UNIVERSITAT AUGSBURG

Deductive Hardwar e Design:
A Functional Approach

Bernhard Moll er

Report 199709 Dezember1997

|nst|tut
mformatlk

INSTITUT FUR INFORMATIK
D-86135AUGSBURG



Copyright 00 Bernhard Moller
Ingtitut fr Informatik
Universitdt Augsburg
D-86135 Augsburg, Germany
http://www.Informatik.Uni-Augsburg.de
- al rights reserved -




Deductive Hardwar e Design:
A Functional Approach®

Bernhard Moller

Institut fir Informatik
Universitét Augsburg

Abstract. The goa of deductive design is the systematic oconstruction of a system
implementation starting from its behavioural spedfication acording to formal, provably
corred rules. We use Gofer/Haskdl to formulate a functional model of diredional,
synchronous and deterministic systems with discrete time. The asciated algebraic laws
are then employed in deductive hardware design of basic combinational and sequential
circuits as well as a brief acount of pipelining. With this we tadle several of the IFIP
WG 10.5 benchmark verificaion problems. Spedal emphasisis laid on parameterisation
and re-usabili ty aspeds.

Part I: Introduction

1. Deductive Design

The goal of deductive designis the systematic construction of a system implementation
starting from its behavioural spedfication,
acordingto formal, provably corred rules.

The main advantages are the foll owing.

- Theresulting implementation is corred by construction;

The rules can be formulated schematicdly, independent of the particular
applicdion areg
Hencethey are re-usable for wide dasses of similar problems;
Being formal, the design processcan be assisted by machine.

! To appear in: B. Méller, JV. Tucker (eds): Prospeds of Hardware Foundations.
Springer LNCS (in preparation). This research was partialy sponsored by Esprit Working
Group 8533 NADA — New Hardware Design Methodks.



- Implementations can be wnstructed in amodular way.
- Thefirst emphasis lies on corredness,
- Subsequently transformations can be used to increase the performance.
- Aformal derivation servesasa recrd of the design dedsions that went into the
construction of the implementation.
- It isan explanatory documentation and
- eaes revison of the implementation upon modification of the system
spedficaion.
Note that we do not view deductive design as dternative to, but complementary to
verification.

Thereisavariety of approachesto deductive design, e.g.,
- refinement cdculus,
- program extradion from proofs,
- transformations.
We shall follow the latter (see eg. Bauer et al. 89, Partsch 90) and use mainly
- eguational reasoning,
- agebraic laws,
- structural induction,
- fixpoint induction for reaursive definitions.

2. Overview

We show deductive hardware design in the particular areaof

- diredional,

- synchronous and

- deterministic systems with

- discretetime.
The gproach generaises with varying degrees of complexity to adiredional systems,
asynchrony, non-determinacy or continuous time.
We give derivations for basic combinational and seguential circuits as well as a brief
acount of pipelining. This tackles ®vera of the IFIP WG 10.5 benchmark verification
problems (seelFIP 94/97).
Speda emphasisislaid on parameterisation and re-usability aspeds.

3. The Framework

We model hardware functionally in Gofer/Haskdl. The reasons for this are the foll owing.

- Functional languages suppartsvarious views of streams diredly.
- Polymorphism all ows generic formulations and hence supparts re-use.



- Since dl spedficaions are executable, dired prototyping is possble.

An adaptation of the transformation system CIP-S (see Bauer et a. 87) for
Gofer/Haskdl is being constructed at the University of Ulm under H. Partsch.
This will alow dired replay of the paper and pencil derivations done here to
ched their corredness by machine. Moreover, the set of transformation rules
given here can then be re-used for further derivations diredly on the system.

- Functional languages are being considered for their suitability as bases of modern
hardware description languages; an example is the (unforunately abandoned)
language MHDL (seeRhodes 95).

- Many approaches to hardware spedfication and verification also use higher-order
concepts to good advantage (see eg. Gordon 86).

3.1 Basic Typesand Functions

For those not familiar with Gofer, we briefly reped the esential elements of Gofer.

Basic types are Int for the integers and Bod for the Booleans with elements True and
False . The type of functions taking elements of type a & arguments and producing
elements of type b asresultsis a->b . The fad that a function f has this type is
expresedas f::a->b.

Function applicaion is denoted by juxtaposing function and argument, separated by at
leest one blank, in the form f x . Functions of severa arguments are mostly used in
curried form f x; X2 ... X,,. Inthiscase f hasthe higher-order type f:: t; -> (t, -> ... (t, ->
t) ..) or, abbreviated, f :: t; ->t, -> ... t,->t (the arow -> associates to the right,
whereas function appli cation associates to the | eft).

Functions are defined by equations of the form f x = E or as (anonymous) lambda
abstradions. Instead of AX.E one usesthe notation \x -> E .

A two-placefunction f:: a->b->c may also be used as an infix operator in the form x
'f" y; thisisequivalent to the usual application fxy.

Consider now some binary operator # . By supplying only one of its arguments we
obtain aresidud function or sedion of theform (x#) = \y->x#y or #y)=\WX->x#y

3.2 Case Distinction and Assertions

Gofer offers several passibiliti es for doing case distinctions. One is the usual if-then-else
congtruct. To avoid cascades of ifs, a function may also be defined in a style similar to
the one used in mathematics. The notation is

fx
| Cy

E.

|G

En



The result is the value of the first expression E; for which the @rresponding C
evaluatesto True. If thereis none, the result is undefined.

We shall also use thisto make functions intentionall y partial in order to enforce asertions
about their parameters (seeMdll er 96).

If one wantsto avoid pertiality one can use the predefined constant otherwise = True ad
add afinal clause

| otherwise = E.; .

Y et another way of case distinction is provided by defining a function through argument
patterns. Several equations indicate what a function does on inputs that have cetain
shapes. The euations are tried in textual order; if no pettern matches the airrent
argument, the function is again undefined at that point.

Example: By the equations

fo=5

fi=7

function f:: Int->Int isdefined only for argument valuesO and 1.

3.3 Lists

The type of lists of elements of type aisdenoted by [a] . Thelist consisting of elements
X1,...Xn IS Written as [Xg,...Xy] ; in particular, [] is the empty list. Concatenation is
denoted by ++. Thefunction length returnsthe length of alist.
A very useful spedfication feaureislist comprehension in the form

[fx]|x<-L,px]

where L isalist expression, f some function on the list elements and p a boolean
function. The symbal <- may be viewed as a leftward arrow and pronounced as “drawn
from” or as aform of element sign. In this latter view, the expresson is the list analogue
of the usual set comprehenson { f x | x O S, p x}. The meaiing of the list
comprehension expresson is again alist, constructed as foll ows:

- The dementsof list L are scanned in left-to-right order.
- On ead such element x thetest p isperformed.

