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Abstract. We introduce algorithms for lattice basis reduction that are 
improvements of the famous L3-algorithm. If a random L3-reduced lat- 
tice basis b l , .  . . ,b ,  is given such that the vector of reduced Gram- 
Schmidt coefficients ( { , u i , j }  1 < j < i < n) is uniformly distributed 
in (0,1)(:), then the pruned enumeration finds with positive probability 
a shortest lattice vector. We demonstrate the power of these algorithms 
by solving random subset sum problems of arbitrary density with 74 and 
82 many weights, by breaking the Chor-Rivest cryptoscheme in dimen- 
sions 103 and 151 and by breaking DamgLrd's hash function. 

1 Introduction and Summary 

We address the challenging problem whether it is possible to  find, for a given 
integer lattice basis b l ,  . . . , b, E Em,  in polynomial time a nonzero lattice vec- 
tor of length no(')X1, where A1 is the minimal length of nonzero lattice vectors. 
The L3-algorithm of Lenstra,Lenstra, LovAsz [LLL82] finds in polynomial time 
a lattice vector of length 2 T X l .  Schnorr [S87, S94] has extended this algorithm 
from block size /3 = 2 to arbitrary block sizes 2 5 fl 5 n. Roughly speaking, 
this extension goes as follows. Whereas the L3-algorithm iteratively swaps two 
consecutive basis vectors b,, b,+l if this decreases the length of&, the orthogonal 
projection of b, in span(b1,. . . , b , - l ) l ,  block reduction with block size p itera- 
tively transforms blocks b,, b , + l , .  . . , bz+o-l  of fl consecutive basis vectors as to 

minimize z,. The first vector of a block reduced basis satisfies llbl I( 5 7PB-l X I ,  
where ~p - $ is the Hermite constant of dimension p. For an implementation 
of block reduction, see the algorithm BKZ of [SE94]. With block size p = 20 it 
is only 10 times slower than L3-reduction but for large block sizes p the delay 
A factor is about This delay factor is the time to  construct a shortest vector 
b, for a block of size p using complete enumeration of all short lattice vectors. 
A shortest vector of the entire lattice can be found by the algorithm of Kannan 
[KA87] in exponential time no("). 

In this paper we present and analyse a new rule for pruning the enumer- 
ation of short lattice vectors. This pruning very likely finds a shortest lattice 
vector, and is exponentially faster than complete enumeration. It is based on 
the Gaussian volume heuristic that estimates the number of points of lattice L 
in nice subsets S C span(L) as vol(S)/ det L. If a random L3-reduced lattice ba- 
sis bl , . . . , b, is given such that the vector of reduced Gram-Schmidt coefficients 
( { P ~ , ~ }  1 5 < i I n )  is uniformly distributed in [0, 1)(:), then the pruned 
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enumeration finds with positive probability a shortest lattice vector. We let { r }  
denote the residue modulo 1 of the real number r in the interval [0, 1). 

Pruning the enumeration by the Gaussian volume heuristic is more powerful 
and more flexible than the previous pruning rule of [SE94]. We combine the 
new pruning with the block reduction algorithm BKZ of [SE94]. 'I'his pruned 
block reduction is the most powerful lattice reduction algorithni so far. It solves 
almost all subset sum problems of dimension 74 and 82 for all densities, it breaks 
the Chor-Rivest cryptosystem in dimensions 103 arid 151, and it easily breaks 
Damgkd's knapsack hash function [DA89]. Our experiments raise new hope that 
almost shortest lattice vectors can be found in polynomial time. 

Lagarias and Odlyzko [LO851 have been the first to  solve subset sum problems 
by lattice reduction. Their attack on subset sum problems of low density was 
improved by [RK88]. Since then the main progress came from block reduction 
[SE94], [S87], [S94] and by introducing a superior lattice basis [CJLOSS92]. Kaib 
and Ritter [KR94] propose an alternative approach based on lattice reduction 
in the 1,-norm. 

