by a square-root, i.e. a simple minded search that

takes steps, could be improved to approximately steps. The quantum search algorithm was derived using the

Walsh Hadamard (W-H) transform and it appeared to be a consequence of the special properties of this transform.

Subsequently [Gensrch] showed that similar results are obtained by substitutingany unitary transformation in place

of the W-H transform. This means that a variety of unitary transformations could be used in place of the W-H trans-

form and this leads to algorithms for several different problems. This paper describes the approach of [Gensrch] and

shows how it can be extended to solve various structured problems.

2. Framework A function , is given which is known to be zero for all except the sin-

gle point , the goal is to find (t for target). The obvious classical technique of searching by looking at the

values of , one by one, would clearly take  steps.

Assume that we have at our disposal a unitary transformation that acts on a system with basis states. First

map each value of to a basis state and start with the system in the basis states (s for start). If we apply tos, the

amplitude of reachingt is , and if we were to make a measurement that projects the system into a unique basis
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state, the probability of getting the right basis state would be . It would, therefore, take repetitions

of this experiment before a single success. This section shows how it is possible to reach statet in only

steps. This leads to a sizable improvement in the number of steps if .

Denote the unitary operation that inverts the amplitude in a single state by . In matrix notation this is the

diagonal matrix with all diagonal terms equal to , except the  term which equals .

 denotes the column vector which has all terms zero, except for the  term which is unity.

Consider the following unitary operator: , since is unitary is equal to theadjoint, i.e. the

complex conjugate of the transpose of . We first show that preserves the two dimensional vector space spanned

by the two vectors: and (note that in the situation of interest, when is small, these two vectors are

almost orthogonal).

First consider . By the definition of , this is: . Note that is an square matrix

all of whose terms are zero, except the  term which is . Therefore  & , it follows:

(1)

Using the facts:  and , it follows that:

(2) .

Simplify the second term of (2) by the following identities: & since is unitary, its inverse is equal to

its adjoint (the complex conjugate of the transpose) .

(3)

Next consider the action of the operator on the vector . Using the definition of (i.e.

) and carrying out the algebra as in the computation of  above, this yields:

(4) .

Writing  as  and as in (3), :

U ts
2 Ω 1

U ts
2

--------------
 
 
 

O
1

U ts
----------- 

 

U ts 1«

x Ix

1 xx 1–

vx x
th

Q IsU
1–

I tU–≡ U U
1–

U Q

vs U
1–

vt( ) U ts

Qvs Q IsU
1–

I tUvs– vxvx
T

N N×

xx 1 I t I 2v– tvt
T≡ Is I 2v– svs

T≡

Qvs I 2v– svs
T( )U

1–
I 2v– tvt

T( )Uvs– I 2v– svs
T( )– U

1–
Uvs 2 I 2v– svs

T( )U
1–

vtvt
T( )Uvs+= =

U
1–

U I= vs
T

vs 1≡

Qvs vs 2 I 2v– svs
T( )U

1–
vtvt

T( )Uvs+=

vt
T

Uvs U ts≡ U

vs
T

U
1–

vt U ts
*≡

Qvs vs 1 4 U ts
2

–( ) 2U ts U
1–

vt( )+=

Q U
1–

vt Q

Q IsU
1–

I tU–≡ Qvs

Q U
1–

vt( ) IsU
1–

I tU– U
1–

vt( )≡ IsU
1–

I t– vt IsU
1–

vt= =

Is I 2v– svs
T

vs
T

U
1–

vt U ts
*≡



(5) .

It follows that transforms any superposition of & into another superposition of the two vectors,

thus preserving the two dimensional vector space spanned by  & . (3) & (5) may be written as:

(6)

It follows as in [BBHT], that if we start with , then after repetitions of we get the superposition

where & if . If , then we get the

superposition ; from this with a single application of we can get . Therefore in steps, we can

start with thes-state and reach the target statet with certainty.

3. Quantum Operations The interesting feature of the analysis of section 2 is that can beany unitary trans-

formation, whatsoever. Clearly, it can be used to design algorithms where is a transformation on the qubits in a

quantum computer - the object of this paper is to present some such applications. Quantum mechanical operations

that can be carried out in a controlled way are unitary operations that act on a small number of qubits in each step. It

is possible to design a variety of quantum mechanical algorithms using just a few elementary quantum mechanical

operations. Two of the elementary unitary operations needed are: the W-H transformation operation and the selective

inversion of the amplitudes of certain states.

A basic single bit operation in quantum computing is the operationM - this is represented by the following

matrix: , i.e. a bit in the state 0 is transformed into a superposition: . Similarly a bit in state

1 is transformed into . In a system in which the states are described byn bits (it has possible

states) we can perform the operationM on each bit independently in sequence thus changing the state of the system.