- If px =True, fx isputintotheresult list.

- Otherwise, x isignored.

Thelist [m, m+1, ..., n] of integers may be denoted by the shorthand [m..n] . The right
bound n may be omitted; then the expression denotes the infinite list [m, m+1, ...] .
A useful operation on non-empty lists is the folding of their elements using a binary
operator:

foldrl f [Xq,...Xn] = FX0 (FXo ... (f Xp1 Xp)-.2) .
E.g. foldrl (+) s computesthe sum of al elementsof s.



Part Il; Combinational Circuits

4. A Modd of Combinational Circuits

4.1 FunctionsasModules

A combinational modue will be modelled as a function taking a list of inputsto a list of
outputs. Diagrammaticaly we represent such amodule f as

This function refleds the behaviour at one dock tick. Using lists of inputs and outputs has
the advantage that the basic connedion operators can be defined independent of the arities
of the functions involved. The disadvantage is that we need uniform typing for all
inputs/outputs. Conventional polymorphism is too we& here; one would need an
extension to "tuples as first-class citizens' with concatenation of tuple types and also of
tuples as primitives.

We now discuss briefly the role of functions as modules of a system. In a higher-order
language such as Gofer there ae two views of functions:

as routines with abody expresson that depends on the formal parameters, asin
conventional |anguages;

as "bladk boxes" which can be fredy manipulated by higher-order functions
(combinators).

The latter view is particularly adequate for functional hardware descriptions, since it
alows the dired definition of various compaosition operations for hardware modues.
However, contrary to ather approaches we do not reason purely at the combinator level,
i.e. without referring to individual in/output values. Whil e this has often advantages, it can
become quite tedious in other places. So we prefer to have the posshbili ty to switch.

The basis for reasoning about functionsisthe exensiondity rule

f=g iff fx=gx foral x.



To show equality of two functional expressons F and G we may hence

- dtart with the expresson Fx;

- unfold F,i.e, pushthe agument x throuch F till cdls h x of usual functions
h result;

- substitute x for the formal parameters of these functions;

- manipulate the resulting expresgon till it hastheform G x .

Then the extensionality ruletellsus F=G.
Many algebraic laws we use ae gualities between functions, interpreted as extensional
equaliti es.
Example: Function compaosition is defined in Gofer by
(f.9x =f(@x
with polymorphic combinator
()u(b->c)->(a->bh)->a->c
A fundamental law is associativity of compasiti on:
(f.gg.h=f.(g.h)

4.2 About Connections

We shall employ two views of connedions between modules:

- that of "rubber wires’, represented by formal parameters or implicitly by
plugging in subexpressions as operands;

- that of "rigid wires", represented by spedal routing functions which are inserted
using basic composition combinators.

Contrary to ather approaches, we proceal in two stages:

- Wedtart at the level of rubber wiring to get afirst corred implementation.
- Then we (medhanicaly) get rid of formal parameters by combinator abstraction
to oltain aversion with rigid wiring.

In drawing diagrams we shall be liberal and use views in between rubber and rigid wiring.
In particular, we shall use various diredions for the input and output arrows.



-]

Example: Splicing along one wire is defined by
splicemf g (xst+[c]) = f (take m xs ++ [u]) ++ us
where (u:us) = g (drop m xs ++ [])

o} ) 4
ezalie

o

We straighten the linesto oltain the foll owing form:

|11

Iatalcel

Lemma: Splicingis associative in the foll owing sense:
splice (m+k) (splicem f g) h=splicemf (splicek gh) .
Moreover, theidentity id onsingleton listsisitsleft and right neutral element.

Often we neal to ded with wire bundles. In the cae of circuits for binary arithmetic
operators the wire bundles for the two operands will be interleaved:



dhulel v by

To extract the corresponding sublists we use

-evns xs = [xs!li | i<-[0.. length xs— 1], even i]
L A A
- odds xs = [xs!li | i<-[0.. length xs— 1], odd i]

vibe b

The onverse is shuf k which shuffles two lists of length k (represented as one list of
length 2*k) and is gedfied by

(shuf kxs) 1 (2*i) = xWi

(shuf k xs) I (2*i+1) = x!! (k+i)

for lengthxs==2*k and i <-[0.k-1] .

Thisis an implicit spedficaion; its clauses will be used as algebraic laws in derivations.
An explicit versionis

shuf k xs

| lengthxs==2*k =
[x!Mif evenitheni'div2elsei‘divi2+k | i <-[0..2*k-1] ]

5. Numbersand Their Representation

We hea now for the derivation of some basic aithmetic drcuits. We only tred natura
numbers, but embedded into Int . Asan auxili ary predicate we use

below :: Int -> Int -> Bodl

nbelowm = 0<=n & & n<m.

Then d isabase p digit iff d below p.Listsof base p dgitsare charaderised by

digits:: Int -> Int -> [Int] -> Bodl
digitspkxs = lengthxs==k && al ("below™p) xs.

Now we define representation and abstradion functions between (the nonegative part of)
Int and lists of base p dgits. To cope with bounded word length, we parameterise then
not only with p but also with the number of digitsto be considered.

First we define the representation function

10



code:: Int-> Int -> Int -> [Int]

Theresult of codepk n isdefined only for p>1 and n below™ p*k ;inthiscaseitis

the base p representation of n in k digits predsion (padded with leading zeros if
necessary):

codep 00 =[]
codep (k+1) n=codep k (ndiv’ p) ++[n ‘'mod’ p]

Example: code2 7 24 =[0,0,1,1,0,0,0]

For the corresponding abstradion function
deo:: Int->Int ->[Int] -> Int
the result of deao pk xs isthe number represented by thelist xs of k base p dgits:

decop 0 ] =0
dew p(k+l) xs = (deo pk(init xs)) * p + last xs
These functions enjoy pleasant algebraic properties:

Lemma 5.1.
Thefunctions code axd dea areinversesof each other:
dew pk(codepkn) = n if n'below ptk
code p k (deco pk xs) = xs if digitspk xs.
Moreover, we have the decompositi on/distributivity properties
codep (j+k) (m* p*k + n) = codepj m++codepkn
if m below pYj && n below’ prk
dew p(j+k) (xs++ys) = (dem pj xs) * p*k + dem pkys
if digitspjxs && digitspkys.

