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Summary
This paper shows how a basic property of unitary transformations can be used for meaningful computations. This approach

immediately leads to search-type applications, where it improves the number of steps by a square-root - a simple minded search

that takesN  steps, can be improved to approximat/é_ly steps. The quantum search algorithm is one of several immediate con-

sequences of this framework. Several novel search-related applications are presented.

1. Introduction Several interesting problems in computer science can be looked upon as search problems. There
are two categories of such problems. First, where the search depends on data in memory - this is the database search
kind of problems. Alternatively, the search could be based on a function known in advance - many NP-complete prob-
lems and cryptography problems can be expressed in this form. For example the SAT problem of NP-completeness
asks whether there exists a combination of binary variables that satisfies a specified set of Boolean equations - this

can be looked upon as a search of the state space of the binary variables. In cryptography, the well-known 56-bit DES

code (Data Encryption Standard) can be cracked by an exhaustive seZtSr?:h of items [BBHT][Phone].

It aroused considerable interest when it was shown that it was possible to improve upon the obvious classical
bound for exhaustive search by resorting to quantum mechanics [Search][BBHT] - the intuitive reason for this
improvement was that quantum mechanical systems can be in multiple states and simultaneously explore different

regions of configuration space. This improved the number of steps by a square-root, i.e. a simple minded search that

takesN steps, could be improved to approximatgly steps. The quantum search algorithm was derived using the
Walsh Hadamard (W-H) transform and it appeared to be a consequence of the special properties of this transform.
Subsequently [Gensrch] showed that similar results are obtained by substoyingitary transformation in place

of the W-H transform. This means that a variety of unitary transformations could be used in place of the W-H trans-
form and this leads to algorithms for several different problems. This paper describes the approach of [Gensrch] and

shows how it can be extended to solve various structured problems.

2. FrameworKk A function f(x),x = 0, 1, ...(N —1) , is given which is known to be zero for all  except the sin-
gle pointx =t , the goal is to find t for target). The obvious classical technique of searching by looking atlthe
values ofx , one by one, would clearly ta®éN) steps.

Assume that we have at our disposal a unitary transformafion  that acts on a systelh with  basis states. First
map each value af  to a basis state and start with the system in the basts(sfatestart) If we apply U tos, the

amplitude of reachingis U. ., and if we were to make a measurement that projects the system into a unique basis

ts’
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state, the probability of getting the right basis state WoquiLIbt§|2 . It would, thereforthakel——D repetitions

o™

of this experiment before a single success. This section shows how it is possible to reatinstauly ODLD

HU”
steps. This leads to a sizable improvement in the number of s1eq§ ifc 1
Denote the unitary operation that inverts the amplitude in a single statel, by . In matrix notation this is the

diagonal matrix with all diagonal terms equallto , excepkthe  term which eglials

v, denotes the column vector which has all terms zero, except fﬂtrh[he term which is unity.

Consider the following unitary operato@ =—I U _1I {U ., sinte s unitaah_/1 is equal tathant, i.e. the
complex conjugate of the transposeldf . We first show @at  preserves the two dimensional vector space spanned

by the two vectorsyg andu _1Vt) (note that in the situation of interest, V\Lh%w is small, these two vectors are

almost orthogonal).

First considerQv . By the definition d® , this is{ sU_llthS . Note thz;(tvl isidn« N square matrix
all of whose terms are zero, exceptixe  term whidhis . Thergfere— 2vtv;r | =& —ZVSV-SI— , it follows:
(1) Qug = ~(1 —2vv U1 =2vv) JUvg = (I —2v v )U U+ 2(1 —2v v JU ™ (v YUy

. -1 T .
Using the factsU "U =1 and v =1 it follows that:
(2)  Qvg = v +2(l —2vsvl)U_l(vtvtT)Uvs.

Simplify the second term of (2) by the following identitie§T:UvS =U & sinde  is unitary, its inverse is equal to

ts

*

its adjoint (the complex conjugate of the transposéw _1Vt =Uyq

(3)  Qug = Vy(1-4U, %) +2U, (U y)

Next consider the action of the operat@ on the vectlb?lvt . Using the definitior® of (i.e.