2 Basic concepts €or efficient lattice reduction 

Let IR" be the m-dimensional real vector space with ordinary inner prod- 
uct { ,  ) and Euclidean length ( (y ( (  = (TJ,IJ)'/~. A discrete, additive subgroup 
L C lRm is called a lattice. Every lattice is generated by some set of linearly 
independent vectors b l ,  . . . , b, E L,  called a basis of L, L = {tl b l  + . . . + I 
tl ] . .  . , t ,  E Z}. Let L(b1,. . . I b,) denote the lattice with basis bl,. . . b,. Its 

With an ordered lattice basis ? I , .  . . , b, E IRnL we associate the Gram- 
Schmidt orthogonalisation &, . . . ] b, E IR" which can n -  be computed together 
with the Gram-Schmidt coefficients p i , j  = (bi ,g3)/(bj ,  b j )  by the recursion 
bl = bl, i = 2 , .  . . , n  . We let ~i denote the or- 
thogonal projection ni : R" 4 span(b1,. . . ,h iMl) '  for i = 1,. . . ,n,  ~ i ( b j )  = 
C',=, j ~ , , ~ ; ~ .  Then n-i(L) is a lattice of rank n - i + 1. 

An ordered basis b l ,  . . . , b, E IR" is L3-reduced, according to A.K. Lenstra, 
H.W. Lenstra and L. Lovdsz [LLL82], with 6 E [1/4,1) if (1) and (2) hold: 

(1) lpz,jl 5 1/2 for 1 5 j < i 5 TL 

rank or d imens ion  is n and its de te rminan t  is det L = det[(bi, b j ) ~ < i , j < ~ ]  112.  

A h h 

b, = b, - Cil: pi,jbj for 

h 

(2) 6 ' l l b k - 1 1 1 2 5  Ilgk++k,k-1bk-1112 for k = 2  , . . . ,  n .  

A basis satisfying (1) is called size-reduced. The L3-algorithm of Lovdsz 
[LLL82] transforms an integer lattice basis in polynomial time into an L3-reduced 
basis of the same lattice. Schnorr, Euchner [SE94] propose a floating point ver- 
sion L3FP of the L3-algorithm. This algorithm is used whenever we apply L3- 
reduction. 

A lattice basis bl , . . . , b, is block reduced with block size p if it is size reduced 
and if x i ,  for i = 1,. . . ,n ,  is the shortest nonzero vector of the lattice 
~ ; L ( b i , .  . . , bmin(i+p-l,n)). Block reduction has been analysed in [S87], [S94]. 
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We consider the following function ct with integer entries ut, . . . , un 

We present the core of the procedure ENUM of [SE94] that generates a 
shortest lattice vector by complete enumeration in depth first order. 

Algorithm ENUM 

OUTPUT a minimal nonzero place ( ~ 1 ,  . . . , IL,) and a minimal value 
INPUT l / K l l z ,  p,,t for 1 5 t 5 1; 5 n.. 

for the 
function c1. 

1. FOR i = 1,. . . , TZ DO 
U 1  := u1 := 1 , t := 1 , c1 := c1 := llb1112 . 
( we always have Ct = ct ( G t ,  . . . , Zn), 

2. WHILE t < n  

C, := 1 1 , ~  := ;ii, := y; := 0 
n - I 

is the current minimum of c1 ) 

- 
Ct  := G+l + (Y t  + Q2 115t112 
IF 'Et < 
THEN IF t > l  

THEN t := t - 1 , ' y t  := Ctl"L"r ,=t+1 UiP, , t  - , ut := [-YtJ - ELSE ~1 := Cl , u2 := IL, for i = 1,.  . . , n  
ELSE t : = t + 1  

if t = t,,, 
U t  := - { Eix:&, - y t )  otherwise 

END while 
d e  f Here [TI = IT - 0.51, t,,,, is the maximal previous value of t .  We define 

a' = next(n,r) to  be the integer which is, next to a E Z, nearest to r E R. 
We have la - 7-1 5 la' - T I  5 la - T I  + 1, sign(a' - T )  # sign(a - T ) ,  la - T I  = 
Id - TI  * a < T < a'. 

Correctness. The algorithm ENUM enumerates in depth first order all 
nonzero integer vectors ( Z t , .  . . , Sn)  for t = 1,. . . , n that satisfy c t ( S t , .  . . , E n )  
< C l  where F1 is the actual minimal value for the function c1. All enumerated 
vectors satisfy .Il > 0 for the largest i with Ui # 0. For fixed Z t + l , .  . . , Zn, the 
sequence of values .It, generated by iterating the function next(*, -yt), makes 
the sequence c t ( . I t , .  . . , .In) non decreasing. Therefore, if the test Ct < CI fails 
for the current vector ( . I t , .  . . , Zn), the subsequent increment of stage t has the 
effect to  discard all vectors (u ,  U t + l , .  . . ,&) where %, preceeds u in the itera- 
tion of next(*, -y t ) .  The discarded vectors can not lead to the minimum of the 
function c1. 

3 Pruning the enumeration 

We prune the enumeration of vectors ( U t ,  . . . , S,,) in ENUM by tightening 
up the test "IF Ct < El".  We cut off the depth first search at  ( S t , .  . . , U n )  if the 
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probability that (Gt ,  . . . ,Gin) can be completed as to satisfy c l (Z1 , .  . . ,Gn) < CI 
is less than a chosen threshold 2 - p .  

The Gaussian volume heuristic. A general principle, dating back to Gauss, 
estimates the number of points of lattice L in nice subsets S c span(L) as 
vol(S)/ det L. 

HOW to apply it. Suppose we have chosen integers Gt,  . . . , Gn and we search 
for GI,. . . , i i - 1  as to satisfy c l (G1, .  . . , U n )  < ~ 1 .  We let denote the lattice L = 

L(b1,.  . . , bt-1). So we want to add to the given lattice vector b = C B,b, a vector 

6 = C Gzbl in L as to satisfy Ilb + < C l .  We decompose b into orthogonal 

parts b = y - z with z = - ~~~~ El”=, B,pz,JbJ E span(L),y E span(l)’, 
ct = l l ~ 1 1 ~ .  This means, we search for a point in 

n 

1=t 
t-1 

I= 1 ,-. 

- 

where S(r,y) is the ( t  - 1)-dimensional sphere with radius T and center y in 
y + span(L). Here the equality holds since z = y - b. Now we apply the volume 
heuristic to the lattice f; and the sphere S ( d l  - Ct, z )  c span(L). Hence the ex- 
pected number of vectors ( G I , .  . . , Zit-1) E 2 2 - l  satisfying c l ( % l , .  . . ,&) 5 C I  is 
vol S ( d E ,  z ) /  det L. We propose to cut off the enumeration of (GI,. . . , Gt-1) 
if this ratio is less than 2 - P  for a fixed chosen p .  

, b+span(l) 

sphere in span(l)  
with radius & 

point in b + L 

Figure: the volume heuristic 
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GAUSS-ENUM. We replace in ENUM the condition “IF Et < El’’ by “IF 
vol S ( d m ,  z ) /  det L < 2-p”. We call the new procedure GAUSS-ENUM. 
The parameter p controls the pruning. Large values p correspond to weak prun- 
ing, p = 03 corresponds to complete enumeration (no pruning). The inequality 
vol S ( d m ,  z)/ det L < 2 - P  is equivalent to Et < - T,I where 

If GAUSS-ENUM cuts off the depth first search at  (Zt, . . . ,Zn) the prob- 
ability, that ( G t , .  . . ,Gin) can be completed as to satisfy ~ ( G I , .  . . ,Gn) < E l ,  
is at  most 2 - P .  In the analysis of GAUSS ENUM we disregard that GAUSS- 
ENUM discards, in addition to the vectors ( G I , .  . . , G i n )  , also the vectors 
(GI,. . . , Gt-1, u ,  . . . , Gin) where Qt precedes u in the iteration of next(*, -yt). 
This can be repaired by a slight change in GAUSS-ENUM. However this yields 
a reduction algorithm that is less efficient in practice. 

Justification of the volume heuristic. The Gaussian principle does not hold 
in general. MAZO and ODLYZKO [M090] show that it fails even in the case of 
spheres and the lattice L = Z” for particular choices of the center z . However 
the principle holds if the center of the sphere is “uniformly distributed (u.d.1 
modulo the lattice”. 

Definition. For a lattice L bl  , . . . , b, a probability distribution 
of points Cy=l tibi in span(L) is called u.d. modulo L af the reduced vector 

with basis 

( { t i }  i = l )  .”, n) is u.d. in [O,l)n . 