6. Development of an Adder
Asour first case study we derive asimple alder
add:: Int-> Int ->[Int] ->[Int] .
The first parameter is the base, the second the number of digits we trea. For the
spedfication we assume that thelist zs isthe interleaving of the two summands, i.e., that

digits p (2*k) zs holds. Then

add pkzs = codep (k+1) (dem pk (evnszs) + dem pk (odds z9)) .

11



Thelength k+1 for the result list servesto acoommodate apossble overflow digit.

6.1 The Unfold/Fold Strategy

Our first goal is now to derive an inductive (reaursive) version of add which does no
longer refer to deco and code and uses only operations on single digits.
To adchieve this we use the dassicd unfold/fold strategy (see eg. Partsch 90):

Unfold the definitions of dem and code.
Smplify and rearrange.
Fold with the definition of add to get reaursive cdls.

The derivation is driven by the ase structure of dea and code.

Case k=0. We cdculate:

add pOJ]
= codep 1(deco pO[] +dempO][])
= codep 10
= codep 0(0 div' p) ++ [0 "'mod p]
= [1 ++[0]

[0

Thisisthe termination case; here the overflow digit is 0.

Case k > 0. We cdculate, assuming xs=evnszs and ys=oddszs:

add p(k+1) (zs++[x.y])
codep (k+2) (dea p(k+1) (xs++[x]) + deco p(k+1) (ys++[y]) )

code p (k+2) ((decop kxs)*p+ x + (dem pkys)*p+vy)

code p (k+2) ((deco pk xs+ dew p kys)*p +x +y)

code p (k+1) (deco pk xs+ dem pkys+ (x +y) ‘div p) ++ [(x +y) ‘'mod’ p]
This expresgon is ailmost foldable, but because of the alditional summand (x +y) “div' p
we ae stuck!

6.2 Generalisation

A strategy which helps frequently in such cases is generalisation. It works in two stages.

First one introduces additional parameters, which may be completely new ones or
abstradions of constants in the origina spedficaion. These mnstants may even
be "invisible" neutral elements which need to be made explicit first.

Then one uses the alditional degrees of freedom to make the derivation go
through.

12



The original problem is then solved by instantiating the solution for the generalised
problem. This drategy is well-known from inductive prodfs. there one frequently needs to
generalise the induction hypothesis to make the proof go through.

In the cae of our adder we introduce aparameter for the extra summand that prevented
the folding. The generali sed spedficaion reads

cadd p k(xs++][c]) =
code p (k+1) (deco pk (evnsxs) + de pk (odds xs) + ¢)

If one wishes to interpret this, then the new parameter ¢ isthe cary. But note that it has
been introduced purely formally, "without thinking”, as part of the generali sation strategy!
The original problem isretrieved viathe embedding

add pkxs = cadd pk (xs++[0])
Now we @n replay the derivationfor cadd . Thisresultsin
cadd p0[c] = []
cadd p(k+1) (xs++[xy.c]) =
cadd pk (xs++
It turns out that we need an additional assertion about ¢, namely c "below™ 2, to ensure
that the expression (x+y+c) ‘mod” p aways yields a proper digit. Fortunately this

assertion is preserved as an invariant of the reaursion, i.e., if it holds for ¢ it also holds
for the new cary (x+y+c) div p.

6.3 Modularization

The resulting expresson for the reaursive cae is very complex. We structure it by
padking the two expressons for last digit and new carry in cadd into afunction

fap [x,y,c] = [(x+y+c) div’ p, (x+y+c) ‘mod p] .
Now we may use splicing to oltain

cadd p(k+1) = splice(2*k) (cadd pk) (fap) .

13



N N

<—  cadd pk

by

Of course, fa is the full adder function. But note again that this is introduced purely
formally!
For fixed n we may now unwind the recursion to oltain the well-known regular design of

the cary ripple alder:
¥ ¥

«— fape— = <«<— fap

l l

The asciativity of splicing is esentia here; it all ows this “parenthesis-free” graphicd
layout.

Based on the decomposition properties for code ad deco we @n aso show a
decompasition property for cadd:

A

fap <—

A
o

Lemma6.1: cadd p(k+m) = splice(2*k) (cadd pk) (cadd p m)

wall el

<— cald pk

Vo I

Consider alist zs++ zs ++ ¢ with length zs=2*k and length zs = 2*m and set
XS=evnszs, ys=odds zs, xS = evns zs, ys = odds zs . Then we cdculate,
using Lemma5.1.:

A

cadd pm <—

Pr oof:

14



cadd p(k+m) (zst++zs++ [c])
= code p (k+m+1) (dea p(k+m) (xst+xs) + dew p (k+m) (ys++ys) + )
= code p (k+m+1) ((dea pk xs)*p*m + demw pmxs +
(dem pk ys)*p™m + dec pmys + c)
=codep (k+m+1) ((dem pk xs+ dea pkys+d)*p*m+r)
where (d,r) = (z divip"m, z 'mod” p*m)
z = decopmxs +dem pmys +c¢
=codep (k+1) (deco pk xs+ dew pkys+d) ++ codepmr
where (d,r) = (z divipm, z 'mod” p*m)
z = decopmxs +dem pmys +c¢
=code p (k+1)(deco pk xs+ dew pkys+d) ++ us
where (d:us) = codep (m+1) (deco pmxs + dew pmys + ¢)
=caddp kxsysd ++ us
where (d:us) = cadd pmxs'ys ¢
= gplice (2*k) (cadd pk) (cadd p m) (zs++zs ++[c])

Note that this proof has been performed at the spedficaion level and hence holds for all
corred implementations, not just the cary ripple alder!

This allows modular decomposition of large alders into smaller ones, say 4-bit modules.
Again the associativity of splicing is essentia here.

Since decomposition holds for al implementations, we may even use @mbinations of
various adders, e.g. a(cary ripple) splicing of 4-bit carry lookahead adders (seebelow).

Here we have atypical combination of parameterisation and moduarization.

It should also be noted that we have

fap[xy,c] = caddp1[xy,c]
so that the cary ripple design can also be seen as the result of an iterated appli cation of
Lemma6.1

6.4 Abstraction

We now review the derivation to find the dgebraic laws that went into it. We @strad
from the particular case of addition and define ageneral function

digrep :: (Int -> [Int] -> [Int]) -> Int -> Int -> [Int] -> [Int] .