Q=-\U _1I tU) and carrying out the algebra as in the computatio@\Qf above, this yields:

-1 -1 -1 -1 -1
4) QU "v)=-1 U LU "v) = -1 U Tl =1 U "v,.

vl and as in (3)/,lU_1v =U

Writing 1 asl —2vg | ts



6 QU = (U -2vg (U™ = (U7 -2U,u.

" -1 . "
It follows thatQ transforms any superposition\gf & Vt) into another superposition of the two vectors,

thus preserving the two dimensional vector space spanneg.by (U_%A/t) . (3) & (5) may be written as:
\% 2 \%
s (1—4|Utsj ) 2U, s
©® Q 4 |= . -1
U Vi _2Uts 1 ||V Vi

It follows as in [BBHT], that if we start withv, , then aften  repetitions G we get the superposition

ayVg+ aT(U_lvt) where aSDcos(2n|UtS|) & |at| D|sin(2n|UtS|)| if |Uts| «l.1fn = then we get the

It

AU

superpositionJ _1v ; from this with a single applicationdf ~ we canget . Therefo@aﬁl—slg steps, we can
t

start with thes-state and reach the target statéth certainty.

3. Quantum Oper ations The interesting feature of the analysis of section 2 is that ~ camnpenitary trans-

formation, whatsoever. Clearly, it can be used to design algorithms wihere  is a transformation on the qubits in a
guantum computer - the object of this paper is to present some such applications. Quantum mechanical operations
that can be carried out in a controlled way are unitary operations that act on a small number of qubits in each step. It
is possible to design a variety of quantum mechanical algorithms using just a few elementary quantum mechanical
operations. Two of the elementary unitary operations needed are: the W-H transformation operation and the selective
inversion of the amplitudes of certain states.

A basic single bit operation in quantum computing is the operaionthis is represented by the following

matrix: M = 1 {1 1

, 1.e. a bit in the state 0 is transformed into a superposi%la:, i% . Similarly a bit in state
2|1 - 2 2

1 is transformed int(%%z, 10 . In a system in which the states are describadiig (it hasN = 2" possible

—h

states) we can perform the operatidron each bit independently in sequence thus changing the state of the system.

The state transition matrix representing this operation will be of dimer@ion2" . Consider a case when the start-

ing state is one of thg" basis states, i.e. a state described by-it binary string with some 0s and some 1s. The
result of performing the operatidvi on each bit will be a superposition of states described by all pogsibitebinary
n

strings with the amplitude of each state beitf) 2 . To deduce the sign, observe that from the definition of the matrix



M, i.e.M = iz{l 1} , that the phase of the resulting configuration is changed only when a bit that was previously a
1-1

1 remains a 1 after the transformation is performed. Henge if  be-tiebinary string describing the starting state

andy then-bit binary string describing the resulting string, the sign of the amplitude of is determined by the parity

of the bitwise dot product ok ang i.(a.—l))_( Ey . This transformation is the W-H transformation [DJ]. This opera-

tion (or a closely related operation called the Fourier Transformation [Factor]) is one of the things that makes quan-
tum mechanical algorithms more powerful than classical algorithms and forms the basis for most significant quantum
mechanical algorithms.

The other transformation we will need is the selective inversion of the phase of the amplitude in certain states.
Unlike the W-H transformation and other state transition matrices, the probability in each state stays the same since

the square of the absolute value of the amplitude in each state stays the same. The following is a realization based on
[BBHT]. Assume that there is a binary functidi(x)  thatis eit®er lor . Given a superposition ovenstates , itis
possible to design a quantum circuit that will selectively invert the amplitudes in all states Wwhere= 1 . This is
achieved by appending an ancilla bid, and considering the quantum circuit that transforms [, $tate into
[x, f(x)XORMKC (such a circuit exists since, as proved in [Revers], it is possible to design a quantum mechanical cir-
cuit to evaluate any functiofi(x)  that can be evaluated classically). If the bit  is initially placed in a superposition

1
2

tudes in other states unchanged.

