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Abstract. We define a value-based modal µ-calculus, built from first
order formulas, modalities, and fixed point operators parameterized by 
data variables, which allows to express temporal properties involving 
data. We interpret this logic over µCRL terms defined by linear process 
equations. The satisfaction of a temporal formula by a µCRL term is 
translated to the satisfaction of a first-order formula containing parame
terized fixed point operators. We provide proof rules for these fixed point 
operators and show their applicability on various examples. 

1 Introduction 

In recent years we have applied process algebra in numerous settings [4,8,12]. 
The first lesson we learned is that process algebra pur sang is not very handy, 
and we need an extension with data. This led to the language µCRL (micro 
Common Representation Language) [13]. The next observation was that it is 
very convenient to eliminate the parallel operator from a process description 
and reduce it to a very restricted form, which we call a linear process equation or 
linear process operator [3]. Such an elimination can be done automatically [5,9] 
and generally yields a compact result, of the same size as the original system 
description. For proving equations of the form specification=implementation, a 
proof methodology has been developed [14] and has been applied to numerous 
examples (see e.g. [4,8,11,20]) that all have infinite or unbounded state spaces. 

An obvious question that has not been addressed thus far is whether the 
linear process format can also be employed in proving temporal logic formulas. 
In this paper we provide a way of doing so that roughly goes as follows. First, 
we extend the modal µ-calculus [16] to express properties about data, meaning 
that we include boolean expressions on data variables, parameterization of ac
tions contained in the modalities, quantification over data, and parameterization 
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of minimal and maximal fixed point operators. A typical example of temporal 
property expressed in this logic is 

(vY(n:N).:Jm:N. (a(m + n)) Y(m + n))(2) 

describing the states from which an infinite sequence of actions a( io)a( i1 )a( i2) · · · 
can be performed, where 2 :S i 0 :S i 1 :S i 2 :S · · .. Another example of formula is 

\li:N.[a(i)](i > n) 

stating that whenever an a( i) action can be performed, i must be larger than n. 
The second step is to prove that a given linear process satisfies such a tempo

ral formula. To achieve this, we first transform both the process and the tempo
ral formula into a first-order fixed point formula. This approach is similar to the 
model-checking algorithms in [2,22,1], where a formula of standard µ-calculus 
(i.e., without data) and a finite state automaton are combined to form a set of 
fixed point boolean equations, which can be solved in linear time, provided the 
formula is alternation-free. In our setting, this transformation applies to the full 
logic (formulas of arbitrary alternation depth), is purely syntactical, and in many 
cases can be carried out by hand, as both the linear process and the temporal 
formula are generally quite small. 

In order to solve the first-order fixed point formulas obtained in this way, we 
use the standard proof rules for connectives and quantifiers, and we introduce 
a set of proof rules for fixed point operators allowing to approximate (towards 
either satisfaction, or refutation) the fixed point (sub )formulas. If the initial state 
of the process satisfies an approximation of a maximal fixed point formula, we 
know that it satisfies the maximal fixed point too. The approximation of minimal 
fixed points captures the fact that the property expressed by a minimal fixed 
point formula must be reached in a finite number of steps. These rules reflect 
the proof principles for safety and liveness properties discussed in [17]. 

We included a simple example and a slightly more elaborate one, in order 
to show how the proof method that we propose can be used. We have also suc
cessfully applied the method to verify a distributed summing protocol [11], but 
due to space limitations we have not included it in this paper. All these exam
ples are quite promising, as they show that our method leads to straightforward 
arguments of validity of the temporal formulas. 

Other approaches to prove temporal properties involving data that we are 
aware of [19,7] use tableau-based methods, often directed towards decomposing 
the property over the system. The approach we adopt here is different, being 
intended to facilitate manual verification in the natural deduction style (see 
also [15]). Since the linear processes obtained from µCRL specifications are gen
erally small, we expect a good applicability of our method to various examples. 

The paper is organized as follows. Section 2 defines the linear µCRL pro
cesses and their models. Section 3 gives the syntax and semantics of the extended 
µ-calculus that we propose, together with examples of temporal properties. Sec
tion 4 presents the verification method, i.e., the translation into first-order fixed 
point formulas and the proof rules for extremal fixed points. Finally, Section 5 
shows the application of this method on an infinite-state linear µCRL process. 
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2 Preliminaries 

We define below the notions of data expression, linear process, and labeled tran
sition system (LTs), over which the temporal logic formulas will be interpreted. 

2.1 Expressions 

The set Exp of data expressions is defined over a set DVar of data variables and 
a set Fune of functions. Each data variable x E DVar has a type D and each 
function f E Fune has a profile Di x · · · x Dn --> D, where Di, ... , Dn are 
the argument types of f and D is its result type. We write Val for the domain 
containing all the values belonging to the types D. The expressions e E Exp are 
defined by the following grammar: 

e ::= x I /(e1, ... , en) 

The set of variables occurring in an expression e is noted var(e). 
We define the domain DEnv = DVar--> Val of data environments. A data 

environment e E DEnv is a partial function mapping data variables into values 
of their corresponding types. The support of an environment e, noted supp(c.), 
denotes the set of variables that are assigned a value in Val by e. An environment 
mapping the variables x1, ... , Xn respectively to the values v1, ... , Vn is noted 
[vi/x1, ... ,vn/xn]· The environment having an empty support is noted [].The 
overriding of e by [vi/xi, ... , vn/xn] is the data environment defined as follows: 
(e[vifx1, ... ,vn/xn])(x) =if 3i E [1,n].x = Xi then Vi else c.(x). 

The semantics of data expressions is given by the interpretation function 
[.D : Exp--> DEnv--> Val, defined inductively below. For an expression e and 
a data environment e such that var(e) ~ supp(e), [e] e denotes the value of e in 
the context of e: 

[x] e ~f e(x) 

[/(e1, ... , en)] e ~f /([e1] e, ... , [en] e) 

We assume that the domain Bool = { tt, ff} of boolean values is predefined, 
together with the usual operations /\, V, -., and -->. Boolean expressions are 
denoted by the symbol b. 

2.2 Linear Processes 

Linear processes share with LTSs the advantage of being a simple, straightfor
ward notation, suitable for further analysis of processes in either automatic or 
manual form. But they do not share the most important disadvantage, namely 
the exponential blow-up caused by the parallel operator (see [5]). As we are in
terested in devising analysis methods for realistic distributed systems, it is clear 
that LTss are not satisfactory. Therefore, we use the linear processes, of which 
we give a definition below. 

Let Act be a set of actions, which may be parameterized by data values. 
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Definition 1. Let Act ~ Act U {r} be a finite set of actions and D, Da, Ea 
be data types. A linear process over Act and D is defined by an equation of the 
following form: 

X(x:D) = I:: I:: a(ea)·X(e~) <l ba., 8 
aEAct:r: .. :Ea 

where x is a parameter of type D, and for each action a E Act, Xa is a variable 
of type Ea, ea and e~ are expressions of type Da and D, respectively, and ba 
is an expression of type Bool, such that var(ea) U var(e~) U var(ba) ~ {x,xa}· 
The constant 8, called deadlock, cannot perform any action. The initial state of 
process X may be specified by giving an initial value v0 E D for x. 

A linear process expression must be read as follows. If a process is in state 
x, then it can perform actions a(ea) provided a value of Xa in Ea can be found 
such that ba holds. In such a case, the process ends up in a state e~. 

For simplicity, we allow at most one data parameter for any action a E Act 
(we assume that r has a dummy parameter) and for each linear process X. 
Using pairing and projection, the formalization can be straightforwardly used 
with multiple parameters. 

2.3 Transition Systems 

We consider a linear µCRL process X as in Definition 1. According to the oper
ational semantics of µCRL [13], the transition system modeling a linear process 
is defined as follows. 

Definition 2. The transition system of a linear process is a quadruple M = 
(S, L, ~,so), where: 

- S ~f {X(v) Iv ED} is the set of states; 

- L ~f {a(va) I a E Act /\Va E Da} is the set oflabels; 

- -lo ~f {X(v) a~ X(v') I a E Act/'\ 3va E Ea.([baD [v/x,va/xa] /\ V~ = 
[ea] [v/x, va/xa] /\ v' = [e~] [v/x, va/xa])} is the transition relation; 

- so~ X(v0 ) ES is the initial state. 

The definition of the initial state of the process is not mandatory, unless there 
are properties of X that must be explicitly verified on X(vo). 

3 Temporal Logic 

The logic we consider is based upon an extension of the modal µ-calculus [16] 
with data variables, quantifiers, and parameterization, in order to express prop
erties involving data. Other similar value-based formalisms extending the modal 
µ-calculus have been used in the framework of symbolic transition systems [19] 
and of the polyadic 11"-calculus [7]. 
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The logic we propose here contains a set AForm of action formulas and a 
set SForm of state formulas, whose syntax and semantics are defined below. To 
simplify the notations, we implicitly consider throughout this section a transition 
system M = (S, L, -+, s0 ), over which the formulas are interpreted. 

The action formulas a E AForm are defined by the following grammar: 

a::= a(e) I tt I .....,o I 01"02 I 3y:D.a 

where a E Act, e E Exp, and y E DVar is a data variable of type D. The usual 
derived operators are also allowed: ff = -itt, 01 V a2 = -i(-ia1 /\ -ia2), 01 -+ 

a 2 = -,a1 V a 2, 'r/y:D.a = -i3y:D.-ia. Data variables are bound by quantifiers in 
the usual way. The set of free data variables of a formula a is noted fdv( o). 

The semantics of action formulas is given by the interpretation function [.] : 
AForm -+ DEnv -+ 2L, defined inductively below. Given an action formula o 
and a data environment c such that fdv(o) ~ supp(c), [a] c denotes the set of 
labels satisfying a in the context of c: 

[a(e)] c ~f {a([e] c)} 

[tt] c ~r L 

[-io] c ~f L \ [a] e: 

[0:1 /\ 0:2] c ~f [01] c n [02] c 

[3y:D.a] c ~f UveD [a] e:[v/y]. 

The state formulas cp E SForm, built over the set AForm and over a set PVar 
of propositional variables, are defined by the following grammar: 

cp ::= b I Y(e) I -icp I cp1 /\ cp2 I (a) cp I 3y:D.cp I (µY(y:D).cp)(e) 

where b E Exp is a boolean expression, Y E PVar is a (parameterized) propo
sitional variable, o E AForm is an action formula and y E D Var is a data 
variable of type D. Besides the usual derived connectives, we also define the 
box modal operator [o] cp = ..., (a) -icp and the maximal fixed point operator 
(vY(y:D).cp)(e) = -i(µY(y:D).-icp[-iY/Y])(e), where cp[-iY/Y] denotes the syn
tactic substitution of Y by ...,y in cp. In the sequel, we let rJ range over {µ, 11}. 

