Skip to main content

Interpolation in Modal Logic

  • Conference paper
  • First Online:
Algebraic Methodology and Software Technology (AMAST 1999)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1548))

Abstract

The interpolation property and Robinson’s consistency property are important tools for applying logic to software engineering. We provide a uniform technique for proving the Interpolation Property, using the notion of bisimulation. For modal logics, this leads to simple, easy-to-check conditions on the logic which imply interpolation. We apply this result to fibering of modal logics and to modal logics of knowledge and belief.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andréka, H., Németi, I., and Sain, I. (1994). Craig property of a logic and decomposability of theories. In Dekker, P. and Stokhof, M., editors, Proceedings of the 9th Amsterdam Colloquium, pages 87–92, Universiteit van Amsterdam. Institute for Logic, Language and Computation, University of Amsterdam.

    Google Scholar 

  2. Bergstra, J., Heering, J., and Klint, P. (1990). Module algebra. Journal of the Association for Computing Machinery, 37:335–372.

    MATH  MathSciNet  Google Scholar 

  3. de Rijke, M. (1993). Extending Modal Logic. PhD thesis, Institute for Logic, Language and Computation, University of Amsterdam, Universiteit van Amsterdam. ILLC Dissertation Series 1993–4.

    Google Scholar 

  4. Ehrig, H. and Mahr, B. (1985). Fundamentals of Algebraic Specifications, 1:Equations and Initial Semantics. Springer Verlag, Berlin.

    Google Scholar 

  5. Gabbay, D. (forthcoming). Fibring Logics. Oxford UniversityPress.

    Google Scholar 

  6. Halpern, J. and Moses, Y. (1985). A guide to the modal logic of knowledge and belief. In Proceedings IJCAI-85, pages 480–490, Los Angeles, CA.

    Google Scholar 

  7. Hintikka, J. (1962). Knowledge and Belief. Cornell University Press, Ithaca, NY.

    Google Scholar 

  8. Hoek, W. (1993). Systems for knowledge and belief. J. Logic Computat., 3(2):173–195.

    Article  MATH  Google Scholar 

  9. Hughes, G. and Creswell, M. (1984). A Companion to Modal Logic. Methuen.

    Google Scholar 

  10. Maibaum, T. and Sadler, M. (1984). Axiomatising specification theory. In Kreowski, H., editor, 3rd Abstract Data Type Workshop, Fachbereich Informatik 25, pages 171–177. Springer Verlag.

    Google Scholar 

  11. Maibaum, T., Veloso, P., and Sadler, M. (1984). Logical specification and implementation. In Joseph, M. and Shyamasundar, R., editors, Foundations of Software Technology and Theoretical Computer Science, LCNS 186, pages 13–30. Spinger Verlag.

    Google Scholar 

  12. Maksimova, L. (1991). Amalgamation and interpolation in normal modal logics. Studia Logica, L(3/4):457–471.

    Article  MathSciNet  Google Scholar 

  13. Marx, M. (1995). Algebraic Relativization and Arrow Logic. PhD thesis, Institute for Logic, Language and Computation, University of Amsterdam. ILLC Dissertation Series 1995-3.

    Google Scholar 

  14. Marx, M. and Areces, C. (1997). Failure of interpolation in combined modal logics. Technical Report CS-RR-326, University of Warwick, Department of Computer Science. submitted for publication.

    Google Scholar 

  15. Meyer, J.-J., Hoek, W., and Vreeswijk, C. (1991). Epistemic logic for computer science: A tutorial, Parts I and II. EATCS Bulletin, 44:242–270. (Part II is in Vol. 45, 256–287).

    MATH  Google Scholar 

  16. Németi, I. (1985). Cylindric-relativised set algebras have strong amalgamation. Journal of Symbolic Logic, 50(3):689–700.

    Article  MATH  MathSciNet  Google Scholar 

  17. Renardel de Lavalette, G. (1989). Modularisation, parametrisation and interpolation. J. Inf. Process. Cybern. EIK, 25(5/6):283–292.

    MathSciNet  MATH  Google Scholar 

  18. Rodenburg, P. (1992). Interpolation in equational logic. P9201, Programming Research Group, University of Amsterdam.

    Google Scholar 

  19. Sahlqvist, H. (1975). Completeness and correspondence in the first and second order semantics for modal logic. In Kanger, S., editor, Proc. of the Third Scandinavian Logic Symposium Uppsala 1973, Amsterdam. North-Holland.

    Google Scholar 

  20. van Benthem, J. (1983). Modal Logic and Classical Logic. Bibliopolis, Naples.

    Google Scholar 

  21. van Benthem, J. (1996). Modal foundations for predicate logic. In Orlowska, E., editor, Memorial Volume for Elena Rasiowa, Studia Logica Library. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Marx, M. (1998). Interpolation in Modal Logic. In: Haeberer, A.M. (eds) Algebraic Methodology and Software Technology. AMAST 1999. Lecture Notes in Computer Science, vol 1548. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-49253-4_13

Download citation

  • DOI: https://doi.org/10.1007/3-540-49253-4_13

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-65462-9

  • Online ISBN: 978-3-540-49253-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics