
Verification of Temporal Properties of Processes
in a Setting with Data

Jan Friso Groote112 and Radu Mateescu3*

1 Cwr, P.O. Box 94079, NL-1090 GB Amsterdam, The Netherlands
2 Eindhoven University of Technology, P.O. Box 513

NL-5600 MB Eindhoven, The Netherlands
JanFriso.Groote©cwi.nl

3 INRIA Rh6ne-Alpes / VASY group, 655, avenue de !'Europe
F-38330 Montbonnot Saint Martin, France

Radu.Mateescu©inria.fr

Abstract. We define a value-based modal µ-calculus, built from first­
order formulas, modalities, and fixed point operators parameterized by
data variables, which allows to express temporal properties involving
data. We interpret this logic over µCRL terms defined by linear process
equations. The satisfaction of a temporal formula by a µCRL term is
translated to the satisfaction of a first-order formula containing parame­
terized fixed point operators. We provide proof rules for these fixed point
operators and show their applicability on various examples.

1 Introduction

In recent years we have applied process algebra in numerous settings [4,8,12].
The first lesson we learned is that process algebra pur sang is not very handy,
and we need an extension with data. This led to the language µCRL (micro
Common Representation Language) [13]. The next observation was that it is
very convenient to eliminate the parallel operator from a process description
and reduce it to a very restricted form, which we call a linear process equation or
linear process operator [3]. Such an elimination can be done automatically [5,9]
and generally yields a compact result, of the same size as the original system
description. For proving equations of the form specification=implementation, a
proof methodology has been developed [14] and has been applied to numerous
examples (see e.g. [4,8,11,20]) that all have infinite or unbounded state spaces.

An obvious question that has not been addressed thus far is whether the
linear process format can also be employed in proving temporal logic formulas.
In this paper we provide a way of doing so that roughly goes as follows. First,
we extend the modal µ-calculus [16] to express properties about data, meaning
that we include boolean expressions on data variables, parameterization of ac­
tions contained in the modalities, quantification over data, and parameterization

* This work has been funded by the grant no. 97-09 of the ERCIM fellowship programme
for collaboration between INRIA and Cw!.

A.M. Haeberer (Ed.): AMAST'98, LNCS 1548, pp. 74-90, 1998.
© Springer-Verlag Berlin Heidelberg 1998

Verification of Temporal Properties of Processes in a Setting with Data 75

of minimal and maximal fixed point operators. A typical example of temporal
property expressed in this logic is

(vY(n:N).:Jm:N. (a(m + n)) Y(m + n))(2)

describing the states from which an infinite sequence of actions a(io)a(i1)a(i2) · · ·
can be performed, where 2 :S i 0 :S i 1 :S i 2 :S · · .. Another example of formula is

\li:N.[a(i)](i > n)

stating that whenever an a(i) action can be performed, i must be larger than n.
The second step is to prove that a given linear process satisfies such a tempo­

ral formula. To achieve this, we first transform both the process and the tempo­
ral formula into a first-order fixed point formula. This approach is similar to the
model-checking algorithms in [2,22,1], where a formula of standard µ-calculus
(i.e., without data) and a finite state automaton are combined to form a set of
fixed point boolean equations, which can be solved in linear time, provided the
formula is alternation-free. In our setting, this transformation applies to the full
logic (formulas of arbitrary alternation depth), is purely syntactical, and in many
cases can be carried out by hand, as both the linear process and the temporal
formula are generally quite small.

In order to solve the first-order fixed point formulas obtained in this way, we
use the standard proof rules for connectives and quantifiers, and we introduce
a set of proof rules for fixed point operators allowing to approximate (towards
either satisfaction, or refutation) the fixed point (sub)formulas. If the initial state
of the process satisfies an approximation of a maximal fixed point formula, we
know that it satisfies the maximal fixed point too. The approximation of minimal
fixed points captures the fact that the property expressed by a minimal fixed
point formula must be reached in a finite number of steps. These rules reflect
the proof principles for safety and liveness properties discussed in [17].

We included a simple example and a slightly more elaborate one, in order
to show how the proof method that we propose can be used. We have also suc­
cessfully applied the method to verify a distributed summing protocol [11], but
due to space limitations we have not included it in this paper. All these exam­
ples are quite promising, as they show that our method leads to straightforward
arguments of validity of the temporal formulas.

Other approaches to prove temporal properties involving data that we are
aware of [19,7] use tableau-based methods, often directed towards decomposing
the property over the system. The approach we adopt here is different, being
intended to facilitate manual verification in the natural deduction style (see
also [15]). Since the linear processes obtained from µCRL specifications are gen­
erally small, we expect a good applicability of our method to various examples.

The paper is organized as follows. Section 2 defines the linear µCRL pro­
cesses and their models. Section 3 gives the syntax and semantics of the extended
µ-calculus that we propose, together with examples of temporal properties. Sec­
tion 4 presents the verification method, i.e., the translation into first-order fixed
point formulas and the proof rules for extremal fixed points. Finally, Section 5
shows the application of this method on an infinite-state linear µCRL process.

76 Jan Friso Groote and Radu Mateescu

2 Preliminaries

We define below the notions of data expression, linear process, and labeled tran­
sition system (LTs), over which the temporal logic formulas will be interpreted.

2.1 Expressions

The set Exp of data expressions is defined over a set DVar of data variables and
a set Fune of functions. Each data variable x E DVar has a type D and each
function f E Fune has a profile Di x · · · x Dn --> D, where Di, ... , Dn are
the argument types of f and D is its result type. We write Val for the domain
containing all the values belonging to the types D. The expressions e E Exp are
defined by the following grammar:

e ::= x I /(e1, ... , en)

The set of variables occurring in an expression e is noted var(e).
We define the domain DEnv = DVar--> Val of data environments. A data

environment e E DEnv is a partial function mapping data variables into values
of their corresponding types. The support of an environment e, noted supp(c.),
denotes the set of variables that are assigned a value in Val by e. An environment
mapping the variables x1, ... , Xn respectively to the values v1, ... , Vn is noted
[vi/x1, ... ,vn/xn]· The environment having an empty support is noted [].The
overriding of e by [vi/xi, ... , vn/xn] is the data environment defined as follows:
(e[vifx1, ... ,vn/xn])(x) =if 3i E [1,n].x = Xi then Vi else c.(x).

The semantics of data expressions is given by the interpretation function
[.D : Exp--> DEnv--> Val, defined inductively below. For an expression e and
a data environment e such that var(e) ~ supp(e), [e] e denotes the value of e in
the context of e:

[x] e ~f e(x)

[/(e1, ... , en)] e ~f /([e1] e, ... , [en] e)

We assume that the domain Bool = { tt, ff} of boolean values is predefined,
together with the usual operations /\, V, -., and -->. Boolean expressions are
denoted by the symbol b.

2.2 Linear Processes

Linear processes share with LTSs the advantage of being a simple, straightfor­
ward notation, suitable for further analysis of processes in either automatic or
manual form. But they do not share the most important disadvantage, namely
the exponential blow-up caused by the parallel operator (see [5]). As we are in­
terested in devising analysis methods for realistic distributed systems, it is clear
that LTss are not satisfactory. Therefore, we use the linear processes, of which
we give a definition below.

Let Act be a set of actions, which may be parameterized by data values.

Verification of Temporal Properties of Processes in a Setting with Data 77

Definition 1. Let Act ~ Act U {r} be a finite set of actions and D, Da, Ea
be data types. A linear process over Act and D is defined by an equation of the
following form:

X(x:D) = I:: I:: a(ea)·X(e~) <l ba., 8
aEAct:r: .. :Ea

where x is a parameter of type D, and for each action a E Act, Xa is a variable
of type Ea, ea and e~ are expressions of type Da and D, respectively, and ba
is an expression of type Bool, such that var(ea) U var(e~) U var(ba) ~ {x,xa}·
The constant 8, called deadlock, cannot perform any action. The initial state of
process X may be specified by giving an initial value v0 E D for x.

A linear process expression must be read as follows. If a process is in state
x, then it can perform actions a(ea) provided a value of Xa in Ea can be found
such that ba holds. In such a case, the process ends up in a state e~.

For simplicity, we allow at most one data parameter for any action a E Act
(we assume that r has a dummy parameter) and for each linear process X.
Using pairing and projection, the formalization can be straightforwardly used
with multiple parameters.

2.3 Transition Systems

We consider a linear µCRL process X as in Definition 1. According to the oper­
ational semantics of µCRL [13], the transition system modeling a linear process
is defined as follows.

Definition 2. The transition system of a linear process is a quadruple M =
(S, L, ~,so), where:

- S ~f {X(v) Iv ED} is the set of states;

- L ~f {a(va) I a E Act /\Va E Da} is the set oflabels;

- -lo ~f {X(v) a~ X(v') I a E Act/'\ 3va E Ea.([baD [v/x,va/xa] /\ V~ =
[ea] [v/x, va/xa] /\ v' = [e~] [v/x, va/xa])} is the transition relation;

- so~ X(v0) ES is the initial state.

The definition of the initial state of the process is not mandatory, unless there
are properties of X that must be explicitly verified on X(vo).

3 Temporal Logic

The logic we consider is based upon an extension of the modal µ-calculus [16]
with data variables, quantifiers, and parameterization, in order to express prop­
erties involving data. Other similar value-based formalisms extending the modal
µ-calculus have been used in the framework of symbolic transition systems [19]
and of the polyadic 11"-calculus [7].

78 Jan Friso Groote and Radu Mateescu

The logic we propose here contains a set AForm of action formulas and a
set SForm of state formulas, whose syntax and semantics are defined below. To
simplify the notations, we implicitly consider throughout this section a transition
system M = (S, L, -+, s0), over which the formulas are interpreted.

The action formulas a E AForm are defined by the following grammar:

a::= a(e) I tt I,o I 01"02 I 3y:D.a

where a E Act, e E Exp, and y E DVar is a data variable of type D. The usual
derived operators are also allowed: ff = -itt, 01 V a2 = -i(-ia1 /\ -ia2), 01 -+

a 2 = -,a1 V a 2, 'r/y:D.a = -i3y:D.-ia. Data variables are bound by quantifiers in
the usual way. The set of free data variables of a formula a is noted fdv(o).

The semantics of action formulas is given by the interpretation function [.] :
AForm -+ DEnv -+ 2L, defined inductively below. Given an action formula o
and a data environment c such that fdv(o) ~ supp(c), [a] c denotes the set of
labels satisfying a in the context of c:

[a(e)] c ~f {a([e] c)}

[tt] c ~r L

[-io] c ~f L \ [a] e:

[0:1 /\ 0:2] c ~f [01] c n [02] c

[3y:D.a] c ~f UveD [a] e:[v/y].

The state formulas cp E SForm, built over the set AForm and over a set PVar
of propositional variables, are defined by the following grammar:

cp ::= b I Y(e) I -icp I cp1 /\ cp2 I (a) cp I 3y:D.cp I (µY(y:D).cp)(e)

where b E Exp is a boolean expression, Y E PVar is a (parameterized) propo­
sitional variable, o E AForm is an action formula and y E D Var is a data
variable of type D. Besides the usual derived connectives, we also define the
box modal operator [o] cp = ..., (a) -icp and the maximal fixed point operator
(vY(y:D).cp)(e) = -i(µY(y:D).-icp[-iY/Y])(e), where cp[-iY/Y] denotes the syn­
tactic substitution of Y by ...,y in cp. In the sequel, we let rJ range over {µ, 11}.

Data variables are bound by quantifiers and by parameterization, and propo­
sitional variables are bound by fixed point operators, in the usual way. The sets
of free data variables and free propositional variables of cp are noted fdv(cp) and
fpv(cp), respectively. A formula cp is said closed if fdv(cp) = 0 and fpv(cp) = 0.

We assume that state formulas are syntactically monotonic, i.e., for each for­
mula (aY(y:D).cp)(e), every free occurrence of Yin cp falls under an even number
of negations. This enables to convert any formula cp in Positive Normal Form
(PNF for short) by pushing the negations downwards to its atomic subformulas
and (if necessary) by a-converting it such that there is no variable Y having
both free and bound occurrences in cp. In the sequel, we consider only closed
state formulas in PNF.

Verification of Temporal Properties of Processes in a Setting with Data 79

We define the domain PEnv = PVar-+ (Val-+ 28) of propositional envi­
ronments. A propositional environment p E PEnv is a partial function mapping
propositional variables to functions from the domains of their parameters to sets
of transition system states. The support, bracketed notation, and overriding of
propositional environments are defined in the same way as for data environments.

The semantics of state formulas is given by the interpretation function [.] :
SForm -+ PEnv -+ DEnv -+ 28 , defined inductively below. For a state formula
cp, a propositional environment p, and a data environment c such that fpv(cp) ~
supp(p) and fdv(cp) ~ supp(c), [<p] pc denotes the set of states satisfying cp in the
context of p and c:

[b] pc ct,;,r if [b] c then S else 0

[Y(e)] pc d~,f (p(Y))([e] c)

[cp1 /\ cp2] pc d,;,f [cp1] pc n [cp2] pc

[(a:) cp] pc d~ { X(v) E SI 3v' E D.3a E Act.3va E Da.

a(v.,) 1 }
X(v) --+ X(v) /\ a(va) E [a:] c /\ X(v') E [cp] pc

[3y:D.cp]pc d,;,f {X(v) ES I 3v' E D.X(v) E [cp]p(c[v'/y])}

[(µY(y:D).<p)(e)] pc ct,;,r (µq:;pe:)([e] c)

where the functional q:;pe: : (D -+ 28) -+ (D -+ 28), associated to the formula
µY(y:D).cp, is defined as q:;pe: = >.F:D-+ 28 .>..v:D. [cp] (p[F/Y])(c[v/y]).

It is straightforward to check that, for state formulas in PNF, every functional
q:; pe: associated to a fixed point (sub)formula is monotonic over D -+ 28 . Since the
underlying lattices D -+ 28 are complete, it follows from Tarski's theorem [21]
that every iP Pc functional has a unique minimal fixed point µq) pc and a unique
maximal fixed point viP pc.

3.1 Example

We describe a simple infinite state process, together with some temporal proper­
ties, in order to illustrate the techniques presented in here. In Section 4.3 we will
translate the temporal formulas and in Section 4.5 we will prove the validity of
the first-order fixed point formulas that we have obtained this way. The example
is given by the following linear process equation, describing a slot machine:

X(v:N, b:Bool) = s · X(v + 1, -.b) <l -.b t> 8 +
L:m:N w(m) · X(v - m, -ib) <lb/\ m ~ v t> 8

The parameters v and b denote the current amount of money and the current
state of the machine, respectively. When b equals fj, a user can activate the
machine by inserting a coin (action s); afterwards, b becomes tt and the machine
will deliver the money m won by the user (action w(m)). The initial state of the
system is X(v0 ,ff), for some fixed v0 ;::::: 0. (Actually, the linear process above

80 Jan Friso Groote and Radu Mateescu

allows a user to collect any amount of money he wants, but for the sake of tb
example we do not complicate the slot machine in order to avoid this.)

We are interested in the temporal properties below.

1. A basic liveness property is that, for any amount of money l E N, the machin
can potentially deliver it to a user:

rp1 ~f µY. (w(l)) tt V (tt) Y

2. A stronger liveness property would be that, for any amount of money l E 1'
the machine must eventually deliver it:

rp2 ~ µY. (tt) tt /\ [-iw(l)] Y

3. A basic safety property is that every l E N won in a w(l) action cann<
exceed the initial amount of money vo of the machine, updated with the
and r money that have been inserted and won by users since the initial sta1
of the system, respectively:

r.p3 ~f (vY(p, r:N).Yl:N. [w(l)] (l :::; vo+p-r/\Y(p, r+l))/\.[s] Y (p+l, r)) (0, 0

Clearly, rp1 and rp3 are valid for X, but r.p2 does not hold.

4 Verification

The verification problem consists to check whether a transition system M (giv(
by a linear µCRL process) satisfies a given temporal formula r.p. Two differe1
cases are usually distinguished: global verification, consisting to decide if all tl
states of M satisfy cp, and local verification, consisting to decide if one particul:
state (e.g., the initial state so) of M satisfies r.p. Both instances of the problem c~
be reduced to the satisfaction of a first-order fixed point formula. First we defo
the language of first-order fixed point formulas, next we describe the translati<
of a model M and a state formula rp into a first-order fixed point formula, ar
finally we provide sound proof rules for reasoning about fixed point operators

4.1 First-Order Fixed Point Formulas

We define the syntax and semantics of the set BForm of first-order fixed poi

formulas, which will be used as an intermediate formalism for verification pu
poses. The formulas 'ljJ E BForm, built over a set BVar of boolean variables, a
defined by the following grammar:

'l/J ::= b I Z(e) j -,'lj! j 'ljJ1 /\.'ljJ2 J 3z:D.'lj!1 I (µZ(z:D).'!jJ1)(e)

where b E Exp is a boolean expression and Z E BVar is a (parameterize
boolean variable. The derived boolean, first-order, modal, and fixed point opE
ators are defined as usual. The data and boolean variables are bound in a mann

Verification of Temporal Properties of Processes in a Setting with Data 81

similar to the state formulas 'P· The sets of free data variables and free boolean
variables of '!/; are noted fdv('ljJ) and fbv('ljJ), respectively. For simplicity, we use
only one data parameter in first-order fixed point formulas; the formalization
could be easily extended to allow multiple parameters. In the same way as for
state formulas, we consider here only closed first-order fixed point formulas that
have been translated in PNF.