Theideaisthat digrepf pk (zs ++ [c]) works on the interleaved dgit representation zs
of two natural numbers and a "cary" c. Agan, p isthe base and k the number of
digits we tred. The function f takesinto aceunt the number k of digits and alist of two
"proper" arguments and a"carry”. If digitsp (2*k + 1) (zs++[c]) holds, we spedfy

15



digrepf pk(zs++][c]) = f k[dew p k (evnszs), dem pk (odds zs), ] .

Toretrieve the alder function, we have to set, for m,n "below pk ,
f k[m,n,c] = code (k+1) (m+n+c) (*).

For the base cae k=0 we cdculate
digrepf p O[c]

f O(decopO[]) (dempOJ]) c
f 000c.

For the inductive ase we could now also replay the derivation of cadd for digrep .
However, as the remark at the end of Sedion 6.3 shows, it is more alvantageous to head
for a decomposition property of digrep . By analysing the proof of Lemma 6.1, we @an
find a sufficient condition on f that makes the proof go through in general. Foll owing
Hanna @ al. 90we cdl f factorizableif

f (j+K) [m*p~k+q, n*prk+r, c] = splice2 (f ) (f k) [m,n,q,r,C]
holds for al natural numbers j,k,m,n,p,q,r . Now Lemma 6.1 generalisesto

Theorem 6.2 (Factorization Theorem):
Let f befactorizable. Then
digrep f p (k+m) = splice(2*k) (digrep f p k) (digrepf pm).
Proof:
digrep f p (k+m) (zst+zs++[(])
=f (k+m) [dew p (k+m) (xs++xS), dew p(k+m) (yst+ys), c]
=f (k+m) ((de pk x9)*p*m + dem pmxs)
(dew pkys)*p*m+decm pmys) c
=gplice2 (f k) (f m) [dem pk xs, dew pkys, deco pmxs, dem pmys, c]
=f k [deo pk xs, dem pkys, d] ++us
where (d:us) = f m[deco pmxs, dem pmys, ¢
=digrepf pk (zs++[d]) ++us
where (d:us) = digrep f p m (zs++[c])
= gplice (2*k) (digrep f p k) (digrep f p m) (zs++zs ++ [c])

Thisisin fad F. K. Hanna's Fadorizaion Theorem (see @ain Hanna & al. 90), which
gives a general scheme for corred implementations of iterative aithmetic drcuits. The
proof of Lemma 6.1 contains a sedion which uses Lemma 5.1 to show that (*) above
definesafadorizable f ; the remainder isisomorphic to the proof of Theorem 6.2.

Using thistheorem and the fact that digrepfp 1=fp 1 we can unwind digrep f k into a
regular layout:

16



Corollary 6.3: For k>0 we have
digrepf pk = foldrl (splice2) (copy k (fp 1)) .

Another instance of thisis acomparator circuit, described by

digrepf pk where fp[m,nc] = [egmn N c] **).
Here, egmn= if m==nthen 1else0 and b/ ¢ = b*c, so that we have numericd
representations of the usual Boolean operations. It is draightforward to show that also
(**) defines a fadtorizeble f . To oltain a comparator circuit, we have to instantiate ¢
appropriately, viz. by the neutral element 1 o /A, and urwind the spedfication using the
Fadorizaion Theorem. Thisresultsin

L Ly

A
[EEY

7. Successor (Counting)

Next we want to derive acounter circuit, i.e., an implementation of the succesor function
on digit representations. The spedficaion reads

succ:: Int-> Int ->[Int] -> [Int]
succp k xs = codep (k+1) (decodep k xs+ 1)

Thisis quite similar to the adder spedficdaion. We therefore try to re-use the alder design.
Formally we ned to reduce succ to add; this is done by making the hidden neutral
element 0 o addition visble so that we have asecond operand for addition. We
cdculate:

succp k xs

codep (k+1) (demdep k xs+ 1)

codep (k+1) (decodepk xs+ 0+ 1)

code p (k+1) (decode p k xs + deade p k (copy k 0) + 1)
cadd pk (shuf k (xs++ copy k 0) ++[1])

Although this is a first corred implementation, it is too inefficient. The fad that in the
unwound version we have cdls of the form fa [x,0,c] may be used to simplify the
design. Define an auxili ary function

17



ha[x,c] = fa[x,0,c] = [(x+c) ‘div’ p, (x+c) ‘'mod” p]

Of course, ha isthe half adder function. But again it has been introduced purely formally.

The simplified design looks as foll ows:

8. Specialization: Base 2

For p=2 we obtain the usual
representations et ettt At e

ha2[x,c] = [x/\c, x><(c]

fa2[xy,c = [dVe, Z ! I
where [d,u] =ha2[x,y] <_L a2

[ez] =ha2][u,]

Here, \,V and >< arethe aithmetic representations of the Boolean operations on base

2 dgits, e.g.

x Ny = xty.

18



9. The Carry Lookahead Adder

It is well known that the cary ripple ader is time-inefficient, since the length of the
longest path through the design (along which the caries ripple) is proportional to the
number of digits processed. So there have been various propasals to speal up the cary
computation. One ideais to compute the cariesin parallel with the sums; this leads to the
cary lookahead adder which we want to derive formally now.

Let the moduesin the cary ripple alder be numbered from the right starting with 0 and
let xi,yi and ci bethei-thinput digits and caries (where cO is ome given value) .
Fromthe cary ripple design we read off the reaurrence ejuation

c(i+l) = (pi andN"ci) ‘orN" gi where
(gi,pi) = (xiandN'yi ,xi xorN" yi)

By usual techniques for solving recurrences we obtain a dosed form for the caries:

c (i+1) = foldrl (\V)[ (foldrl (\) [pk |k <-[j+1..i]) "andN" gj | j <-[-1..i]]
whereg (-1) = ¢cO

Here foldrl is a predefined Gofer function which takes a binary operator and a non-
empty list and combines al li st elements by that operator, asociating them to the right.
For reasons of spacewe draw the picture of the cary lookahead computation only for for
3 dgits:

Using this form of carry computation results in a drcuit in which the path length is
independent of the number of digits processed. This gain is bought at the expense of fan-
in propartional to the number of digits. So for eledricd reasons this design is meaningful
only for small numbers of digits, say 4 or 8. But from our above decompasition property
we know that we may conned severa carry lookahead addersin a cary ripple fashion to
obtain a wrred adder which will then be faster by a factor 4 or 8 than the original pure
cary ripple adder.

Y e i?

19



10. More About Wiring

So far we have mostly described connedions using the rubber view of wires ("logicd
connedion™). We now sketch how to step from the logicd connedion to a topdogy with
rigid wires, crosgngs and fan-out.

Note, however, that many approaches start at this level and have to cary the
complications of wiring al through the derivation. This is tedious and olscures the
esentia steps.

10.1 Basic Wiring Elements

The basic wiring elements are astraight wire, modeled by the identity function, the fan-
out of degree?2 (fork), the aossng (swap) and the sink:

id[x] =[x]  fork[x] = [xx]  swap[xy] =[yx] snk[x] =]

These operations are extended to wire bundles:
bfork mn xs
|lengthxs==n = foldr (++) [] (copy mxs)
-- undefined atherwise

20



bswap m n xs
| length xs == n = drop m xs ++ take m xs

Theidentity id ispredefined polymorphically by idy =y and hencedoesn’'t need to be
extende to wire bundles. The sink can be handled by setting generally sink xs =[] . We
will discussother versions later.

Finally, we have the invisible modue ide with O inputsand O aitputs:

ide(] =[]

10.2 Sequential and Parallel Composition

Sequential composition simply is reverse function composition. We ae abit sloppy here
about the arities of the functions; this has again to dowith the dready mentioned absence
of tuples as fisrt-classcitizens. For paralel compasition we nedl to tell the operator how
many inputs are to be distributed to the first function; the remaining ones go to the second
function.

(f Pg)xs = g (fx9 parkfgxs = f (takek xs) ++ g (dropk xs)

f e
f g
; M

We abreviate par 1 by theinfix operator |||.

21



10.3 Basic Laws (Network Algebral)

All semantic models for graph-like networks should enjoy a number of natural properties
which refled the astradion that lies in the graph view. A systematic acount of these
properties has been gven in Stefanescu 94.

Asgciativity:

f>@Ph =FPFg>h
par (m+k) (par mf g) h = parmf (par k g h)

Abiding Law:
par m (f |I>g)(h|>k) = (parmf h) > (parng K
Wil W W
fli|lh f h
0 S
g ik g k
Wi I

Neutrality:

df=f=f]id
pamf ide =f = parO ide f

|dempatence:
swap [> swap = id

Whereas asciativity and abiding just allow “parenthesis-free layouts’, use of neutrality
or idempotence means smplificaion/complexificaion of abstrad layouts.

10.4 Sdlection

Using parallel composition we can now give dternative definitions for block identity and
sink:

22



bid n=foldrl (||) (copy nid)

bsink n=foldrl (||) (copy n sink)
Based on this we define seledion rets;

selnij= --for i ‘below’ n && j 'below™ n
par i (bsinki (parj (bidj) (bsink (n-j)))

We have the following fusion rule:
bfork 2 |> par (j-i) (sel nij) (selnjk) = sel nik

10.5 Recursionsfor the Bundle Operations

Using sequential and perallel compaosition we can reduce the bundle operations to the
primitives.
Example:
bswap m0O = ide bswap On = id
bswap 11 = swap
bswap k (k+m+n) = par (k+m) (bswap k (k+m)) (bid n) |>
par m (bid n) (bswap k (k+n))

23



11. Combinator Abstraction

We have drealy discussed the need to passfrom rubber wiring to rigid wiring. Formally
this is achieved by eliminating all formal parameters from functional expresgons in
favour of parallel and sequential compositi on and the basic wiring elements. The resulting
expresson is cdled the combinator abstraction CA E of the origina expression E .

For its construction, we need the list ID E of the formal parameters occurring in
expresson E . Thislist isorganized in textual order of appeaance of the parameters and
kept repetition free

The astradion rules for expressions with formal parameters in list [Xo,...Xn.1] are &
foll ows:

CA[x] = sol ni (i+1)
CAf = f where f =\xs->[f (xs!!0) ... (X! (k-1))] if :ito-> ...t >t

CA(f El..En) = (CAE1l]||... |l CAEn)|> CAf
CA (E1++...++ En) = bfork n[> (CAE1]||| ... ||| CA En)
Example:

CA ([xN\y] ++[y><X]) =

bfork 2 > ((sel 2 0|||sel 2 2) > N) ||| ((se! 2 1|||sel 2 O) > ><))
This can, of course be simplified to

bfork 2 [> ((bid 2|> N) ||| (swap [> ><))

The basic rules above lea to circuits involving very high fan-outs. More refined rules
avoid this, e.g.

CA (E1++...++En) = CAEL]||| ... ||| CAEn
if ID[EL,...En] = IDEl++...++ID En, i.e, if the sublists of formal
parameters are digoint and in order.
The situation can often be improved using swaps.

Example:

We have
CA f(gly.z] ++[x]) = bfork2 [> (g|l|sel 30D [>f

24



A simpler versionis

CAf (swap ([x] ++g[xy])) =
(fork |fid) > (id [l @) > swap |> f

Xyz X yz

G [

12. A Further Example: Shuffling

Recdl the spedfication of the shuffle operation from Sedion 4.2:
(shuf kxs) I (2*i) = x Wi
(shuf k xs) 1! (2*i+1) = x!! (k+i)
for lengthxs==2*k and i <-[0..k-1]
Some cdculation yields the foll owing inductive version:
shuf 0 = id
shuf 1 = id
snuf (k+1) = (par 1id (par k (cshiftl k) id) ) [> (par 2id (shuf k))

cshiftl k = foldrl (splice2) (copy k swap)

cshiftl (k+1)
A

For further detail s on wiring we refer to Hotz & al. 86 and Molitor 91.

25



Part I11: Sequential Hardware

13. A Modd of Streams

A frequently used model of sequential hardware is that of stream transformers. Streams
are used to model the temporal succession of values on the mnnedion wires, whereas the
modules are functions from (bundles of) input streams to (bundles of ) output streams.

In this paper we ded with discrete time only. Even this leaves sveral options how to
represent streams. One possibility would beto define

type Stream a=[4]

Since Gofer/Haskdl employs a lazy semantics, this allows finite & well as infinite
streams. Time remains implicit, but can be introduced using the list indexing operation
(m.

We use aversion which explicitly refersto time:

type Time = Int
type Streama=Time->a

This will cary over easily to red time. On the other hand, this does not diredly suppart
finite streams. They have to be modeled by functions that become eventually constant,
preferably yieldingonly bot after the “proper” finite part.

Wewill use bat alsoto “cut off” negative time paints. To this end we define

nonneg :: (Time-> a) -> Strean a
nonneg f t
| t>=0 = ft

So nonneg f is a stream that is undefined for negative time paints (i.e., enforces the
as®rtion t >=0) and on nonnegative time points agrees with f .

14. Networ ks

Again we model bundles of infoutputs by lists, this time of streams. By polymorphism we
can re-use dl our connedion primitives, such as >, par, fork , swap and splice and their
laws for stream transformers as well.

Our diagrams will now be drawn sideways:

26



f>g parkfg
Edlll | Eie = 92
fork swap ECi iS¢

X

The input/output streams are numbered from bottom to top in the respedive lists.

15. Lifting and Constant

To establish the connedion with combinational circuits we nee to iterate their behaviour
in time. To this end we introduce liftings of operations on data to streams. A “unary”
operation takes a singleton list of input data and produces a singleton list of output data.
This is lifted to a function from a singleton list of input streams to a singleton list of
output streams. It is the analogue of the gply-to-al operation map o lists. Since
streams are functions themselves, the lifting may also be expressed using function
compaosition. We have

liftl:: (a->b) ->[Stream @] -> [Stream b]

liftlf[d] = \t->f(dt)] = [f.d]

Similarly, we have for binary operations

lift2 :: (a->a->b) ->[Stream @] -> [Stream b]
lift2g[d,e] = [\t->g(dt) (et)]

Another useful building block is a module that emits a wnstant output stream. For
convenience we endow it with a (uselesg input stream. So this module adualy is a
combination of asink and a source We define

27



cnst i a-> [Stream b] -> [Stream 4]
cnst x = liftl (const x)

Here const isa predefined Gofer function that produces a mnstant unary function from a
value.

16. Initialised Unit Delay

To model memory of the simplest kind we use aunit delay module. Other delays such as
inertial delay or transport delay can be modeled similarly. For a value x the stream
transformer (x &) shiftsitsinput stram by one time unit; at time O it emits x as the initial
value:

(&) :: a->[Stream g -> [Stream g
(x & [d]) = [nonreg €] where et

[eoNe)
I

d(t-1)

To push delays through larger networks we have the foll owing

Lemma 16.1 (Delay Propagation Rules):

(X&) > lift1 f = liftl f > ((f x) &)
provided f is grict, i.e., isundefined whenever itsargument is
((x&) Il (y&)) > lift2 g = lifzg P ((gxy)&)

provided g isdoubly dtrict, i.e., is undefined whenever bath its argument are

(x&) [>cnsty = cnsty > (y&)
((x&) [l (y&)) [> swap = swap > ((y&) [I1(x&))
(x&) > fork = fork > ((x&) [1](x&))

28



These rules can be given in pictorial form as

X fco = —> f(,o f x

X
—p>X
X

For propagation through [> and ||| we may use associativity of [> and the aiding law.
These simple laws are quite dfedive aswill be seenin later examples.

17. Example: The Single Pulser

To show the model at work we will tred asingle pulser as our first example. The informal
spedfication requires it to emit a unit pulse whenever a pulse startsin its input stream.

17.1 Formal Specification

We model this by a transformer of streams of Booleans. A pulse is a maximal time
interval on which a stream is constantly True. First we charaderise those time points at
which a pulse starts formally by

startPulse :: Stream Bool -> Time -> Boad
startPulsedt = dt && (t==0]| not(d (t-1) )

Note that by Time -> Bod = Stream Bod we may view startPulse dso as a stream
transformer.
Now we @n gve the formal spedfication of the pulser:

pulser [d] = [ t-> gtartPulsedt], i.e,

28



pulser [d] = [ startPulsed]

17.2 Derivation of a Pulser Circuit

For t =0 we cdculate

startPulsed 0

d0&& (0==0]| not(d(0-1))

do

For t>0 wehave

startPulse d t

dt&& (t==0] not(d (t-1))

dt&& not (d(t-1))

dt&& not ((x & d) t)

for arbitrary x . Now we try to choose the initialisation value x such that
startPulsedt = dt && not ((x & t) 0)

holdsalso for t=0, i.e.,
d0=d0 && notx

Thisis satisfied for all values d 0 iff x =False.

Now combinator abstracdion yields
pulser =fork |> (id||| ((False &) > liftl(not)) ) [> lift2 (&&)

18. Feedback
18.1 The Feedback Operation

Another essential ingredient of systems with memory is fealback of some outputs to
inputs. We use
feed:: Int -> ([a] ->[&]) -> ([a] ->[&])
where the first parameter indicaes how many outputs are fed bad. The definition reads
feed k f xs = codropk ys
where ys= f (xs++ cotake k ys)

30



cotake n xs= drop (length xs—n) xs
codrop n xs =take (length xs—n) xs

o — f ¥

Note the reaursive definition of ys which refleds the flowing bad of information. This
reaursion is well-defined by the lazy semantics of Gofer.

18.2 Propertiesof Feedback (Network Algebrall)

The feedbadk operation enjoys a number of algebraic laws which show that it models the
rubber wire estradion corredly. For a systematic exposition seeagain Stefanescu 94.

f [>feedk gl>h = fed k((flllid) > g > (hllid))
, | |
L3l | i<
— —> —> —> —> > > —
—{ f > g h{—> — f > g hI—
feed kf ||| g = feed k(f |[|Q)
[ — | 2
S ] s —3 g

31



Shifting a block:

feed k(f > (dllg) =  feedm((id|lg) )

19. I nter connection (M utual Feedback)

In more mmplex designs it may be wnvenient to picture amodule f with inputs and
outputs distributed to bah sides:

We want to compaose two such functions to model interconnedion of the respedive
modules. To this end we introduce

conred :: Int ->Int -> Int -> [Stream a] -> [Stream a]

Thethree Int-parametersin connead k mnf g are used similarly asfor splicing: they
indicatethat k inputs are supposed to come from the left neighbour of f, that m wires
lead from f to g, and that n outputs go to the right neighbour of g .

- < o~
— f —> g —>
—> > —

32



We define therefore
conned k mnf gxs
where ys
zs

taken zs++ dropmys
f (take k xs ++ drop n zs)
g (take mys ++ drop k xs)

This involves a mutually recursive definition of ys and zs which again is well-defined
by the lazy Gofer semantics.

Lemma: Interconnedion is asociative:
conned mnp (connectkmnfg)h = connectkmnf (connectmnpgh)

The proof can be given using purely the laws of network algebra. Henceit is valid for all
models of network algebra, not just our particular one. Also, conned has the identity id
asits neutral element.