(Jo- 10, this circuit will invert the amplitudes precisely in the states for whfglx) = 1 , While leaving ampli-

4. Summary of Applications As mentioned in section 1, the search problem is the following: a function
f(x),x = 0,1, ...(N=1), is given which is known to be non-zero at certain valueg of ;the task is to find one such
value. No structure is known fof(x)  except for what is explicitly mentioned in the specific prol{eifis.. (4.7)

N is assumed to be a power af , shly= 2" There is a one-to-one correspondence betwden the  walues of

and the respective states of aibit register. States corresponding to values<of  for whigk) is non-zero, are

referred to a$-states.

(4.1) Assume thaf (x) = 0 everywhere except for a single value @his is the standard problem of exhaustive
search.

(4.2) Asin (4.1), there is a single pointwhere f (x) is non-zero. Some information abbig available in the fol-
lowing form - anothen bit word,r, is given which is known to differ frorh  in at mdsbut of then bits.

(4.3) There are multiple points-g§tates) at whichf (x) is non-zero, it is required to find any one of these. Some

structure to the problem is specified in the following form. We are given a certain unitary transforidation &



multiple s-states so thatl,, forany &any are the same. The setting of this subsection is abstract, (4.4),

(4.5) & (4.7) apply the framework of this subsection to concrete problems.

(4.4) Asin (4.3), there are multiple points at whidlix) is non-zero, it is required to find any one of these. How-
ever, unlike (4.3), no further structure to the problem is given.

(4.5) There is a single pointwhere f(x) is non-zero. Some information aboig available in the form of n-bit
strings, each of which differ from  in exacthut ofn bits.

(4.6) f(x) = 0 everywhere except at the unique point t , itis required totfiddso, as in (4.3), we are given
a unitary transformatioty  and multipestates. However, unlike (4.3)),,  for variosstates & various-
states are not all identical.

The analysis of section 2 extends the power of quantum search so that it can be used with an arbitrary unitary
transformU , but only with a singls and singlet-state. (4.3) extends it to multiple states, but in a restricted
way. This derivation extends to multipgestates. It is still not known how to handle multighstates that are
not exactly symmetric.

(4.7) This problem illustrates how the abstract techniques discussed earlier can be applied to solve an actual prob-

lem. This problem was first discussed by Eddie Farhi & Sam Gutmann [Structure].
Two functionsf(x,y) & g(x) are defined on the domam= 0,1 ...(N-1) y,=0,1,...(N-1)

f(x,y) is zero everywhere except at the unique pdty, t,) g(%) is non-zehd at  valuesrmfuding
x = t; (hereM «N ). The problemis to fint, ~ &, . Classically this problem would t&dNM) steps.
The algorithm of (4.1), without using the functiog(x) , would ta€N) steps. The following analysis

makes use of the general technique of (4.3) to develop&iNM) step algorithm. Several variants of this

problem are also considered.

4.0 The Approach The following general approach is made use of in each of the next 7 sub-sectias.-. (4.7)
There areN = 2" states, representedrby  qubits, the task is to get the system into some target atate(s)

which f(x) is non-zero. A unitary transforid  and the initial statee selected antJJtS is calculated. It then fol-

lows by section 2 that b%,|UL repetitions of the operation sequeihgd _ll Y , followed by a single application
t

of U, the initial statesis transformed into the final state
4.1 Exhaustive Search Assume thatf (x) = 0 everywhere except at a single foiftte object is to find

As mentioned in the first paragraph of the introduction, there are several important problems in computer science

for which there no solution is known, except exhaustive search.



Solution For the W-H transform, described in sectiont8, betwamnpair of states & tis ii . Therefore we

JN
can start with any state and the procedure of (4.0) gives us an algorithm requi Ul SIE stepsO(.e/N)
E t
steps.