We introduce the domain BEnv = BVar--+ (Val --+ Bool) of boolean en­
vironments. A boolean environment 17 E BEnv is a partial function mapping
boolean variables to predicates over the domains of the data parameters. The
support, bracketed notation, and overriding of boolean environments are defined
in the same way as for propositional environments.

The semantics of first-order fixed point formulas is given by the interpretation
function [.D : BForm--+ BEnv --+ DEnv --+ Bool, defined inductively below.
For a formula 'I/;, a boolean environment 77, and a data environment c: such that
fbv('l/;) <; supp(17) and fdv('I/;) <; supp(c:), [,P] rye: denotes the truth value of 'I/; in
the context of rJ and c::

[b] 1]€ ~ [b] €

[Z(e)] 77c: ~f (ry(Z))([e] c:)

[1f!1 A 'l/J2] 1]€ ~f ['l/Jd TJC: A ['l/;2] TJC:

[3z:D.'l/J] rye: ~f 3v E D. ['I/;] 77(c:[v/ z])

[(µZ(z:D).'l/J) (e)] rye: ct,,;r (µJli11<=) ([e] c:)

where the functional Jli,.,<= : (D --+ Bool) --+ (D --+ Bool), associated to the for­
mula µZ(z:D).'l/;, is defined as Jli11<= = >..G:D--+ Bool.>..v:D. [7,b] (ry[G/Z])(c:[v/z]).

The functionals l/t11<= associated to the first-order fixed point formulas being
monotonic, and the underlying lattices D --+ Bool being complete, it follows
from Tarski's theorem that each functional l/t11<= has a unique minimal fixed point
µl/t11<= and a unique maximal fixed point vl/t11<=.

4.2 Transformation of the Verification Problem

Consider the following linear µCRL process:

X(x:D) = L L a(ea)·X(e~) <l bat>§
aEActxa.:Ea

As we precised in Section 2.3, the states of the corresponding transition system
are identified with terms X(v), where v ED. We assume that the data variables
used in the temporal formulas are disjoint from those used in the linear process.

According to the interpretation of state formulas, a state X (v) satisfies a
formula <.p in the context of a propositional environment p and of a data envi­
ronment c: if and only if X(v) E [rp] pc:. As we will show, this is equivalent to
the fact that a first-order fixed point formula TR('P) is true in the context of

82 Jan Friso Groote and Radu Mateescu

a boolean environment TR(p) and of s[v/x], where the translations TR(cp) and
TR(p), which take the process X as an implicit parameter, are defined below.

Given p E PEnv, the boolean environment TR(p), whose support is given
by supp(TR(p)) = {Zy(x:D,y:D') I Y(y:D') E supp(p)}, is defined as follows:

(TR(p))(Zy) ~f >-.v:D,v':D'.(X(v) E (p(Y))(v'))

for each Zy E supp(TR(p)).
Given cp E SForm, the translation TR(cp) is defined inductively below:

TR(b) ~f b

TR(Y(e)) ~f Zy(x, e)

TR(C,01 /\ C,02) ~f TR(cp1) /\ TR(<p2)

TR((a} cp) ~f VaEAct3xa:Ea.(ba /\ (a(ea) f= a)/\ TR(cp)[e~/xl)
Ta(3y:D'.cp) ~r 3y:D'.TR(cp)

Ta((µY(y:D').cp)(e)) ~f (µZy(xy:D, y:D').TR(cp)[xy /x])(x, e)

where the predicate a(ea) f= a, expressing that an action a(ea) satisfies an action
formula a E AForm, is defined inductively as follows:

a(ea) f= a'(e') ~fa= a'/\ ea = e'

a(ea) f= tt ~f tt

a(ea) f= -.a ~f -i(a(ea) f= a)

a(ea) F a1 /\ a2 ~f (a(ea) f= ai) /\(a(ea) f= a2)

a(ea) f= 3y:D.a ~f 3y:D.(a(ea) f= a).

The following lemma states some auxiliary technical properties necessary for
showing the correctness of the TR(cp) translation.

Lemma 1. The following properties hold:

1. For all a E Act, ea E Exp, a E AForm, and e E DEnv such that var(e12) U
fdv(a) s;;; supp(s):

2. For all a E Act and cp E SForm:

fdv(TR(cp)) s;;; (fdv(c,o) U {x}) \ {x12 }.

3. For all 'ljJ E BForm, e E Exp, x E DVar, 7J E BEnv, and c E DEnv such
that var(e) U fdv('l/J) s;;; supp(s):

['l/J[e/xrn fie= ['l/J] ry(s[[e] s/x]).

Verification of Temporal Properties of Processes in a Setting with Data 83

Proof Straightforward, by structural induction on a (property 1), on cp (prop­
erty 2), and on 'I/; (property 3).

The following proposition expresses the relation between a linear process X,
a state formula cp, and the corresponding first-order fixed point formula TR(cp)
obtained after translation.

Proposition 1. Let X(x:D) be a linear process as defined above and let cp be
a state formula. Then, for any p E PEnv and c E DEnv such that fpv(cp) ~
supp(p) and fdv(cp) ~ supp(c) :

[cp] pc= { X(v) ES I [TR(cp)D TR(p)(c[v/x])}.

Proof By structural induction on cp, using Lemma 1.

Using the result above, we can now restate the verification problem of a closed
state formula cp by a linear process X in terms of the satisfaction of a first-order
fixed point formula TR(cp). The global model-checking problem, consisting to
verify that the formula is satisfied by every state of the process, becomes:

Vv:D.(X(v) E [cp] [][]) H

Vv:D. [TR(cp)] TR([])([][v/x]) H

Vv:D. [TR(cp)D [][v/x] H

[Vx:D.TR(cp)D [][].

by Proposition 1

by definition of TR(p)

by definition of[.] 7Jc

(Note that we can use empty environments whenever the formulas are closed
w.r.t. the corresponding variables.) The local model-checking problem, consisting
to verify that the formula is satisfied by the initial state of the process, becomes:

X(vo) E [cp][][] H

[TR(r.p)D TR([])([][vo/x]) H

[TR(cp)D [][vo/x] H

[Vx:D.(x = vo)-+ TR(cp)] [][].

by Proposition 1

by definition of TR(p)

by definition of[.] 7Jc

Using the standard proof rules for first-order logic, together with the rules for
minimal and maximal fixed point operators that will be given in Section 4.4,
we have the basic tools available for proving the first-order fixed point formulas
above.