This notion does not depend on the choice of the basis. If b l ,  . . . , b, and 
61,. . . , 6, are two bases of lattice L there is a matrix U E GL,(Z) satisfying 
[ E l , .  . . ,b,] = [ b l ,  . . . , b,] U .  Since 1 det Ul = 1 the linear transformation by U 
transforms the uniform distribution on XI”=, b, [0, 1) into the uniform distri- 
bution on C?=l 6, [0, 1). Alternatively we can express the uniformity modulo 
L in terms of the Gram-Schmidt orthogonalization h &, . . . , b, associated with 
the basis b l ,  . . . , b,. The vector Cr=l tl bi in span(L) is u.d. modulo L if 
and only if the vector ({tl} i = 1,. , . , n) is u.d. in [0,1)” . 

Lemma 1. Let L be a .lattice and S(r ,  z )  C span(L) the sphere with f i e d  
radius T and random center z that is u.d. modulo L . Then E,#(S(r, z )nL)  = 
vol S(T, z ) /  det L holds for the expectation E,. 

Proof. For two points z , . ~  E span(L) that coincide modulo L , i.e. z = 
f mod L ,  we have # ( S ( r ,  z) n L )  = # ( S ( r ,  f )  n L )  . The average number of 
lattice points in S(rI  z) is the average number of lattice points per volume part 
vol S(r ,  z ) .  Hence the expected value of # ( S ( r ,  z )  n L )  is vol S(r ,  z ) /  det L. 
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We apply LeniIna 1 to the situation in GAUSS-ENUM with G t , .  . . ,Gn being 
fixed, Zt = ct(i i t , .  . . , G,), C l  > EL and a lattice point of L is searched in the 

sphere S ( v ' m , z )  with center z = - C C GLL,pl,,b3. 
t -1  n n 

3 = 1  z = t  

Theorem 2. If the vector ( { p i , 3 }  1 5 j < i 5 n )  is u.d. in [0, 1)(;) then for 
every fixed n o n z e ~ o  ( Z t  , . . . , E n )  E Zn-t-tl the center z is  u.d.  modulo the lattice 
L = L(b1,. . . , bt-1).  Moreover 

- 
Ez #[ ( G I , .  . . , u t - ~ )  E Z 1 - l  : c l (U1, .  . . , U I L )  5 E I ]  = vol S ( J z , z ) / d e t L .  

Proof. We can assume that iin # 0 since otherwise we can decrease n. We see 

that the vectors ({G,p,,3} j = 1,. . . , t -  1) and ( { C  U,pz,3} j = 1,. . . , t -  1) are 

u.d., in [0, l)'-'. This shows that z is u.d. modulo L.  Since 

n 

a = t  

#[(GI,. . . , i i t & l )  E z t - l  : C l ( i i 1 , .  . . ,G,)  5 E l ]  = # ( S ( d Z , Z )  n L )  

the expression for the expectation E, follows from Lemma 1. 0 

Success rate of GAUSS-ENUM. Suppose a distribution of L3-reduced lat- 
tice bases so that the vector ({pL,,?} 1 5 j < i 5 n)  is 1i.d. in [O, I)(;) and 
let p > log,n. Whenever the depth first search is cut off at  a fixed vector 
( . I t , .  . . , G n )  E zn-t+l then, by theorem 2,  the event that a lattice vector short- 
er than fi gets lost, has probability at  most 2-P .  Therefore the probability of 
missing the shortest lattice vector is at  most 2 - P  times the average number of 
cutoffs. While the number of cutoffs cam be arbitrarily large for badly reduced 
bases statistical experiments show that,  for random L3-reduced basis, the aver- 
age number of cutoffs is proportional to cp,,2P whew the factor cp,, decreases to 
0 as p increases. E.g. for n < 30 and p = 7 the probability of success is at least 
0.1 . 

Expected time bound for GAUSS-ENUM. Using even more heuristic ar- 
guments we can show for p > log, n : Given a random basis b l ,  . . . , b, and 
F 1  5 llbl [ I 2 ,  GAUSS-ENUM performs on the average only O ( n 2 2 P )  arithmetic 
steps l o  find a lattice vector b with llb1I2 < cl, respectively to terminate if siich 
b does not exist. 