In casesbe chosen to be the  state, then the operation sequ@nee-| (-)WI W leads to the standard quantum

search algorithm based on thwersion about average interpretation [Gensrch] (note thai\‘/_1 = W ). To see this

. T = - T, _ Tinro .
- —2v-v= . =WI = - —2v.v-Hx = —x+ _V- .
write IO as| 2v0v0 Therefore for any vectot WIOWx Wa 2v0vOD X X 2Wv0v0Wx Itis

easily seen thanéngX is another vector each of whose components is the same and e§uahece

N-1
Z X; (the average value of all components). Therefore thecomponent of—WI(_)W>‘< is simply:
i=0

A=

Zlr

(=%; + 2A) . This may be written a&\ + (A—x;) , i.e. each component is as much above (below) the average as it was
initially below (above) the average, which is preciselyitiversion about average.

In cases be chosen to be a state different frdn , the dynamics is still very similar to the standard quantum

search algorithm; however, thaversion about average interpretation no longer applies.

4.2 Search when an item near the desired state isknown: This problem is similar to (4.1), i.ef(x) = 0 except at
the single point. The difference from (4.1) is that some information about the solutjasmavailable in the following
form: anothen bit word,r, is specified 1 is known to differ fronr in at mosk of then bits.

Such a problem would occur in any situation when we had some prior information about the solution, this infor-
mation could come either from prior knowledge or from a noisy data-transmission.
Solution: The effect of the constraint is to reduce the size of the solution space. One way of making use of this con-
straint, would be to map this to another problem and then exhaustively search the reduced space using (4.1). However,
such a mapping would involve additional overhead. This section presents a different approach which carries over to

more complicated situations as in (4.5).
Instead of choosindg as the W-H transform, as in (4.1), in this sedfion s tailored to the problem under

consideration. The starting statés chosen to be the specified wardrhe operatiolJ  consists of the following uni-

h5
1-2 2
tary transformation n n , applied to each of the qubits. CalculatingU,  , it follows that



n—k k

_g_ko 2 o _ Mogn=k K n-k - o
|Uts| = %L_nD hO and Iog|Ut5| = 2Iog —2Iog o The technigue described in (4.0) can now be
used - as in (4.1), this consists of repeating the sequence of operatigi, U OEI—LJLS—'E times, followed by a sin-
t
gle application of the operatidd  (note that, as in (4)1_)% =U ).
The size of the space being searched in this problem is approxin‘%}%ly which is e%ﬁ_ar][i—F% . Using
Stirling’s approximation:logn! = nlogn—n , it follows thatog E{E: nlog%(— klog%( , comparing this to the

number of steps required by the algorithm, we find that the number of steps in this algorithm, as in (4.1), varies as the

square-root of the size of the solution space being searched.

4.3 Multiple s & t states with the same U, : f(X) is non-zero af3 values of , i.e. there giet-states. Some

structure of the problem is specified in the following form. Assume that we have at our disposal a unitary transform

U anda sstates such that),,  betweany t-state ancany s-state is the same. The object is to find one ofthe -

states. This is accomplished by transforming the system into a superposition so that there is an equal amplitude in
each of the-states and zero amplitude elsewhere. After this, a measurement is made that projects the system into one
of its basis states, this gives$-state.

The problem considered in this subsection is abstract in the 4énse  is an arbitrary unitary transformation. (4.4),
(4.5) and (4.7) apply this to concrete problems.
Solution: The approach is similar to the exhaustive search problem of (4.1). However, the analysis of section 2 has to

be redone with the following three changes:

a-1
(@)  The starting state instead of bemg , is the superposﬂjﬁnz Vg -the amplitudesip all  states is equal
a a
=0
to % , and zero everywhere else. Assuming to be a power afiza ), such a superposition can be easily
a

created by the following procedure. Start with@n  bit system with all bits in the O state. Do a W-H transform

on thea bit system and then carry out a mapping fronethe statesststHies.

(b)  The operations, &, invert the amplitudesalhs-states &all t-states, respectively.