4.3 Example (Continued)

We continue the example from Section 3.1 by giving the translations of the
formulas cpi, cp2, and cp3. So, to establish the validity of these formulas we must
prove, respectively:

1. (µZ(v:N, b:BooI).(bAl :5 v) V (•bAZ(v + l, •b)) V3m:N.(bA m :5 v AZ(v­
m, ·b))) (v, b);

84 Jan Friso Groote and Radu Mateescu

2. (µY(v:N,b:Bool).(-.b-+ Z(v + 1,-.b)) /\ Vm:N.((b /\ m::; v /\ m # l) -+
Z(v - m, -.b)))(v, b);

3. (vZ(p, r, v:N, b:Bool).Vl, m:N.((b /\ m :::::; v /\ m = l) -+ (l ::; vo + p - r /\
Z(p, r + l, v - m, --ib))) /\ (--ib-+ Z(p + 1, r, v + 1, -.b))) (0, 0, v, b).

4.4 Proof Rules

As shown in Section 4.2, the verification of a data-based temporal logic formula
on a linear µCRL process can be reduced to the satisfaction of a first-order
formula containing fixed point operators. We provide here proof rules associated
to the minimal and maximal fixed point operators. These rules can be naturally
used in conjunction with some proof system for first-order logic (e.g., Gentzen's
natural deduction system (6)) in order to prove the validity of first-order fixed
point formulas.

We first define some auxiliary notations. Consider a fixed point formula
aZ(z:D).1/;1 representing a predicate over D, and let 'l/J2 E BForm such that
fbv(1h) s:;:; fbv('l/11) and fdv('l/J2) ~ fdv('l/J1). The application of 'l/J1 on 'l/J2 is defined
as follows:

'l/J1[1/J2] ~ 'l/J1['l/J2[e/z]/Z(e)]

Intuitively, 'l/J1 ['l/J2] is obtained by substituting all the occurrences of Z(e) in 'l/J1 by
1/;2, in which all occurrences of z have been replaced with the actual parameter e.
The conditions on the variables of 'l/J2 ensure that no free variables of 'l/J2 become
bound in 1/J1[1,b2]. For simplicity, whenever fdv('l/J2) = {z}, we will write 'l/J2(e) for
1/12 [e/ z]. We also assume that the domain N of natural numbers is predefined.
For every k E N, the application k times of 1/J1 on 'l/J2, noted 'l/Jf ['l/J2], is defined
as follows:

'l/J~['!/12] ~f 'l/J2, 'l/J~+ 1 ['1/J2] ~f '1/11[1/J~['l/J2ll
Using these notations, the proof rules for minimal and maximal fixed point
operators are given below:

Vk 2'. O.('l/J2(k) -+'I/If [ff)) LFPUP
(:Jk 2'. O.'l/J2(k)) -+ (µZ(z:D).'l/J2)(z)

Vk 2'. 0.(1/Jf(tt]-+ 'l/J2(k)) G D
FP N

(11Z(z:D).'l/J1)(z)-+ (Vk 2'. 0.'1/12(k))

where 'l/J2(k) means that the variable k, denoting a natural number, occurs free
in 'l/J2. Intuitively, the rules LFPUP, GFPUP and LFPDN, GFPDN allow to ap­
proximate the extremal fixed points towards satisfaction and towards refutation,
respectively. The following proposition states the soundness of these rules.

Proposition 2. The rules LFPUP, LFPDN, GFPUP, and GFPDN defined above
are sound w. r. t. the semantics of the first-order fixed point formulas 'l/J E BForm.

Proof. Given in [10].

Verification of Temporal Properties of Processes in a Setting with Data 85

4.5 Example {Continued)

We show the use of the rules given above by proving the formulas given in
Section 4.3. We consider the three formulas separately. We give the proof of these
formulas in extreme detail, such that every reasoning step can be understood.

1. For the first case we let 1/11 ~f (b/\l $ v) V (•b/\Z(v+ 1, -.b)) V 3m:N.(b/\m $
v/\Z(v-m,-.b)). In order to apply the rule LFPUP we must find some tf;2(k).

We propose 1/J2(k) ~f k > if(l $ v, l•bl, 2(l - v) - l•bi). Here, if(b, x, y)
equals x if b holds and y otherwise; lbl equals 1 if b holds and 0 otherwise.
(Intuitively, k denotes the minimal number of steps necessary to reach a w(l)
action, starting from any state of the system.) Note that the left hand side in
the conclusion of LFPUP becomes 3k;::: O.(k >if (l $ v, l·bl, 2(l-v)-l•bl)),
which is a tautology. So, if we can prove the premises of LFPUP we have
shown that the temporal formula r.p1 is valid in all states of X(v, b).
The premise of LFPUP has become 'efk 2 O.(k > if(l $ v, l•bl, 2(l - v) -
J•bi) -+ 1/lf [ff]). We prove this premise by induction on k. For k = 0 this
holds vacuously, because the left hand side of the implication equals falsum.
Fork= k' + 1, we must prove: k' 2 if(l $ v, l•bl, 2(l - v) - l•bl) -+ (b /\ l S
v) V (•b /\ 1/1~ 1 [.ff](v + 1,-.b)) V 3m:N.(b /\ m $ v /\ 1/Jf [ff](v - m, -.b)). This
is done by making a few case distinctions:

- Suppose b holds and l $ v. Clearly, the statement above is true, as the
first disjunct of the right hand side trivially holds.