4 Solving subset sum problems 

Given positive integers al, . . . , o,,, .$ we wish to solve the equation C:=l uzx, 
= s with 5 1 , .  . . ,x, E {0,1}. We assume that we are also given q = El"=, z,, the 
number of 1-entries of the solution. So we search for a ( 0 ,  1)-solution ( E L , .  . . , 2,) 

of the two equations cr=l a,z ,  = s ,  Crxl x, = q. Following [CJLOSS92] we 
associate to this problem the following lattice basis bo, . . . , b, E 111"+3 
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bo = ( 1, q ,  q ,  . . . q, n29, n2q ) 
b l  = ( 0 ,  n, 0 ,  . . . 0 ,  n2u1, n2 ) 
b2 = ( 0, 0, a,. . . 0, n2a2, n2 ) 

b,  = ( 0, 0, 0, . . . n, n2ulL, n2 ) 

According to [CJLOSS92] the shortcst vector z of the lattice L(b0,.  . . ! bn) solves 
via (4) almost all subset sum problems of density less then 0.9408, where the 
density is n/ max, log, a, . Even beyond this density threshold, solutions of the 
problems in this paper are associated with very short lattice vectors. 

With a (0, 1)-solution z = (xl , . .  . ,xn) of the subset sum problem we as- 
sociate lattice vectors z = ( z o , .  . . , z,+~)  = f (-bo + z,b,) that satisfy 
lzol = 1, zn+l = z,+2 = 0, z,/zg E ( 4 ,  q - n} for a = 1, , . . , n . Conversely every 
such lattice vector z = ( Z O ,  . . . , znt2) induces a subset sum solution 

(4) 

, . . . .  . . - , . . . . . , . .  . .  . 
( 3 )  

- 

xz := [ IF z , /q  = q - 72 THEN 1 ELSE 0 ] for i = 1,. . . , n  

We have tested the following algorithm for general subset sum problems with 
n = 74 and n = 82 many weights and for the Chor-Rivest subset sum problem 
with n = 103. 

Algorithm PRUNED SUBSET SUM 
INPUT lattice basis bo, . . . , b, E 
Perform four successive stages of reduction : 

1. L3-reduction. 
2. block reduction with block size 20. 
3 .  pruned block reduction with block size 50 and p = 10. 
4. pruned block reduction with block size 70 and p = 12. 

its in ( 3 ) .  

Algorithmic details. 1. For L3-reduction we use the algorithm L3FP of [SE94]. 
We set 6 = 0.99, we apply the deep insertion rule of [SE94] for the first basis 
vector. 
2. Block reduction is done by the algorithm BKZ of [SE94] with 6 = 0.99 resulting 
in a basis b o ! .  . . , b,  satisfying for i = 0 , .  . . , n 

( 5 )  0.99 llszll 5 ll~i(b)II  for all nonzero b E L(b;, . . . , bmin(z+p. l ,n))  . 

3.  Pruned block reduction is done the same way as block reduction except that 
we use instead of algorithm ENUM the algorithm GAUSS-ENUM with an ap- 
propriate pruning parameter p .  The resulting basis may occasionally fail the 
inequalities ( 5 ) .  

4 .  Test for solution and early termination. Subsequent to every size-reduction 
of a basis vector bj  it is always tested whether bj  solves the subset sum problem, 
i.e. whether (4) induces a solution x for z = b j .  Also for each stage of the re- 
duction, the vectors of the reduced basis are tested for solution. The algorithm 
terminates as soon as a solution has been found. 
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5. Reduction to the sublattice = { ( z o , .  . . , z , + ~ )  E L(bo ,... ,bn) : zn+l = 
zn+2 = 0 ) .  After the L3-reduction in stage 1 we construct a basis of the lattice 
5 and we continue the reduction process with this basis. Working with the lattice 
L simplifies subsequent reductions since rank(Z)  = rank(L)  - 2. To construct 
a basis of Z we linearly transform the L3-reduced basis bo, . , , , b, of L so that 
b;,j  = 0 holds for i = 1 , .  . , ,n - 2 and j = n + 1 , n  + 2. Then we eliminate the 
vectors b,-l, b, from the basis and we remove from the vectors b; i = 0 , .  . . , n - 2 
the last two coordinates b;,,+l , b;,n+2. Upon entry of stage 2 we randomly per- 
mute the basis so that it starts with the vectors b; that have a nonzero coordinate 
bi,o. This enhances the generation of short lattice vectors z which induce via (4) 
a subset sum solution. 