The state transition matrix representing this operation will be of dimension . Consider a case when the start-

ing state is one of the2n basis states, i.e. a state described by ann-bit binary string with some 0s and some 1s. The

result of performing the operationM on each bit will be a superposition of states described by all possiblen-bit binary

strings with the amplitude of each state being . To deduce the sign, observe that from the definition of the matrix
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M, i.e. , that the phase of the resulting configuration is changed only when a bit that was previously a

1 remains a 1 after the transformation is performed. Hence if be then-bit binary string describing the starting state

and then-bit binary string describing the resulting string, the sign of the amplitude of is determined by the parity

of the bitwise dot product of and , i.e. . This transformation is the W-H transformation [DJ]. This opera-

tion (or a closely related operation called the Fourier Transformation [Factor]) is one of the things that makes quan-

tum mechanical algorithms more powerful than classical algorithms and forms the basis for most significant quantum

mechanical algorithms.

The other transformation we will need is the selective inversion of the phase of the amplitude in certain states.

Unlike the W-H transformation and other state transition matrices, the probability in each state stays the same since

the square of the absolute value of the amplitude in each state stays the same. The following is a realization based on

[BBHT]. Assume that there is a binary function that is either or . Given a superposition over states , it is

possible to design a quantum circuit that will selectively invert the amplitudes in all states where . This is

achieved by appending an ancilla bit, and considering the quantum circuit that transforms a state into

(such a circuit exists since, as proved in [Revers], it is possible to design a quantum mechanical cir-

cuit to evaluate any function that can be evaluated classically). If the bit is initially placed in a superposition

, this circuit will invert the amplitudes precisely in the states for which , while leaving ampli-

tudes in other states unchanged.

4. Summary of Applications As mentioned in section 1, the search problem is the following: a function

, is given which is known to be non-zero at certain values of ; the task is to find one such

value. No structure is known for except for what is explicitly mentioned in the specific problems .

is assumed to be a power of , say . There is a one-to-one correspondence between the values of

and the respective states of ann-bit register. States corresponding to values of for which is non-zero, are

referred to ast-states.

(4.1) Assume that everywhere except for a single value ofx. This is the standard problem of exhaustive

search.

(4.2) As in (4.1), there is a single point,t, where is non-zero. Some information aboutt is available in the fol-

lowing form - anothern bit word,r, is given which is known to differ from  in at mostk out of then bits.

(4.3) There are multiple points (t-states) at which is non-zero, it is required to find any one of these. Some

structure to the problem is specified in the following form. We are given a certain unitary transformation &
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multiple s-states so that for any & any are the same. The setting of this subsection is abstract, (4.4),

(4.5) & (4.7) apply the framework of this subsection to concrete problems.

(4.4) As in (4.3), there are multiple points at which is non-zero, it is required to find any one of these. How-

ever, unlike (4.3), no further structure to the problem is given.

(4.5) There is a single pointt where is non-zero. Some information aboutt is available in the form ofl n-bit

strings, each of which differ from  in exactlyk out ofn bits.

(4.6) everywhere except at the unique point , it is required to findt. Also, as in (4.3), we are given

a unitary transformation and multiples-states. However, unlike (4.3), for variouss-states & varioust-

states are not all identical.

The analysis of section 2 extends the power of quantum search so that it can be used with an arbitrary unitary

transform , but only with a singles and singlet-state. (4.3) extends it to multiple states, but in a restricted

way. This derivation extends to multiples-states. It is still not known how to handle multiplet-states that are

not exactly symmetric.

(4.7) This problem illustrates how the abstract techniques discussed earlier can be applied to solve an actual prob-

lem. This problem was first discussed by Eddie Farhi & Sam Gutmann [Structure].

Two functions & are defined on the domain , .

is zero everywhere except at the unique point , is non-zero at values ofincluding

(here ). The problem is to find & . Classically this problem would take steps.

The algorithm of (4.1), without using the function , would take steps. The following analysis

makes use of the general technique of (4.3) to develop an step algorithm. Several variants of this

problem are also considered.

4.0 The Approach The following general approach is made use of in each of the next 7 sub-sections - .

There are states, represented by qubits, the task is to get the system into some target state(s)t at

which is non-zero. A unitary transform and the initial states are selected and is calculated. It then fol-

lows by section 2 that by repetitions of the operation sequence , followed by a single application

of , the initial states is transformed into the final statet.

4.1 Exhaustive Search Assume that  everywhere except at a single pointt. The object is to findt.

As mentioned in the first paragraph of the introduction, there are several important problems in computer science

for which there no solution is known, except exhaustive search.
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Solution For the W-H transform, described in section 3, betweenany pair of statess & t is . Therefore we

can start with any states and the procedure of (4.0) gives us an algorithm requiring steps, i.e.

steps.