0 0 -
(c) It can then be shown by an analysis similar to section 2, that @‘Eﬁl—m operatiengubflltu

RYCTC e

followed by a single application df , the system reaches a superposition so that the amplitude is equal in all



B t-states and is zero everywhere else. Note that the number of operations is smaller by dddctor as com-

pared to the situation when there were sigegtates singlet-states (as in (4.1)).
4.4 Problem f(x) is non-zero af3 values of , equivalently there frestates - the task is to find one of these.

This is the problem of exhaustive search when there are multfple solutions. A classical search would take
an average OOE%E steps to find a solution. This section preseﬁl%% step quantum mechanical algorithm.

Solution By the definition of the W-H transform in section Wt(-) for anig the same. Therefore if we choosas

the O state, then it follows by (4.3) that aft@%/%% repetitions-ofW1I,W followed by a single application of

W, the system reaches a superposition such that the amplitude is equal intadtdbes and zero everywhere else.

Note the following three points regarding this scheme:

As in (4.3), the operation inverts the phase foBatlstates.

- The above implementation requirds  to be known in advance.

The search time iR faster than the exhaustive search algorithm of (4.1).

It is necessary to chooses theQ state, this is different from (4.1) wheeeuld be arbitrary.

45 Problem f(x) = O except at the single poit Some information aboutis available in the form ofx n-bit
strings, each of which differs frotrin exactly k bits.

This is in some sense the dual of (4.4). In that case there were muigpées but a singlestate, while in this
problem there are multiplestates and a singtestate. This kind of problem could occur in extracting a signal out of

multiple noisy transmissions.
Solution Let thea specified states be thatates. Initialize the system to a superposition of these states by the pro-

cess described in (4.3)(a). After this, apply the unitary transform  which applies the following unitary operation

Tk Kk n-k k
1_5 4/;_1 to each qubit. As in (4.2)|U.] = %—I—(DT[L(DE antbg|U, | = Jlo n_—I_<_I_<|0 n—k for
- - qubit AV =d-18  Go 9[Urd = 310975~ ~3l0g
-
all s-states. Also, since each of teestates differ front in exactly the same number of bits implies thaf, has the

same sign for alb-states. The framework of (4.3) can now be used - this yields an algorithm tk/at is times faster

than that of (4.2).



4.6 Multiple s-states & a single t-state such that U, between various s-states & t is not identical f(x) = 0

everywhere, except at the single pdims in (4.3), some structure to the problem is specifiedWia . Assume that we

have at our disposal a unitary transfokth  and varisstates are specified. However, unlike (4.8), between

variouss and varioug-states ar@ot exactly equal. This case is qualitatively different from all of those considered so
far because the analysis of section 2 or the modified analysis of (4.3), does not directly apply.

This extends the noisy data-transmission problem of (4.5), to the case where there are multiple states specified
that are close to the solution state but differ from it in varying number of bits ((4.5) required each of the given states

to differ from the solution irxactly the same number of bits).

Solution Assume the number afstates to bex |, further assume tloat  is a power of 2,d.& 28 . Congitter
: . I . . . . 1,1, 1

be a unitary matrix which is a product of 3 simpler unitary matrice¥, £&/,V,U VangU V2 V,;

V, is a W-H transformation oabits anda  states wheie = 22 ,

V, maps thex = 2% states generated\by onto the respeesiates iMN-dimensional state space,

U is the available unitary transform on fietates.

Let the initial state be th@ state. As a result\ofVv, , the amplitude in each afthe  s@tes..s, _4; ,

a-1
becomesL ; aftet) |, the amplitude in thetate isi z U, - By (4.0), it follows that aft repeti-
Ja Ja a
a=0
tions of Q = I E)V_ll vV followed by a single application ¥ , the amplitude in the target state becomes O(1).

Many of the problems in the previous subsections can be seen to be particular cases of this. For example in case

U.. areall equal, sayta ,thenthe number of iterations becornﬁ? . The algorithm and bound of (4.5) imme-
ulJa

ts,

diately follow from this.