5 Attacks on the Chor-Rivest cryptosystem 

Chor, Rivest present a public key encryption method for which deciphering 
has the form of a subset sum problem of high density, for details see [CR88]. 
Chor, Rivest propose examples of their scheme with n = 197 and n = 211 
many weights. For testing possible attacks they also designed a small example 
with n = 103 many weights and subset sum problems of density 1.271. The 
Lagarias-Odlyzko method which is based on L3-reduction completely failed for 
the n = 103 subset sum problems. 

Interestingly, block reduction with pruned enumeration solves the Chor- 
Rivest subset sum problems with n = 103 many weights in only 1.5 hours 
average time with 42% success rate. Thus the widespread believe that subset 
sum problems with density greater than 1 cannot be solved via lattice reduction 
is outright wrong. The Chor-Rvest scheme with n = 103 and density 1.271 is 
even less difficult than random subset sum problems with n = 82 and density 1.  

Generation of the Chor-Rivest subset sum problems. We take the par- 
ticular weights a ~ ,  . . . ,a103 of the example constructed by Chor, Rivest. We 
generate 50 random vectors ( X I , .  . . ,5103) E (0, l}lo3 so that Ctz: xi = 12, 
and we set s := Ciz xiai. In the corresponding subset sum problem we are 
given a l ,  . . . , a103, s and have to solve the equations xiai = s, C i = l  xi = 
12 with 5 1 , .  . . , 2 1 0 3  E {0,1}.  (The number 12 arises from the particular con- 
struction of the weights a* starting from the field IF = GF(10312), a generator 
g for the group of units F*, an element t E IF that is algebraic of degree 12 over 
GF(103), a random permutation 7~ in Sym(n) and a random number d with 
0 5 d < 10312 - 2, and setting ai := log,(t + ~ ( i ) )  + d for i = 1,. . . ,103 .) 
We solve these 50 subset. sum problems by applying the algorithm PRUNED 
SUBSET SUM to the lattice basis (3) with 7~ = 103, q = 12. 

The first table shows, for each of the stages i = 1,2 ,3 ,4 ,  in column 4 the 
number of successes on stage i, in column 5 the number of successes up to stage 
a ,  in column 6 the average time (with, respect to all 50 problems) of stage i, 
in column 7 the total time up to stage i and in column 8 the maximal time of 
stage i. The last column contains the total time for all 50 problems divided by 

103 103 
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stage 

2 

size p on stage up to stage average av. total maximal per success - 

2 0 0 0  3 3 7.6 8.2 16.9 163.5 
1 2 0 0  0 0 0.6 0.6 0.7 co 

3 
4 

1 

50 10 18 21 86.8 95.0 247.31 226.1 
70 12 14 35 173.4 268.4 938.31 383.5 

Stage 1 which performs L3-reduction does not find any solution. This con- 
firms the previous results of Odlyzko showing that L3-reduction is too weak 
even if the CJLOSS basis (3) is used which is much stronger than the Lagarias- 
Odlyzko basis used in the experiments of Odlyzko. 

Stage 4 by itself is quite inefficient. It takes a total of 619 minutes per success. 
This suggests to replace stage 4 by a repetition of stages 1,2,3 with a randomly 
permuted input basis. The next table shows the results for two repetitions of 
stages 1,2,3. 

With two repetitions the success rate is 76% with an average time of 3.2 
hours. It may be of interest that an alternative algorithm of Ritter, see [KR94], 
solves all n = 103 Chor-Rivest problems in about 7 hours maximal time. 

Chor-Rivest subset sum problems with more weights. A limited number 
of first experiments have been carried out by H.H. Horner in attacking a Chor- 
Rivest cryptosystem with n = 151 many weights and q = 16 [H94]. So far he 
could solve 5 out of 50 random problems with an average time of 195 hours for 
the solved problems. 