In cases be chosen to be the state, then the operation sequence leads to the standard quantum

search algorithm based on theinversion about average interpretation [Gensrch] (note that ). To see this

write as . Therefore for any vector : . It is

easily seen that is another vector each of whose components is the same and equal toA where

(the average value of all components). Therefore theith component of is simply:

. This may be written as , i.e. each component is as much above (below) the average as it was

initially below (above) the average, which is precisely theinversion about average.

In cases be chosen to be a state different from , the dynamics is still very similar to the standard quantum

search algorithm; however, theinversion about average interpretation no longer applies.

4.2 Search when an item near the desired state is known: This problem is similar to (4.1), i.e. except at

the single pointt. The difference from (4.1) is that some information about the solution,t, is available in the following

form: anothern bit word,r, is specified -t is known to differ fromr in at mostk of then bits.

Such a problem would occur in any situation when we had some prior information about the solution, this infor-

mation could come either from prior knowledge or from a noisy data-transmission.

Solution: The effect of the constraint is to reduce the size of the solution space. One way of making use of this con-

straint, would be to map this to another problem and then exhaustively search the reduced space using (4.1). However,

such a mapping would involve additional overhead. This section presents a different approach which carries over to

more complicated situations as in (4.5).

Instead of choosing as the W-H transform, as in (4.1), in this section is tailored to the problem under

consideration. The starting states is chosen to be the specified wordr. The operation consists of the following uni-

tary transformation , applied to each of then qubits. Calculating , it follows that
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and . The technique described in (4.0) can now be

used - as in (4.1), this consists of repeating the sequence of operations , times, followed by a sin-

gle application of the operation  (note that, as in (4.1), ).

The size of the space being searched in this problem is approximately which is equal to . Using

Stirling’s approximation: , it follows that , comparing this to the

number of steps required by the algorithm, we find that the number of steps in this algorithm, as in (4.1), varies as the

square-root of the size of the solution space being searched.

4.3 Multiple s & t states with the same : is non-zero at values of , i.e. there aret-states. Some

structure of the problem is specified in the following form. Assume that we have at our disposal a unitary transform

and s-states such that betweenany t-state andany s-state is the same. The object is to find one of the -

states. This is accomplished by transforming the system into a superposition so that there is an equal amplitude in

each of thet-states and zero amplitude elsewhere. After this, a measurement is made that projects the system into one

of its basis states, this gives at-state.

The problem considered in this subsection is abstract in the sense is an arbitrary unitary transformation. (4.4),

(4.5) and (4.7) apply this to concrete problems.

Solution: The approach is similar to the exhaustive search problem of (4.1). However, the analysis of section 2 has to

be redone with the following three changes:

(a) The starting state instead of being , is the superposition - the amplitude in all states is equal

to , and zero everywhere else. Assuming to be a power of 2 ( ), such a superposition can be easily

created by the following procedure. Start with an bit system with all bits in the 0 state. Do a W-H transform

on the  bit system and then carry out a mapping from the  states to thes-states.

(b) The operations  &  invert the amplitudes inall s-states &all t-states, respectively.

(c) It can then be shown by an analysis similar to section 2, that after operations of

followed by a single application of , the system reaches a superposition so that the amplitude is equal in all
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t-states and is zero everywhere else. Note that the number of operations is smaller by a factor as com-

pared to the situation when there were single s-states & single t-states (as in (4.1)).

4.4 Problem  is non-zero at  values of , equivalently there aret-states - the task is to find one of these.

This is the problem of exhaustive search when there are multiple solutions. A classical search would take

an average of  steps to find a solution. This section presents an  step quantum mechanical algorithm.

Solution By the definition of the W-H transform in section 3, for anyt is the same. Therefore if we chooses as

the state, then it follows by (4.3) that after repetitions of followed by a single application of

, the system reaches a superposition such that the amplitude is equal in all thet states and zero everywhere else.

Note the following three points regarding this scheme:

- As in (4.3), the operation inverts the phase for allt-states.

- The above implementation requires  to be known in advance.

- The search time is  faster than the exhaustive search algorithm of (4.1).

- It is necessary to chooses as the  state, this is different from (4.1) wheres could be arbitrary.

4.5 Problem except at the single pointt. Some information aboutt is available in the form of n-bit

strings, each of which differs fromt in exactly k bits.

This is in some sense the dual of (4.4). In that case there were multiplet-states but a singles-state, while in this

problem there are multiples-states and a singlet-state. This kind of problem could occur in extracting a signal out of

multiple noisy transmissions.

Solution Let the specified states be thes-states. Initialize the system to a superposition of these states by the pro-

cess described in (4.3)(a). After this, apply the unitary transform which applies the following unitary operation

to each qubit. As in (4.2), and for

all s-states. Also, since each of thes-states differ fromt in exactly the same number of bits implies that has the

same sign for alls-states. The framework of (4.3) can now be used - this yields an algorithm that is times faster

than that of (4.2).
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4.6 Multiple s-states & a single t-state such that between various s-states & t is not identical

everywhere, except at the single pointt. As in (4.3), some structure to the problem is specified via . Assume that we

have at our disposal a unitary transform and variouss-states are specified. However, unlike (4.3), between

variouss and varioust-states arenot exactly equal. This case is qualitatively different from all of those considered so

far because the analysis of section 2 or the modified analysis of (4.3), does not directly apply.

This extends the noisy data-transmission problem of (4.5), to the case where there are multiple states specified

that are close to the solution state but differ from it in varying number of bits ((4.5) required each of the given states

to differ from the solution inexactly the same number of bits).

Solution Assume the number ofs-states to be , further assume that is a power of 2, i.e. . ConsiderV to

be a unitary matrix which is a product of 3 simpler unitary matrices, i.e.  and .

 is a W-H transformation ona bits and  states where ,

 maps the  states generated by onto the respectives-states inN-dimensional state space,

 is the available unitary transform on theN states.

Let the initial state be the state. As a result of , the amplitude in each of the states: ,

becomes ; after , the amplitude in thet-state is . By (4.0), it follows that after repeti-

tions of  followed by a single application of , the amplitude in the target state becomes O(1).

Many of the problems in the previous subsections can be seen to be particular cases of this. For example in case

are all equal, say to , then the number of iterations becomes: . The algorithm and bound of (4.5) imme-

diately follow from this.

4.7 Two dimensional search Two functions & are defined on the domain ,

. is zero everywhere except at the unique point , is non-zero at values

of including  (here ). The problem is to find  & .

Classically this problem would take steps. The algorithm of (4.1), without using the function

would take steps. This section presents an step algorithm. For a different analysis, along with a
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proof that the algorithm of this section is within a constant factor of the fastest possible algorithm, see [Structure].

Several variations of this problem are also briefly considered, these demonstrate how the techniques discussed

in this paper can be applied to real problems.

Solution First consider the function , . By executing the algorithm of (4.4), with thet-states

as the non-zero values of , it is possible for the system to reach a superposition such that at each point at which

is non-zero, the amplitude is and the amplitude is zero everywhere else. This is accomplished by a

sequence of unitary transformations (4.4) - denote this composite unitary operation by . Next keep the

value ofx the same and carry out the algorithm of (4.1) on theN values of with thet-state corresponding to the non-

zero value of the function . This consists of a sequence of elementary unitary transformations,

denote this composite unitary operation by . It follows from (4.1), that as a result of this operation sequence, in

case the particle is at , it is also at . The amplitude of the system being in the desired state is therefore

. By means of the unitary transformation , the system starting from a certain initial state reaches the

desired state with an amplitude of .

Since is a sequence of elementary unitary operations, it follows that is a sequence of the adjoints of

the same operations in the opposite order and can hence be synthesized. By applying the procedure of section 2, it fol-

lows that by repeating the sequence of operations , times, the system reaches the target state

with certainty.

The total number of steps is given by the number of repetitions of (i.e. ) times the number of steps

required for each repetition, (i.e. ) which gives .

The above analysis easily extends to more general cases. For example consider the case, where the search-

space is rectangular instead of square, i.e. the number of possible values for is and for is , The number of

steps, instead of being , now becomes . Alternatively consider the case where there

is an dimensional space with the same number of points in each dimension. Instead of just & ,

there are now functions: , , with analo-

gous definitions. It follows by a similar approach that the number of steps is now .

Another variation is when the function is non-zero at multiple points, say points, and it is required
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to find one of these. In case each of the points has a different value of , the framework of (4.3) applies. Consider-

ing the unitary transformation  as , leads to an algorithm that requires  steps.

It is not clear how to derive an algorithm when some of the  points have the same value of .

5. Conclusion & Further Work [Search] demonstrated how to make use of quantum mechanical properties to

develop exhaustive search kinds of algorithms, i.e. algorithms for problems that lacked any structure. [Search] used

subtle properties of a particular quantum operation called the W-H transform. Subsequently [Gensrch] extended this

so that other quantum operations could be used instead of the W-H transform.

Most interesting problems in computer science are concerned with the structure of problems and how to

develop algorithms to take advantage of this structure. [Hogg] has previously suggested heuristic quantum mechani-

cal algorithms for structured problems. This paper has given several examples of structured problems and how

search-type algorithms can be extended to solve these ((4.2) through (4.7)) - quantitative closed form bounds were

derived for the running time of these algorithms. The extensions have shown how to deal with the situation where

there are multiples-states (initial states) and a singlet-state (target state) ((4.5) and (4.6)). Also, it is possible to deal

with multiple t-states provided they are exactly symmetric ((4.3) and (4.4)). The next step would be to obtain a gen-

eral algorithm with multiplet-states.
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