Data variables are bound by quantifiers and by parameterization, and propo
sitional variables are bound by fixed point operators, in the usual way. The sets 
of free data variables and free propositional variables of cp are noted fdv( cp) and 
fpv(cp), respectively. A formula cp is said closed if fdv(cp) = 0 and fpv(cp) = 0. 

We assume that state formulas are syntactically monotonic, i.e., for each for
mula (aY(y:D).cp)(e), every free occurrence of Yin cp falls under an even number 
of negations. This enables to convert any formula cp in Positive Normal Form 
(PNF for short) by pushing the negations downwards to its atomic subformulas 
and (if necessary) by a-converting it such that there is no variable Y having 
both free and bound occurrences in cp. In the sequel, we consider only closed 
state formulas in PNF. 
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We define the domain PEnv = PVar-+ (Val-+ 28 ) of propositional envi
ronments. A propositional environment p E PEnv is a partial function mapping 
propositional variables to functions from the domains of their parameters to sets 
of transition system states. The support, bracketed notation, and overriding of 
propositional environments are defined in the same way as for data environments. 

The semantics of state formulas is given by the interpretation function [.] : 
SForm -+ PEnv -+ DEnv -+ 28 , defined inductively below. For a state formula 
cp, a propositional environment p, and a data environment c such that fpv( cp) ~ 
supp(p) and fdv(cp) ~ supp(c), [<p] pc denotes the set of states satisfying cp in the 
context of p and c: 

[b] pc ct,;,r if [b] c then S else 0 

[Y(e)] pc d~,f (p(Y))([e] c) 

[cp1 /\ cp2] pc d,;,f [cp1] pc n [cp2] pc 

[(a:) cp] pc d~ { X(v) E SI 3v' E D.3a E Act.3va E Da. 

a(v.,) 1 } 
X(v) --+ X(v) /\ a(va) E [a:] c /\ X(v') E [cp] pc 

[3y:D.cp]pc d,;,f {X(v) ES I 3v' E D.X(v) E [cp]p(c[v'/y])} 

[(µY(y:D).<p)(e)] pc ct,;,r (µq:;pe:)([e] c) 

where the functional q:;pe: : (D -+ 28 ) -+ (D -+ 28 ), associated to the formula 
µY(y:D).cp, is defined as q:;pe: = >.F:D-+ 28 .>..v:D. [cp] (p[F/Y])(c[v/y]). 

It is straightforward to check that, for state formulas in PNF, every functional 
q:; pe: associated to a fixed point (sub )formula is monotonic over D -+ 28 . Since the 
underlying lattices D -+ 28 are complete, it follows from Tarski's theorem [21] 
that every iP Pc functional has a unique minimal fixed point µq) pc and a unique 
maximal fixed point viP pc. 

3.1 Example 

We describe a simple infinite state process, together with some temporal proper
ties, in order to illustrate the techniques presented in here. In Section 4.3 we will 
translate the temporal formulas and in Section 4.5 we will prove the validity of 
the first-order fixed point formulas that we have obtained this way. The example 
is given by the following linear process equation, describing a slot machine: 

X(v:N, b:Bool) = s · X(v + 1, -.b) <l -.b t> 8 + 
L:m:N w(m) · X(v - m, -ib) <lb/\ m ~ v t> 8 

The parameters v and b denote the current amount of money and the current 
state of the machine, respectively. When b equals fj, a user can activate the 
machine by inserting a coin (action s); afterwards, b becomes tt and the machine 
will deliver the money m won by the user (action w(m)). The initial state of the 
system is X(v0 ,ff), for some fixed v0 ;::::: 0. (Actually, the linear process above 
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allows a user to collect any amount of money he wants, but for the sake of tb 
example we do not complicate the slot machine in order to avoid this.) 

We are interested in the temporal properties below. 

1. A basic liveness property is that, for any amount of money l E N, the machin 
can potentially deliver it to a user: 

rp1 ~f µY. (w(l)) tt V (tt) Y 

2. A stronger liveness property would be that, for any amount of money l E 1' 
the machine must eventually deliver it: 

rp2 ~ µY. (tt) tt /\ [-iw(l)] Y 

3. A basic safety property is that every l E N won in a w(l) action cann< 
exceed the initial amount of money vo of the machine, updated with the 
and r money that have been inserted and won by users since the initial sta1 
of the system, respectively: 

r.p3 ~f (vY(p, r:N).Yl:N. [w(l)] (l :::; vo+p-r/\Y(p, r+l))/\.[s] Y (p+l, r)) (0, 0 

Clearly, rp1 and rp3 are valid for X, but r.p2 does not hold. 