- Now, suppose b holds and l > v. We want to show that the third
disjunct holds. As b holds by assumption, it suffices to show that
3m:N.(m $ v/\tf;f[ff](v-m,-.b)). Takem = 0. The proof obligation
reduces to tf;f [ff](v, -.b). This is implied by the induction hypothesis,
because (1Jl2(k'))(v, -.b) = k' > 2(l - v) - 1, which is equivalent in this
case to the left hand side k' 2 2(l - v) of the implication.

- We still must consider the case where -.b. We show that the second
disjunct holds in this case. We must prove that 1Jlf1 [ff] (v + 1, -.b). The left
hand side of the implication becomes k' 2 if(l s v, 1, 2(l-v) -1), which
is easily seen (by distinguishing between the cases l $ v, l = v + 1, and
l > v+ 1) to imply (1/12(k'))(v+ 1, -.b) = k' > if(l S v+ 1, 0, 2(l-v)- 2).
So, the proof obligation follows from the inductive hypothesis.

This finishes the proof of the first temporal formula.
2. We show that this formula does not hold in any state of X. Let 1/11 be the

body of the µZ formula. We apply LFPDN, taking 1112 ~f ff. The left hand
side '1j;i(1/J2] of the premise looks like (•b-+ ff)/\ \im:N.((b /\ m $ v /\ m =f.
l) -+ff), which is equivalent to ff. Thus, the fixed point formula is false for
all v E N and b E Bool.

3. We show that this formula is satisfied by the initial state of the system.
Let tf;1 be the body of the v Z formula. We must prove that (v = vo /\ b =
ff)-+ (vZ(p,r,v:N,b:Bool).1/!1)(0,0,v,b) for all v EN and b E Bool. We
solve this by showing a slightly stronger property, namely that (v = vo + p -
r) -+ (vZ(p, r, v:N, b:Bool).1/11)(p, r, v, b), which implies the above boolean

86 Jan Friso Groote and Ra.du Mateescu

property by instantiating v, b, p, and r with v0 , ff, 0, and 0, respectively. We
apply GFPUP, taking '1/J2 ~f (v = vo+p-r). The premise of GFPUP reduces
to (v = vo+p-r)--+ (\il,m:N.((b/\m s; v/\m = l)--+ (ls; vo+p-r/\v-m =
v0 + p- r- l)) /\ (-ib--+ v + 1=vo+p+1- r)), which is easily seen to be a
tautology. Hence, the initial state X(vo,JJ) satisfies cpg.

5 Application

We present here a more involved verification example using the methodology
described in Section 4. Consider the following linear process Q(q) describing a
queue q:

Q(q) = Ld:Dr(d) · Q(in(d, q)) + s(toe(q)) · Q(untoe(q)) <l lql > 0 t> 8

Data elements d E D are inserted in Q via r(d) actions and are delivered by
Q via s(d) actions. The l·I operator returns the number of elements in a queue.
The in function inserts an element into a queue, the untoe function eliminates
the element which was inserted first into a queue, and the toe function returns
that element. We assume that the domain D has at least one element. The
concatenation of two queues q1 and q2 is described by the linear process below:

Q(q1,q2)=Ld:Dr(d)·Q(in(d,q1),q2) <l tt t>8+
T • Q(untoe(q1), in(toe(q1), q2)) <l lq1I > 0 t> 8 +

s(toe(q2)) · Q(qi, untoe(q2)) <l lq2I > 0 t> 8

The initial state of this process is Q(nil, nil), where nil is a function returning
an empty queue. In the following paragraphs we present the description and
verification of several safety and liveness properties of the process Q.

Property 1. The essential safety property of the system is that every sequence
of elements inserted in Q will be delivered in the same order. This can be neatly
expressed using a fixed point operator parameterized by a queue q storing all
the elements that have been inserted in Q but not yet delivered:

cp1 ~f (vY(q).\ido:D. [r(do)] Y(in(do,q)) /\

)(nil)

[s(do)] (lql > 0 /\ toe(q) =do/\ Y(untoe(q))) /\
[-i3d1:D.(s(d1) V r(d1))] Y(q)

This formula captures exactly the desired behaviour of the system: the two
concatenated queues must behave as a single queue. (Note the presence of the
quantifier in the action formula of the last box modality, in order to express that
an action is different from any s(. ..) or r(. ..) action.) We verify cp1 in the initial
state Q(nil, nil) of the system. This translates as follows:

Verification of Temporal Properties of Processes in a Setting with Data 87

Vqi, q2.(qi = nil/\ q2 = nil)---+

(vZ(qi, q2, q).\:fdo:D.Vd:D.(do = d---+ Z(in(d, qi), q2, in(do, q))) /\

((lq2I > 0 /\do= toe(q2))---+ (lql > 0 /\do= toe(q) /\
Z(qi, untoe(q2), untoe(q)))) /\

(lqil > 0---+ Z(untoe(qi),in(toe(qi),q2),q))

Let 'I/Ji be the body of the v Z formula. To show the first-order fixed point for­
mula above, we prove a slightly stronger property, namely that (qi + q2 = q) ---+
(vZ(qi,q2,q).'l/Ji)(qi,q2,q) for all qi, q2, and q, where qi+ q2 denotes the con-

catenation of qi and q2. We use the rule GFPUP, taking 'l/J2 ~f (qi + q2 = q).
The premise 'l/J2---+ wi[w2] of GFPUP reduces to the following three implications:

1. lrldo, d:D.(qi + q2 = q /\do = d) ---+ (in(d, qi)+ q2 =in(do, q));
2. lrldo:D.(qi + q2 = q /\ lq2I > 0 /\do= toe(q2))---+ (!qi > 0 /\do= toe(q) /\qi+

untoe(q2) = untoe(q));
3. Vdo:D.(qi + q2 = q /\ lqil > 0)---+ (untoe(qi) + in(toe(qi),q2) = q).