6 Attacks on Damgird’s knapsack hash function 

In [DA89] a hash function h his proposed based on the subset sum problem. 
Choose random numbers a l ,  . . . , a256 in the interval [l, 2lZ0 - 11 and hash a 
message m consisting of the bits ml, . . . , m256 into the integer h(m1,. . . , m 2 5 6 )  = 
~ ~ ~ ~ a i r n i  . 

To construct a collision for h it is sufficient to find a nonzero {f l ,  0)-solution 
(21,. . . , 2 2 5 6 )  of the equation a p i  = 0. This yields messages m, m’ with 
bits mi = max{O, xi}, mi = - min{zi,0} for i = 1 , .  . . ,256 satisfying h(m) = 
h(m’). 

256 
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Following an analysis of Joux, Stern [JS94] collisions exist almost surely even 
for the restricted problem with 80 out of the 256 weights ai. We construct nonzero 
{fl,  0)-solutions of the equation Ca=l a,z; = 0. We associate to this problem 
the following lattice basis bl , . . . , b,, E Zn+' with bi = (0, .  . . , l('), . . . , 0, nu;) for 
i = 1 ,  . . . ,  n a n d n = 1 0 0 .  

A nonzero lattice vector t = (tl, . . . , z,+l) yields a collision if zn+l = 0 and 
( ~ 1 , .  . . , 2,) E { f l ,  O}n. We apply to this basis a two-stage reduction consist- 
ing of an L3-reduction and a single pruned block reduction with block size 50 
and alternative p-values 8,9,. . . ,12.  We test after each size-reduction whether 
the reduced vector z yields a collision. (The more powerful reduction algorithm 
PRUNED SUBSET SUM is less efficient since the shortest lattice vector is most 
likely not in {kl,O}n. This follows from the analysis in [JS94]. ) 

Each row in the following table corresponds to 20 random vectors (a, , . .  . , 
a1001 E [ 1 J  120 - 1)lo0. We report the number of Successes, the average running 
time in minutes, the minimal and maximal size of the detected collision ( the 
size of a collision ( I G ~ , .  . . , zn) E {&I, O } n  is # { i  : zi # 0} ), and the pruning 
parameter p .  

100 

lblock size1 p I# successeslav. time in minuteslmin sizelmax sizc 

~~ 

50 10 16 365.84 45 59 
50 388.05 37 
50 12 20 ~ 386.65 44 60 

A first collision for DamgArd's hash function has been constructed in [JG94] 
using pruned block reduction via the pruning of [SE94]. They report one success 
for ten problems. The new results demonstrate the superiority of pruning via 
the volume heuristic. 

7 General subset sum problems 

We report on solving random subset sum problems of arbitrary density in 
dimensions n = 74 and 82. The previously most powerful algorithm [SE94] could 
solve almost all problems in dimension n = 66 by combining block reduction 
with some sort of pruning. The new algorithm PRUNED SUBSETSUM prunes 
the enumeration of short lattice vectors by the volume heuristic. It solves for 
n = 74,82 a substantial fraction of all random subset sum problems of arbitrary 
density. 

In the following table, every row with entries n, b corresponds to 20 random 
input bases (3) that are generated as follows. Pick random integers a l ,  . . . , a,  
in the interval [I, 2b], pick a random subset I c {ll .  . . , n}  of size n/2 and put 
s = CtEI  a,. To solve the corresponding subset sum problem C:=l a,z, = s 
we apply the algorithm PRUNED SUBSET SUM to the lattice basis (3) with 
q = n,/2. The numbers in columns S, S1, S2, S3, S4 denote the total number of 
successes, and the number of successes in stages 1, 2, 3, 4. 



PRUNED SUBSET SUM is remarkably efficient for densities less than 0.9408 
where the  shortest lattice vector most likely yields a solution, see lines n = 74, b 2 
82 and  n = 82, b 2 90. This gives new hope tha t  shortest, or near shortest lattice 
vectors can be found in polynomial time. 

Random subset sum problems with n = 82 arid density 1 are harder than 
the Chor-Rivest scheme with n, = 103 and density 1.271. Here stage 4 of the 
algorithm PRUNED SUBSET SUM is necessary for the  generation of solutions. 
Only 5 out of 20 problems for n = 82,b = 82 are solved in 282 minutes. The  
Chor-Rivest problems are easier because the problem solution yields a shortest 
lattice vector with no further vector being nearly as short. 
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