4.7 Two dimensional search Two functions f(x,y) & g(x) are defined on the domain=0,1,...(N-1) ,

y=01..(N-1). f(xy) is zero everywhere except at the unique pgiptt,) g(x) is non-zehd at  values
of x including x = t; (hereM «N ). The problemis to finff &

Classically this problem would tak®@ (NM)  steps. The algorithm of (4.1), without using the furggion

would take O(N) steps. This section presents@n/NM) step algorithm. For a different analysis, along with a



proof that the algorithm of this section is within a constant factor of the fastest possible algorithm, see [Structure].
Several variations of this problem are also briefly considered, these demonstrate how the techniques discussed

in this paper can be applied to real problems.
Solution First consider the functiog(x) x = 0, 1,...(N—=1) .By executing the algorithm of (4.4), withttbates

as the non-zero values g{x) , itis possible for the system to reach a superposition such that at each point at which

g(x) is non-zero, the amplitude isl— and the amplitude is zero everywhere else. This is accomplished by a

M

sequence ooa/gg unitary transformations (4.4) - denote this composite unitary operatidp by . Next keep the

value ofx the same and carry out the algorithm of (4.1) onthe&alues ofy with the-state corresponding to the non-

zero value of the functionf(x,y) . This consists of a sequenc®6{/N) elementary unitary transformations,

denote this composite unitary operation By, . It follows from (4.1), that as a result of this operation sequence, in

casethe particleisat = t; ,itisalsogt=t, .The amplitude of the system being in the desired state is therefore

L . By means of the unitary transformatith = U,U, , the system starting from a certain initial state reaches the

M

desired state with an amplitudej%

SinceU is a sequence of elementary unitary operations, it foIIowsuﬁ%t is a sequence of the adjoints of

the same operations in the opposite order and can hence be synthesized. By applying the procedure of section 2, it fol-

lows that by repeating the sequence of operatQrs—I U _1I Y O(JM) times, the system reaches the target state
with certainty.

The total number of steps is given by the number of repetitior® of ~ Qi(e/M) ) times the number of steps

required for each repetition, (i.%)a/gg+ O(N)H ) which giv@g,/M) x Bba/g% O(J/N)H = O(/NM) .

The above analysis easily extends to more general cases. For example consider the case, where the search-

space is rectangular instead of square, i.e. the number of possible valwes fy s pnd oy s , The number of

steps, instead of bein@(+/NM) , now becon@g/N_l) +O( /NZM) . Alternatively consider the case where there

is ann dimensional space with the same number of pdiNs in each dimension. Insteadf¢kjygt g(x) & ,

there are nown  function$(x,, X,, "'Xr]) 94 (Xq, X, =X _1) 9o(Xq, %o, =X o) e 9 _1(xq)  with analo-

gous definitions. It follows by a similar approach that the number of steps iQ(‘A‘]‘NMle“- Ml’] _1)

Another variation is when the functioh(x, y)  is non-zero at multiple points,ay  points, and it is required



to find one of these. In case each of fhe  points has a different valie of , the framework of (4.3) applies. Consider-

ing the unitary transformatiod  &$,U, , leads to an algorithm that reqD SNEM—E steps.

It is not clear how to derive an algorithm when some ofthe  points have the same value of

5. Conclusion & Further Work [Search] demonstrated how to make use of quantum mechanical properties to
develop exhaustive search kinds of algorithms, i.e. algorithms for problems that lacked any structure. [Search] used
subtle properties of a particular quantum operation called the W-H transform. Subsequently [Gensrch] extended this
so that other quantum operations could be used instead of the W-H transform.

Most interesting problems in computer science are concerned with the structure of problems and how to
develop algorithms to take advantage of this structure. [Hogg] has previously suggested heuristic quantum mechani-
cal algorithms for structured problems. This paper has given several examples of structured problems and how
search-type algorithms can be extended to solve these ((4.2) through (4.7)) - quantitative closed form bounds were
derived for the running time of these algorithms. The extensions have shown how to deal with the situation where
there are multiples-states (initial states) and a singietate (target state) ((4.5) and (4.6)). Also, it is possible to deal
with multiple t-states provided they are exactly symmetric ((4.3) and (4.4)). The next step would be to obtain a gen-

eral algorithm with multiplé-states.
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