These properties can be easily shown using an appropriate axiomatization of
the queue operators. Now, by instantiating q to nil, and since (q1 = nil /\
q2 = nil) ---+ (qi + q2 = nil), this implies that (q1 = nil /\ q2 = nil) ---+

(vZ(qi, q2, q).'lf;i)(qi, q2, nil) for all qi and q2. Hence, Q(nil, nil) satisfies 'Pl·

Property 2. A simple liveness property (which also implies deadlock freedom) is
that every datum do ED can be potentially inserted in Q by an action r(do):

cp2 d,~,f µY. (r(do)) tt V (tt) Y

The verification of cp2 in all the states of Q translates as follows:

\:fq1, q2.(µZ(q1, q2).3d:D.(d =do) V 3d:D.Z(in(d, q1), q2) V
(lq1I > O/\Z(untoe(q1),in(toe(q1),q2))) V

(lq2I > 0 /\ Z(qi, untoe(q2)))

We write 'lj;1 for the body of the µZ formula. Since the disjunct 3d:D. (d = do) is
trivially true, 'lj.r1 reduces to tt and, by applying the rule LFPUP with 1/12(k) = tt,
it follows that (µZ(qi,q2).1/J1)(q1,q2) is valid for all values of qi and q2. Hence,
cp2 holds in all states of Q.

Property 8. A more involved liveness property is that every datum do which is
inserted in Q by an action r(d0) will be eventually delivered by an action s(do):

cp3 ~f [r(do)] µY. (tt) tt /\ [-.s(do)] Y

88 Jan Friso Groote and Radu Mateescu

The verification of c.p3 in all the states of Q translates as follows:

Vq1, q2.'Vd:D.d =do -t

(µZ(qi, q2).Vd:D.Z(in(d, qi), q2) /\
(lqil > 0 -t Z(untoe(q1),in(toe(q1),q2))) /\

((jq2! > O/\toe(q2) #=do) -t Z(qi,untoe(q2)))
)(in(d, qi), q2)

Let 1/Ji be the body of the µZ formula. Observing that .,Pi[.ff] = ff, the rule
LFPDN leads to (µZ(q1, q2).1/J1)(qi, q2) -t ff for every qi and q2. Then, the
whole first-order fixed point formula reduces to 'Vd:D.d #=do, which is obviously
false. Hence, cp3 does not hold in any state of Q. This happens because one can
always insert data elements into Q (see formula c.p2 above) and, under an unfair
scheduling of actions (but see next paragraph), the process may never deliver an
element, letting qi and q2 grow unboundedly.

Property 4. We may express the formula c.p3 by taking into account only the
execution paths that are fair w.r.t. the action s(d0), i.e., those paths which
cannot infinitely often enable s(do) without infinitely often executing it:

cp4 ~f [r(do)] vYi. [-.s(do)] Yi/\ µY2. (s(do)) tt V (tt) Y2

The formula c.p4 specifies that after do has been inserted in Q, as long as it has
not yet been delivered, it is still possible to deliver it. This is an action-based
instance of the fairness operator proposed in [18], where it was shown that it
expresses the reachability on fair paths.

The verification of c.p4 in all the states of Q translates as follows:

'Vqi, q2. (vZi (qi, q2).'Vd:D.Zi (in(d, qi), q2) /\
(lqil > 0-t Zi(untoe(qi),in(toe(qi),q2))) I\

((jq2j > 0 /\ toe(q2) #=do) -t Zi(qi, untoe(q2))) /\
(µZ2(qi, q2).(jq2I > 0 I\ toe(q2) =do) V 3d:D.Z2(in(d, qi), q2) V

(jqil > 0 /\ Z2(untoe(qi), in(toe(qi), q2))) V

)(qi, q2)
)(in(do, q1), q2)

(lq2I > 0 I\ Z2(qi, untoe(q2)))

Let '!fi1 be the body of the vZi formula. We show the first-order fixed point
formula above by proving a slightly stronger property, namely that do E qi +q2 -t
(vZ1(qi,q2).1/Ji)(qi,q2) for all qi and q2, where E denotes the membership of an
element in a queue. (Having shown this, the validity of the first-order fixed point
formula above follows by instantiating qi with in(do, qi), since do E in(do, qi)+q2
is trivially true.) We apply the rule GFPUP on 1/J1, taking 'lfii ~f do E qi + q2.
The premise 1/Ji [1/JU reduces to the following four implications:

Verification of Temporal Properties of Processes in a Setting with Data 89

1. (do E qi + q2) --> (\:/d:D.do E in(d, q1) + q2);
2. (do E qi+ q2 /\ lq1! > 0) --> (do E untoe(q1) + in(toe(qi), q2));
3. (do E qi + q2 /\ lq2I > 0 /\ toe(q2) I do) -> (do E q1 + untoe(q2));
4. (do E qi + q2) -> (µZ2(qi, q2).1/J2)(qi, q2)

where 1/J2 is the body of the µZ2 subformula. The first three properties follow
easily from an axiomatization of the queue type. We show the last property using

the rule LFPUP, by taking 1/l2(k) d~f do E qi+ q2 /\ 2lq1I + lq2I :::; k (intuitively,
k denotes the minimal number of steps in which an element do already present
in Q can be delivered). Note that the left hand side in the conclusion of LFPUP
becomes 3k;::: O.(do E qi+ q2 /\ 2lq1! + lq2I :::; k), which is trivially equivalent to
do E qi+ q2.

We show the premise Vk ~ 0.(1/J2(k) -1/J~ltf]) of LFPUP by induction on k.
For k = 0 this holds vacuously, because 1/J2(0) is false. Fork= k' + 1, we must
prove that (do E qi+ q2 /\ 2lqil + lq2I :::; k' + 1)-> 1/Jr+iltf]. We distinguish two
cases:

- !qi I > 0. We show that the left hand side of the implication above implies
the disjunct lqil > 0 /\ 't/J~1 ltf](untoe(qi),in(toe(q1),q2)) of 'l,br+1ltf]. The
first conjunct is true by assumption. The second conjunct is implied by
the inductive hypothesis, because: (a) do E qi + q2 -> do E untoe(q1) +
in(toe(q1), q2}, and (b} 2luntoe(qi)I + lin(toe(qi}, q2)1=2lqil + lq2l - l:::; k'.