Two interesting spedal casesare

- f=|Fg=conrea 111fg

- f=]g =connea 110fg

0 f g

The operator =||= isalso known as mutual feedback 0 . The rresponding retwork can
be depicted as

f1

f2

Using a suitable torsion of the network we @n relate interconnedion to feadbadk:

33



!
-
o

f1 f2

h
— T T

fl=|=f2 = fead 1((id|l|swap) |> (f1[llid) |> (id|llswap) [>
(f2llid) |> (id ||| swap) )

20. A Convolver

We want to tackle asomehwat more involved example now. In particular, we want to
prepare the way to systolic drcuits.

A nonprogrammable convolver of degree n uses n fixed weights to compute & each
time point t >= n the onvolution of its previous n inputs by these weights. For
conveniencewe ®lled the weights al'so into astream w .

20.1 Specification

The convolver is gedfied by

conv :: Stream Int -> Int -> [Stream Int] -> [Stream Int]
convwnd =[€
where e =\t-> if t<n thenbot
else sum[w (n-i) * d (ti) | i <-[1.n] ]]
bot = bot -- undefined element

It should be dea that the problem generalises to arbitrary compositions of fold and apply-
to-al operations. Since we have taken such an abstradion step already in Sedion 6.4, we
do not want to repea this here.

20.2 About Error Handling

We have not used nonneg here but rather played everything back to the “totally
undefined” element bot defined by a nonterminating reaursion. However, the only
esential assumption about bot is the strictness property x + bot = bot .This could also
be adtieved by introducing an additional error element using Gofer’s fadlities for
defining variant record types and adapting addition acardingly:

data Error a = Proper a| Err

instance Num a=> Num (Error a) where

Proper x + Propery = Proper (x+y)

_+ = Err -- €tc.

34



Sincethisis omewhat cumbersome, though, we have chosen the éove method.

20.2 Derivation of a Convolver Circuit

Fort>=0 and [€] = convw O dwe cdculate

et

= sum [ w (0-i) * d (t-i) |i <-[1..0] ]
= sum [ w (0-i) * d (t-i) |i <-[]]

= sum []

= 0

Hence conv0 = cnst 0

Fort>=n+1 and [€] = convw (n+1) d we obtain

et

sum [ w (n+1-i) * d (t-i) |i <- [1..n+1] ]

wn*d(t-1) + sum [ w (n+1-i) * d (t-i) | i <- [2.n+1] ]
wn*d(t-1) + sum[ w (n+1-(j+1)) * d (t-(j+1)) | <- [1..n] ]
wn*d (1) +sum[ w(n)*d (1) |j <-[1..n] ]
wn*d(t-1) +c(t-1)

where [c] =convwnd.

Now combinator abstradion yields
convw (n+l) = (cdl wn) =| (convw n)
cdl wk[li,ri] = [bot & lift2(+) (liftd (wk*)[li], [ri]), li]

_____________________________

T convwn

Unwinding the reaursion. For fixed n> 0 we obtain again aregular design:
convwn = (foldrl(=|F)[cdl wk | k<-[1..n]) =| cnstO

After simplification of the rightmost cdl thisyields

35



----------------------------------------------------------

__________________________________________________________

However, we have a long broadcasting path (fanout n) a the bottom.

20. 3 Towardsa Systolic Version

A circuit is combinationd if it uses only lifted operations and sequential or parallel
composition. In clocked systems, the dock period is determined by the longest
combinational path.

A circuit is systolic if it is built - using sequential and parallel compasition and feedbadk
- out of small combinational modules which are separated by delay elements. A systolic
circuit has the advantage that the dock period can be kept relatively short.

We want to oltain a systolic version of our convolver. Hence we have to introduce
additional delay elements.

21. Slowdown

The technique to achieve this is slowdown (see eg. Leiserson, Saxe 83, Jones, Sheegan
90). The k-fold dowed down version of a drcuit workson k interleaved streams. So eadh
of these is processd at rate k slower than in the original circuit.

21.1 Interleaved Streams
To talk about the mmponent streams of such a " multistream” we introduce
splitkjdt = d(k*t+]).
So split kj d isthe j-th of the k component streams where numbering starts with O

again. E.g. split 2 0d and split 2 1d consist of the valuesin d at even and oddtime
points, respedively. Then d can be cmonsidered as an alternating interleaving of these.

36



The following properties of split are useful for proving the slowdown propagation rules
below:

Lemma21.1: (x&) > split k0 = (split k (k-1)) |> (x&)
(x&) [> split kj = split k (j-1) (0<j<n)

Tointerleave k streamsfrom alist we use
ileave k sst = (ss!! (t ‘'mod” K))(t "div" k)

We have, provided length ss>=k |,
split kj (ileavek ss) = ssllj .

A spedal caseistheinterleaving of k copiesof the same stream:
repk d= ileavek (copy k d) .

The dove property yields
split kj (repkd) = d.

21.2 The Slowdown Function

Now the slowdown function is pedfied implicitly by
(dowkf) > split kj = (splitkj) >f.

Here f isan arbitrary function on streams, not just a lifted unary operation. In particular,
f may look at al the history of a stream. By this definition, sow k f s may be considered
as glitting s into k substreams, processng these individually with f and interleaving
the result streams badk into one stream. From the spedficdion the following proof
principle is evident:

Lemma 21.2: If for afunction h andal j in [1..k] wehave
h |>split kj =(split kj) [>f
then h= dowkf.

For easier manipulation we want to oktain an explicit version of dow . Since by
definition of split
split kj (Sowkfs)t' = dowk f s(k*t' +])
we have mnversely
slowk f st
sow k f s (k*(t'div'k) + t'mod'k)
split k (t'mod’k) (dow k f ) (t'divk)
f (split k (t'mod’k) ) (t'divk) .

In sum,
dowk fst = f(split k (t 'mod” k) s) (t "div’ k) .

37



21.3 Propagation Lawsfor Slowdown

The function dlow distributes nicdy through our circuit buil ding operators:

slow k (x &) = foldr () id (copy k (x &))
sowk (cnstx) = cnstx

sowk(f >g) = dowkf |> dowkg
sowk (f ||| 9) = dowkf || dowkg
sow k (feed mf) = feed m (slow k f)

dowk (f=|EFg) = dowkf =|F slowkg
sowk(f=|]g) = dowkf =] dowkg

This means that the k-fold slowed down version of a drcuit results by repladng each
delay element by k ones. A further useful propagation law for slow is given by

Lemma 21.3: Supposethat (x&) |>f = f|> (y&). Thenaso
x&) > dow k f =(dow k f) |> (y&) .