4 Verification 

The verification problem consists to check whether a transition system M (giv( 
by a linear µCRL process) satisfies a given temporal formula r.p. Two differe1 
cases are usually distinguished: global verification, consisting to decide if all tl 
states of M satisfy cp, and local verification, consisting to decide if one particul: 
state (e.g., the initial state so) of M satisfies r.p. Both instances of the problem c~ 
be reduced to the satisfaction of a first-order fixed point formula. First we defo 
the language of first-order fixed point formulas, next we describe the translati< 
of a model M and a state formula rp into a first-order fixed point formula, ar 
finally we provide sound proof rules for reasoning about fixed point operators 

4.1 First-Order Fixed Point Formulas 

We define the syntax and semantics of the set BForm of first-order fixed poi 

formulas, which will be used as an intermediate formalism for verification pu 
poses. The formulas 'ljJ E BForm, built over a set BVar of boolean variables, a 
defined by the following grammar: 

'l/J ::= b I Z(e) j -,'lj! j 'ljJ1 /\.'ljJ2 J 3z:D.'lj!1 I (µZ(z:D).'!jJ1)(e) 

where b E Exp is a boolean expression and Z E BVar is a (parameterize 
boolean variable. The derived boolean, first-order, modal, and fixed point opE 
ators are defined as usual. The data and boolean variables are bound in a mann 
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similar to the state formulas 'P· The sets of free data variables and free boolean 
variables of '!/; are noted fdv( 'ljJ) and fbv( 'ljJ), respectively. For simplicity, we use 
only one data parameter in first-order fixed point formulas; the formalization 
could be easily extended to allow multiple parameters. In the same way as for 
state formulas, we consider here only closed first-order fixed point formulas that 
have been translated in PNF. 

We introduce the domain BEnv = BVar--+ (Val --+ Bool) of boolean en
vironments. A boolean environment 17 E BEnv is a partial function mapping 
boolean variables to predicates over the domains of the data parameters. The 
support, bracketed notation, and overriding of boolean environments are defined 
in the same way as for propositional environments. 

The semantics of first-order fixed point formulas is given by the interpretation 
function [.D : BForm--+ BEnv --+ DEnv --+ Bool, defined inductively below. 
For a formula 'I/;, a boolean environment 77, and a data environment c: such that 
fbv('l/;) <; supp(17) and fdv('I/;) <; supp(c:), [,P] rye: denotes the truth value of 'I/; in 
the context of rJ and c:: 

[b] 1]€ ~ [b] € 

[Z(e)] 77c: ~f (ry(Z))([e] c:) 

[1f!1 A 'l/J2] 1]€ ~f ['l/Jd TJC: A ['l/;2] TJC: 

[3z:D.'l/J] rye: ~f 3v E D. ['I/;] 77(c:[v/ z]) 

[ (µZ(z:D).'l/J) ( e)] rye: ct,,;r (µJli11<=) ([e] c:) 

where the functional Jli,.,<= : (D --+ Bool) --+ (D --+ Bool), associated to the for
mula µZ(z:D).'l/;, is defined as Jli11<= = >..G:D--+ Bool.>..v:D. [7,b] (ry[G/Z])(c:[v/z]). 

The functionals l/t11<= associated to the first-order fixed point formulas being 
monotonic, and the underlying lattices D --+ Bool being complete, it follows 
from Tarski's theorem that each functional l/t11<= has a unique minimal fixed point 
µl/t11<= and a unique maximal fixed point vl/t11<=. 

4.2 Transformation of the Verification Problem 

Consider the following linear µCRL process: 

X(x:D) = L L a(ea)·X(e~) <l bat>§ 
aEActxa.:Ea 

As we precised in Section 2.3, the states of the corresponding transition system 
are identified with terms X(v), where v ED. We assume that the data variables 
used in the temporal formulas are disjoint from those used in the linear process. 

According to the interpretation of state formulas, a state X ( v) satisfies a 
formula <.p in the context of a propositional environment p and of a data envi
ronment c: if and only if X(v) E [rp] pc:. As we will show, this is equivalent to 
the fact that a first-order fixed point formula TR( 'P) is true in the context of 
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a boolean environment TR(p) and of s[v/x], where the translations TR(cp) and 
TR(p), which take the process X as an implicit parameter, are defined below. 

Given p E PEnv, the boolean environment TR(p), whose support is given 
by supp(TR(p)) = {Zy(x:D,y:D') I Y(y:D') E supp(p)}, is defined as follows: 

(TR(p))(Zy) ~f >-.v:D,v':D'.(X(v) E (p(Y))(v')) 

for each Zy E supp(TR(p)). 
Given cp E SForm, the translation TR(cp) is defined inductively below: 

TR(b) ~f b 

TR(Y(e)) ~f Zy(x, e) 

TR(C,01 /\ C,02) ~f TR(cp1) /\ TR(<p2) 

TR((a} cp) ~f VaEAct3xa:Ea.(ba /\ (a(ea) f= a)/\ TR(cp)[e~/xl) 
Ta(3y:D'.cp) ~r 3y:D'.TR(cp) 

Ta((µY(y:D').cp)(e)) ~f (µZy(xy:D, y:D').TR(cp)[xy /x])(x, e) 

where the predicate a(ea) f= a, expressing that an action a(ea) satisfies an action 
formula a E AForm, is defined inductively as follows: 

a(ea) f= a'(e') ~fa= a'/\ ea = e' 

a(ea) f= tt ~f tt 

a(ea) f= -.a ~f -i(a(ea) f= a) 

a(ea) F a1 /\ a2 ~f (a( ea) f= ai) /\(a( ea) f= a2) 

a(ea) f= 3y:D.a ~f 3y:D.(a(ea) f= a). 

The following lemma states some auxiliary technical properties necessary for 
showing the correctness of the TR( cp) translation. 

Lemma 1. The following properties hold: 

1. For all a E Act, ea E Exp, a E AForm, and e E DEnv such that var(e12 ) U 
fdv(a) s;;; supp(s): 

2. For all a E Act and cp E SForm: 

fdv(TR(cp)) s;;; (fdv(c,o) U {x}) \ {x12 }. 

3. For all 'ljJ E BForm, e E Exp, x E DVar, 7J E BEnv, and c E DEnv such 
that var(e) U fdv('l/J) s;;; supp(s): 

['l/J[e/xrn fie= ['l/J] ry(s[[e] s/x]). 
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Proof Straightforward, by structural induction on a (property 1), on cp (prop
erty 2), and on 'I/; (property 3). 

The following proposition expresses the relation between a linear process X, 
a state formula cp, and the corresponding first-order fixed point formula TR(cp) 
obtained after translation. 

Proposition 1. Let X(x:D) be a linear process as defined above and let cp be 
a state formula. Then, for any p E PEnv and c E DEnv such that fpv(cp) ~ 
supp(p) and fdv( cp) ~ supp( c) : 

[cp] pc= { X(v) ES I [TR(cp)D TR(p)(c[v/x])}. 

Proof By structural induction on cp, using Lemma 1. 

Using the result above, we can now restate the verification problem of a closed 
state formula cp by a linear process X in terms of the satisfaction of a first-order 
fixed point formula TR(cp). The global model-checking problem, consisting to 
verify that the formula is satisfied by every state of the process, becomes: 

Vv:D.(X(v) E [cp] [ ][]) H 

Vv:D. [TR(cp)] TR([ ])([ ][v/x]) H 

Vv:D. [TR(cp)D [ ][v/x] H 

[Vx:D.TR(cp)D [ ][ ]. 

by Proposition 1 

by definition of TR(p) 

by definition of[.] 7Jc 

(Note that we can use empty environments whenever the formulas are closed 
w.r.t. the corresponding variables.) The local model-checking problem, consisting 
to verify that the formula is satisfied by the initial state of the process, becomes: 

X(vo) E [cp][ ][] H 

[TR(r.p)D TR([ ])([ ][vo/x]) H 

[TR(cp)D [ ][vo/x] H 

[Vx:D.(x = vo)-+ TR(cp)] [ ][ ]. 

by Proposition 1 

by definition of TR(p) 

by definition of[.] 7Jc 

Using the standard proof rules for first-order logic, together with the rules for 
minimal and maximal fixed point operators that will be given in Section 4.4, 
we have the basic tools available for proving the first-order fixed point formulas 
above. 

4.3 Example (Continued) 

We continue the example from Section 3.1 by giving the translations of the 
formulas cpi, cp2, and cp3. So, to establish the validity of these formulas we must 
prove, respectively: 

1. (µZ(v:N, b:BooI).(bAl :5 v) V (•bAZ(v + l, •b)) V3m:N.(bA m :5 v AZ(v
m, ·b))) (v, b); 
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2. (µY(v:N,b:Bool).(-.b-+ Z(v + 1,-.b)) /\ Vm:N.((b /\ m::; v /\ m # l) -+ 
Z(v - m, -.b)))(v, b); 

3. (vZ(p, r, v:N, b:Bool).Vl, m:N.( (b /\ m :::::; v /\ m = l) -+ (l ::; vo + p - r /\ 
Z(p, r + l, v - m, --ib))) /\ (--ib-+ Z(p + 1, r, v + 1, -.b))) (0, 0, v, b). 

4.4 Proof Rules 

As shown in Section 4.2, the verification of a data-based temporal logic formula 
on a linear µCRL process can be reduced to the satisfaction of a first-order 
formula containing fixed point operators. We provide here proof rules associated 
to the minimal and maximal fixed point operators. These rules can be naturally 
used in conjunction with some proof system for first-order logic (e.g., Gentzen's 
natural deduction system (6)) in order to prove the validity of first-order fixed 
point formulas. 

We first define some auxiliary notations. Consider a fixed point formula 
aZ(z:D).1/;1 representing a predicate over D, and let 'l/J2 E BForm such that 
fbv(1h) s:;:; fbv('l/11) and fdv('l/J2) ~ fdv('l/J1). The application of 'l/J1 on 'l/J2 is defined 
as follows: 

'l/J1[1/J2] ~ 'l/J1['l/J2[e/z]/Z(e)] 

Intuitively, 'l/J1 ['l/J2] is obtained by substituting all the occurrences of Z(e) in 'l/J1 by 
1/;2, in which all occurrences of z have been replaced with the actual parameter e. 
The conditions on the variables of 'l/J2 ensure that no free variables of 'l/J2 become 
bound in 1/J1[1,b2]. For simplicity, whenever fdv('l/J2) = {z}, we will write 'l/J2(e) for 
1/12 [e/ z]. We also assume that the domain N of natural numbers is predefined. 
For every k E N, the application k times of 1/J1 on 'l/J2, noted 'l/Jf ['l/J2], is defined 
as follows: 

'l/J~['!/12] ~f 'l/J2, 'l/J~+ 1 ['1/J2] ~f '1/11[1/J~['l/J2ll 
Using these notations, the proof rules for minimal and maximal fixed point 
operators are given below: 

Vk 2'. O.('l/J2(k) -+'I/If [ff)) LFPUP 
(:Jk 2'. O.'l/J2(k)) -+ (µZ(z:D).'l/J2)(z) 

Vk 2'. 0.(1/Jf(tt]-+ 'l/J2(k)) G D 
FP N 

(11Z(z:D).'l/J1)(z)-+ (Vk 2'. 0.'1/12(k)) 

where 'l/J2(k) means that the variable k, denoting a natural number, occurs free 
in 'l/J2. Intuitively, the rules LFPUP, GFPUP and LFPDN, GFPDN allow to ap
proximate the extremal fixed points towards satisfaction and towards refutation, 
respectively. The following proposition states the soundness of these rules. 

Proposition 2. The rules LFPUP, LFPDN, GFPUP, and GFPDN defined above 
are sound w. r. t. the semantics of the first-order fixed point formulas 'l/J E BForm. 

Proof. Given in [10]. 
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4.5 Example {Continued) 

We show the use of the rules given above by proving the formulas given in 
Section 4.3. We consider the three formulas separately. We give the proof of these 
formulas in extreme detail, such that every reasoning step can be understood. 

1. For the first case we let 1/11 ~f (b/\l $ v) V ( •b/\Z( v+ 1, -.b)) V 3m:N.(b/\m $ 
v/\Z(v-m,-.b)). In order to apply the rule LFPUP we must find some tf;2(k). 

We propose 1/J2(k) ~f k > if(l $ v, l•bl, 2(l - v) - l•bi). Here, if(b, x, y) 
equals x if b holds and y otherwise; lbl equals 1 if b holds and 0 otherwise. 
(Intuitively, k denotes the minimal number of steps necessary to reach a w(l) 
action, starting from any state of the system.) Note that the left hand side in 
the conclusion of LFPUP becomes 3k;::: O.(k >if (l $ v, l·bl, 2(l-v)-l•bl)), 
which is a tautology. So, if we can prove the premises of LFPUP we have 
shown that the temporal formula r.p1 is valid in all states of X(v, b). 
The premise of LFPUP has become 'efk 2 O.(k > if(l $ v, l•bl, 2(l - v) -
J•bi) -+ 1/lf [ff]). We prove this premise by induction on k. For k = 0 this 
holds vacuously, because the left hand side of the implication equals falsum. 
Fork= k' + 1, we must prove: k' 2 if(l $ v, l•bl, 2(l - v) - l•bl) -+ (b /\ l S 
v) V (•b /\ 1/1~ 1 [.ff](v + 1,-.b)) V 3m:N.(b /\ m $ v /\ 1/Jf [ff](v - m, -.b)). This 
is done by making a few case distinctions: 

- Suppose b holds and l $ v. Clearly, the statement above is true, as the 
first disjunct of the right hand side trivially holds. 

- Now, suppose b holds and l > v. We want to show that the third 
disjunct holds. As b holds by assumption, it suffices to show that 
3m:N.(m $ v/\tf;f[ff](v-m,-.b)). Takem = 0. The proof obligation 
reduces to tf;f [ff](v, -.b). This is implied by the induction hypothesis, 
because (1Jl2(k'))(v, -.b) = k' > 2(l - v) - 1, which is equivalent in this 
case to the left hand side k' 2 2(l - v) of the implication. 

- We still must consider the case where -.b. We show that the second 
disjunct holds in this case. We must prove that 1Jlf1 [ff] ( v + 1, -.b). The left 
hand side of the implication becomes k' 2 if(l s v, 1, 2(l-v) -1), which 
is easily seen (by distinguishing between the cases l $ v, l = v + 1, and 
l > v+ 1) to imply (1/12(k'))(v+ 1, -.b) = k' > if(l S v+ 1, 0, 2(l-v)- 2). 
So, the proof obligation follows from the inductive hypothesis. 

This finishes the proof of the first temporal formula. 
2. We show that this formula does not hold in any state of X. Let 1/11 be the 

body of the µZ formula. We apply LFPDN, taking 1112 ~f ff. The left hand 
side '1j;i(1/J2] of the premise looks like (•b-+ ff)/\ \im:N.((b /\ m $ v /\ m =f. 
l) -+ff), which is equivalent to ff. Thus, the fixed point formula is false for 
all v E N and b E Bool. 

3. We show that this formula is satisfied by the initial state of the system. 
Let tf;1 be the body of the v Z formula. We must prove that ( v = vo /\ b = 
ff)-+ (vZ(p,r,v:N,b:Bool).1/!1)(0,0,v,b) for all v EN and b E Bool. We 
solve this by showing a slightly stronger property, namely that ( v = vo + p -
r) -+ (vZ(p, r, v:N, b:Bool).1/11)(p, r, v, b), which implies the above boolean 
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property by instantiating v, b, p, and r with v0 , ff, 0, and 0, respectively. We 
apply GFPUP, taking '1/J2 ~f (v = vo+p-r). The premise of GFPUP reduces 
to (v = vo+p-r)--+ (\il,m:N.((b/\m s; v/\m = l)--+ (ls; vo+p-r/\v-m = 
v0 + p- r- l)) /\ (-ib--+ v + 1=vo+p+1- r)), which is easily seen to be a 
tautology. Hence, the initial state X(vo,JJ) satisfies cpg. 

5 Application 

We present here a more involved verification example using the methodology 
described in Section 4. Consider the following linear process Q(q) describing a 
queue q: 

Q(q) = Ld:Dr(d) · Q(in(d, q)) + s(toe(q)) · Q(untoe(q)) <l lql > 0 t> 8 

Data elements d E D are inserted in Q via r( d) actions and are delivered by 
Q via s(d) actions. The l·I operator returns the number of elements in a queue. 
The in function inserts an element into a queue, the untoe function eliminates 
the element which was inserted first into a queue, and the toe function returns 
that element. We assume that the domain D has at least one element. The 
concatenation of two queues q1 and q2 is described by the linear process below: 

Q(q1,q2)=Ld:Dr(d)·Q(in(d,q1),q2) <l tt t>8+ 
T • Q(untoe(q1), in(toe(q1), q2)) <l lq1I > 0 t> 8 + 

s(toe(q2)) · Q(qi, untoe(q2)) <l lq2I > 0 t> 8 

The initial state of this process is Q(nil, nil), where nil is a function returning 
an empty queue. In the following paragraphs we present the description and 
verification of several safety and liveness properties of the process Q. 

Property 1. The essential safety property of the system is that every sequence 
of elements inserted in Q will be delivered in the same order. This can be neatly 
expressed using a fixed point operator parameterized by a queue q storing all 
the elements that have been inserted in Q but not yet delivered: 

cp1 ~f (vY(q).\ido:D. [r(do)] Y(in(do,q)) /\ 

)(nil) 

[s(do)] (lql > 0 /\ toe(q) =do/\ Y(untoe(q))) /\ 
[-i3d1:D.(s(d1) V r(d1))] Y(q) 

This formula captures exactly the desired behaviour of the system: the two 
concatenated queues must behave as a single queue. (Note the presence of the 
quantifier in the action formula of the last box modality, in order to express that 
an action is different from any s( . .. ) or r( . .. ) action.) We verify cp1 in the initial 
state Q(nil, nil) of the system. This translates as follows: 
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Vqi, q2.(qi = nil/\ q2 = nil)---+ 

(vZ(qi, q2, q).\:fdo:D.Vd:D.(do = d---+ Z(in(d, qi), q2, in( do, q))) /\ 

((lq2I > 0 /\do= toe(q2))---+ (lql > 0 /\do= toe(q) /\ 
Z(qi, untoe(q2), untoe(q)) )) /\ 

(lqil > 0---+ Z(untoe(qi),in(toe(qi),q2),q)) 

Let 'I/Ji be the body of the v Z formula. To show the first-order fixed point for
mula above, we prove a slightly stronger property, namely that (qi + q2 = q) ---+ 
(vZ(qi,q2,q).'l/Ji)(qi,q2,q) for all qi, q2, and q, where qi+ q2 denotes the con-

catenation of qi and q2. We use the rule GFPUP, taking 'l/J2 ~f (qi + q2 = q). 
The premise 'l/J2---+ wi[w2] of GFPUP reduces to the following three implications: 

1. lrldo, d:D.(qi + q2 = q /\do = d) ---+ (in(d, qi)+ q2 =in( do, q)); 
2. lrldo:D.(qi + q2 = q /\ lq2I > 0 /\do= toe(q2))---+ (!qi > 0 /\do= toe(q) /\qi+ 

untoe(q2) = untoe(q)); 
3. Vdo:D.(qi + q2 = q /\ lqil > 0)---+ (untoe(qi) + in(toe(qi),q2) = q). 

These properties can be easily shown using an appropriate axiomatization of 
the queue operators. Now, by instantiating q to nil, and since (q1 = nil /\ 
q2 = nil) ---+ (qi + q2 = nil), this implies that (q1 = nil /\ q2 = nil) ---+ 

(vZ(qi, q2, q).'lf;i)(qi, q2, nil) for all qi and q2. Hence, Q(nil, nil) satisfies 'Pl· 

Property 2. A simple liveness property (which also implies deadlock freedom) is 
that every datum do ED can be potentially inserted in Q by an action r(do): 

cp2 d,~,f µY. (r(do)) tt V (tt) Y 

The verification of cp2 in all the states of Q translates as follows: 

\:fq1, q2.(µZ(q1, q2).3d:D.(d =do) V 3d:D.Z(in(d, q1), q2) V 
(lq1I > O/\Z(untoe(q1),in(toe(q1),q2))) V 

(lq2I > 0 /\ Z(qi, untoe(q2))) 

We write 'lj;1 for the body of the µZ formula. Since the disjunct 3d:D. ( d = do) is 
trivially true, 'lj.r1 reduces to tt and, by applying the rule LFPUP with 1/12(k) = tt, 
it follows that (µZ(qi,q2).1/J1)(q1,q2) is valid for all values of qi and q2. Hence, 
cp2 holds in all states of Q. 