- lq1I = 0. This implies that lq2I > 0, because do E qi+ q2 by hypothesis. If
toe(q2) =do, then the disjunct lq2! > 0 /\ toe(q2) =do of 1/J~'+iltf] is true. If
toe(q2) I do, the disjunct lq2I >Of\ wf ltf](qi, untoe(q2)) of '1/1~'+ 1 ltf] follows
from the inductive hypothesis, because: (a) do E qi + untoe(q2}, and (b)
2lqil + luntoe(q2)I = 2lqil + lq2l- l:::; k'.

This concludes the proof that all the states of Q satisfy <p4.

Acknowledgements

We are grateful to Yaroslav Usenko, Anubhav Gupta, and to the anonymous
referees for their careful reading and judicious comments on this paper.

References

1. Andersen, H.R.: Model Checking and Boolean Graphs. Theoretical Computer Sci­
ence, 126(1):3-30, 1994.

2. Arnold, A., Crubille, P.: A Linear Algorithm to Solve Fixed-Point Equations on
Transition Systems. Information Processing Letters, 29:57--66, 1988.

3. Bezem, M.A., Groote, J.F.: Invariants in Process Algebra with Data. In: Jonsson,
B., Parrow, J. (eds.): Proceedings of CONCUR'94 (Uppsala, Sweden), LNCS 836,
pp. 401-416, Springer Verlag, 1994.

4. Bezem, M.A., Groote, J.F.: A Correctness Proof of a One Bit Sliding Window
Protocol in µCRL. The Computer Journal, 37(4):289--307, 1994.

90 Jan Friso Groote and Radu Mateescu

5. Bosscher, D., Ponse, A.: Translating a Process Algebra with Symbolic Data Values
to Linear Format. In: Engberg, U.H., Larsen, K.G., Skou, A. (eds.), Proceedings
of TACAS'95 (Aarhus, Denmark), BRICS Notes Series, pp. 119-130, University of
Aarhus, 1995.

6. van Dalen, D.: Logic and Structure. Springer Verlag, 1994.
7. Dam, M.: Model Checking Mobile Processes. Information and Computation,

129:35-51, 1996.
8. Fredlund, L.-A., Groote, J.F., Korver, H.: Formal Verification of a Leader Election

Protocol in Process Algebra. Theoretical Computer Science, 177:459-486, 1997.
9. Groote, J.F.: A Note on n Similar Parallel Processes. In: Gnesi, S., Latella, D.

(eds.), Proceedings of the 2nd ERCIM Int. Workshop on Formal Methods for Indus­
trial Critical Systems {Cesena, Italy), pp. 65-75, 1997. (See also Report CS-R9626,
CWI, Amsterdam, 1996).

10. Groote, J.F., Mateescu, R.: Verification of Temporal Properties of Processes in a
Setting with Data. Technical Report SEN-R9804, CWI, Amsterdam, 1998.

11. Groote, J.F., Manin, F., Springintveld, J.: A Computer Checked Algebraic Verifi­
cation of a Distributed Summing Protocol. Computer Science Report 97 /14, Dept.
of Math. and Comp. Sci., Eindhoven University of Technology, 1997.

12. Groote, J.F., van de Pol, J.C.: A Bounded Retransmission Protocol for Large Data
Packets. A Case Study in Computer Checked Verification. In: Wirsing, M., Nivat,
M. (eds.), Proceedings of AMAST'96 {Munich, Germany), LNCS 1101, pp. 536-
550, Springer Ver!ag, 1996.

13. Groote, J.F., Ponse, A.: The Syntax and Semantics of µCRL. In: Ponse, A., Verhoef,
C., van Vlijmen, S.F.M. (eds.), Algebra of Communicating Processes, Workshops
in Computing, pp. 26-1:i2, 1994.

14. Groote, J.F., Springintveld, J.: Focus Points and Convergent Process Operators.
A Proof Strategy for Protocol Verification. Technical Report 142, Logic Group
Preprint Series, Utrecht University, 1995. (See also Technical Report CS-R9566,
CWI, Amsterdam, 1995).

15. Kindler, A., Reisig, W., Volzer, H., Walter, R.: Petri Net Based Verification of
Distributed Algorithms: an Example. Formal Aspects of Computing, 9:409--424,
1997.

16. Kozen, D.: Results on the Propositional µ-calculus. Theoretical Computer Science
27, pp. 333-354, 1983.

17. Manna, Z., Pnueli, A.: Adequate Proof Principles for Invariance and Liveness Prop­
erties of Concurrent Programs. Science of Computer Programming 32:257-289,
1984.

18. Queille, J-P., Sifakis, J.: Fairness and Related Properties in Transition Systems -
a Temporal Logic to Deal with Fairness. Acta Informatica, 19:195--220, 1983.

19. Rathke, J., Hennessy, M.: Local Model Checking for a Value-Based Modal
µ-calculus. Technical Report 5/96, School of Cognitive and Computing Sciences,
University of Sussex, 1996.

20. Shankland, C.: The Tree Identify Protocol of IEEE 1394. In: Groote, J.F., Luttik,
B., van Warne!, J. (eds.), Proceedings of the 3rd ERCIM Int. Workshop on Formal
Methods for Industrial Critical Systems {Amsterdam, The Netherlands), pp. 299-
319, 1998.

21. Tarski, A.: A Lattice-Theoretical Fixpoint Theorem and its Applications. Pacific
Journal of Mathematics 5, pp. 285--309, 1955.

22. Vergauwen, B., Lewi, J.: A Linear Algorithm for Solving Fixed-Point Equations
on Transition Systems. Proceedings of CAAP'92 (Rennes, Prance), LNCS 581,
pp. 322-341, Springer Verlag, 1992.