22. A Systolic Convolver: The 2-Slow Convolver

Using k-fold slowdown we can interleave k computations or pad streems with dummy
elements by merging the strean proper with a monstant strean of dummies. The latter
approach isusualy taken in verificaion approaches to the systolic convolver: only the
stream values at oddtime points are of interest; at even time pointsthe value 0 isused.
We want to derive a systolic convolver. We leare the dedsion whether to use proper
interleaving or padding open; both can be adieved by suitable embeddings of the original
conv function into the slowed down one defined by
sconv n = sow 2 (conv n) .

Now, employing the delay propagation rules, we push the second delay introduced by the
slowdown through the various modules. We perform the derivation pictorialy:

38



i sconv w n
(W]

SCONvV W n
((wn))®
al 4
SCONv w n
((wn)=)© o
ul
SCONV W n

The step of pushing the delay through sconv w n isjustified Lemma 21.3. Unwinding
the reaursion again we obtain aregular systolic design:

sconvw n = (foldrl (=|F) [scdl wk | k<-[1..n]]) =|]cnst O
scdl wk [li,ri] = [bot & lift2 (+) (liftl (w k *)[bli], [ri]), bli]
wherebli = bot & li

39



This smplifiesinto

— od— o — 0d
s iy
| CLENE | CEREN
B T S o i B

Of course, the techniques we have developed donot only apply to the convolver, but are
of general interest for the derivation of systolic implementations of circuits. As a further
case study, a systolic recognizer for regular expressonsis developed in Moller 98.

23. Pipelining

As afinal example we want to leave the level of circuits and step up to questions about
microprocesor architedures. To exemplify our approach there we give abrief acount of
the essence of pipelining.
Let a be aset of instruction addresses, i a set of instructions and s a set of machine
states. Assume, moreover, afunction

fetch::a->s->i
that obtains the instruction stored under an addressin the current state and afunction

exe: i->s->s
for exeauting an instruction in a state to yield a new state. Then the fetch/exeaute-cycle of
amadine an be defined by the function

run:: [a ->s->s

run[] g = g
run(x: xs) q = run xs (exe (fetch xq) q)

We now want to uncouple the fetch and exeaute phases © that they can be done in
paralel. This done by a suitable embedding into a function which has as parameters an
instruction to be performed currently and alist of addresses of further instructions:

pipe:: [a] ->i -> s-> dtate
pipexsjq = run xs (exej Q)

40



Theoriginal function run isreduced to pipe by the equations

run[] g =q -- done
run(x : xs) = pipe xs (fetch xqg) g -- put 1st instruction into
-- pipeline and run that

The goal is now again aversion of pipe that isindependent of run. As the termination
case we obtain

pipe[]jq = exejq.

Next we cdculate
pipe(x:xs)jq
run(x : xs) (exej q)
run xs (exe (fetch xq) q)
whereq' =exej q
-- assume now that execution does not change the mntents of
-- the program memory, i.e., assume fetchaq' = fetchagq
run xs (exe (fetch xq) q) where ' =exej q
= pipexs (fetch x q) (exej qQ)

This means that fetching the next instruction can be done in parallel with exeauting the
current one.

Note that the derivation is completely polymorphic; no assumptions are made aout the
types a, s, and i . The only assumption is the property

fetch x (exej q) = fetch xq.
In particular, the transformation can be iterated to oktain pipelines with several stages if
exe can be decmposed into further subfunctions.

24. Summary

We have seen a number of essential ingredients of deductive hardware design:
- algebraic reasoning,

parameterisation,

modularization,

re-use of designs and derivations,

predse determination of initialisation values.
Further elaboration of this approach will mainly concern design in the large, asynchronous
systems and ather notions of time.

Acknowledgement: Many helpful remarks on this paper were provided by G. Stefanescu.

41



References

F.L. Bauer, H. Ehler, A. Horsch, B. Mdller, H. Partsch, O. Paukner,P. Pepper: The
Munich projed CIP. Volume II: The program transformation system CIP-S. LNCS
292. Springer 1987

F.L. Bauer, B. Moller, H. Partsch, P. Pepper: Forma program construction by
transformations - Computer-aided, Intuition-guided Programming. |EEE Transadions
on Software Engineeing 15, 165-180(1989)

C. Delgado Kloas: Semantics of digital circuits. LNCS 285. Springer 1987

C. Delgado Kloos, W. Dosch, B. Mdller: Design and proof of multipliers by corredness
preserving transformation. In P. Dewilde, J. Vandewale (eds): Proc. IEEE
International Conference on Computer Systems and Software Engineaing CompEuro
92. IEEE Computer Society Press1992 238-243

M.J. Gordon: Why higher-order logic is a good formalism for spedfying and verifying
hardware. In: G.J. Milne, P.A. Subrahmanyam (eds.): Formal aspeds of VLS design.
North-Holland 1986

K. Hanna, N. Daeche, M. Longley: Spedficaion and verificaion using dependent types.
|IEEE Trans. Softw. Eng. 16:9, 949-964 (1990)

G. Hotz, B. Beder, R. Kolla, P. Malitor: Ein logisch-topdogischer Kalkul zur
Konstruktion integrierter Schaltungen. Informatik - Forschungund Entwicklung 1, 28-
47 and 7282 (1986)

IFIP 94/97: IFIP WG 105 Verificaion Benchmarks. Readable via internet under
http://goethe.ira.uka.de/hvg/benchmarks.html

G. Jones, M. Sheaan: Circuit design in Ruby. In: J. Staunstrup (ed.): Formal methods for
VLSI design. Elsevier 1990 13—70

C.E. Leiserson, J.B. Saxe: Optimizing synchronous systems. J. VLS| and Computer

Systems 1, 41-68 (1983)

B. Mdller: Assertions and reaursions. In: G. Dowek, J. Heeing, K. Meinke, B. Moller
(eds.): Higher order algebra, logic and term rewriting. Second International Workshop,
Paderborn, Sept. 21-22, 1995 LNCS 1074. Springer 1996 163-184

B. Mdller: An algebraic gpproad to systolic drcuits. Institut fur Informatik, Universitét
Augsburg, Report 199801, January 1998

P. Molitor: A survey on wiring. J. Inf. Process Cybern. EIK 27, 3-19 (1991)

H.A. Partsch: Spedficaion and transformation of programs - A formal approach to
software development. Berlin: Springer 1990

D.L. Rhodes: Analog modeling using MHDL. In: J-M. Bergé (ed.): Current issues in
eledronic modeling, Issue #2 “Modelingin analog design. Kluwer 1995

G. Stefanescu: Algebra of flownomials. Ingtitut fir Informatik, Technicd Unicersity
Munich, Report TUM-19437, 199

42