Property 8. A more involved liveness property is that every datum do which is 
inserted in Q by an action r(d0 ) will be eventually delivered by an action s(do): 

cp3 ~f [r(do)] µY. (tt) tt /\ [-.s(do)] Y 
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The verification of c.p3 in all the states of Q translates as follows: 

Vq1, q2.'Vd:D.d =do -t 

(µZ(qi, q2).Vd:D.Z(in(d, qi), q2) /\ 
(lqil > 0 -t Z(untoe(q1),in(toe(q1),q2))) /\ 

((jq2! > O/\toe(q2) #=do) -t Z(qi,untoe(q2))) 
)(in(d, qi), q2) 

Let 1/Ji be the body of the µZ formula. Observing that .,Pi[.ff] = ff, the rule 
LFPDN leads to (µZ(q1, q2).1/J1)(qi, q2) -t ff for every qi and q2. Then, the 
whole first-order fixed point formula reduces to 'Vd:D.d #=do, which is obviously 
false. Hence, cp3 does not hold in any state of Q. This happens because one can 
always insert data elements into Q (see formula c.p2 above) and, under an unfair 
scheduling of actions (but see next paragraph), the process may never deliver an 
element, letting qi and q2 grow unboundedly. 

Property 4. We may express the formula c.p3 by taking into account only the 
execution paths that are fair w.r.t. the action s(d0 ), i.e., those paths which 
cannot infinitely often enable s(do) without infinitely often executing it: 

cp4 ~f [r(do)] vYi. [-.s(do)] Yi/\ µY2. (s(do)) tt V (tt) Y2 

The formula c.p4 specifies that after do has been inserted in Q, as long as it has 
not yet been delivered, it is still possible to deliver it. This is an action-based 
instance of the fairness operator proposed in [18], where it was shown that it 
expresses the reachability on fair paths. 

The verification of c.p4 in all the states of Q translates as follows: 

'Vqi, q2. (vZi (qi, q2).'Vd:D.Zi (in(d, qi), q2) /\ 
(lqil > 0-t Zi(untoe(qi),in(toe(qi),q2))) I\ 

((jq2j > 0 /\ toe(q2) #=do) -t Zi(qi, untoe(q2))) /\ 
(µZ2(qi, q2).(jq2I > 0 I\ toe(q2) =do) V 3d:D.Z2(in(d, qi), q2) V 

(jqil > 0 /\ Z2(untoe(qi), in(toe(qi), q2))) V 

)(qi, q2) 
)(in(do, q1), q2) 

(lq2I > 0 I\ Z2(qi, untoe(q2) )) 

Let '!fi1 be the body of the vZi formula. We show the first-order fixed point 
formula above by proving a slightly stronger property, namely that do E qi +q2 -t 
(vZ1(qi,q2).1/Ji)(qi,q2) for all qi and q2, where E denotes the membership of an 
element in a queue. (Having shown this, the validity of the first-order fixed point 
formula above follows by instantiating qi with in( do, qi), since do E in( do, qi)+q2 
is trivially true.) We apply the rule GFPUP on 1/J1, taking 'lfii ~f do E qi + q2. 
The premise 1/Ji [1/JU reduces to the following four implications: 
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1. (do E qi + q2) --> (\:/d:D.do E in(d, q1) + q2); 
2. (do E qi+ q2 /\ lq1! > 0) --> (do E untoe(q1) + in(toe(qi), q2)); 
3. (do E qi + q2 /\ lq2I > 0 /\ toe(q2) I do) -> (do E q1 + untoe(q2)); 
4. (do E qi + q2) -> (µZ2(qi, q2).1/J2)(qi, q2) 

where 1/J2 is the body of the µZ2 subformula. The first three properties follow 
easily from an axiomatization of the queue type. We show the last property using 

the rule LFPUP, by taking 1/l2(k) d~f do E qi+ q2 /\ 2lq1I + lq2I :::; k (intuitively, 
k denotes the minimal number of steps in which an element do already present 
in Q can be delivered). Note that the left hand side in the conclusion of LFPUP 
becomes 3k;::: O.(do E qi+ q2 /\ 2lq1! + lq2I :::; k), which is trivially equivalent to 
do E qi+ q2. 

We show the premise Vk ~ 0.(1/J2(k) -1/J~ltf]) of LFPUP by induction on k. 
For k = 0 this holds vacuously, because 1/J2(0) is false. Fork= k' + 1, we must 
prove that (do E qi+ q2 /\ 2lqil + lq2I :::; k' + 1)-> 1/Jr+iltf]. We distinguish two 
cases: 

- !qi I > 0. We show that the left hand side of the implication above implies 
the disjunct lqil > 0 /\ 't/J~1 ltf](untoe(qi),in(toe(q1),q2)) of 'l,br+1ltf]. The 
first conjunct is true by assumption. The second conjunct is implied by 
the inductive hypothesis, because: (a) do E qi + q2 -> do E untoe(q1) + 
in(toe(q1), q2}, and (b} 2luntoe(qi)I + lin(toe(qi}, q2)1=2lqil + lq2l - l:::; k'. 

- lq1I = 0. This implies that lq2I > 0, because do E qi+ q2 by hypothesis. If 
toe(q2) =do, then the disjunct lq2! > 0 /\ toe(q2) =do of 1/J~'+iltf] is true. If 
toe(q2) I do, the disjunct lq2I >Of\ wf ltf](qi, untoe(q2)) of '1/1~'+ 1 ltf] follows 
from the inductive hypothesis, because: (a) do E qi + untoe(q2}, and (b) 
2lqil + luntoe(q2)I = 2lqil + lq2l- l:::; k'. 

This concludes the proof that all the states of Q satisfy <p4. 
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