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Abstract. Gemmell and Naor proposed a new protocol for uncondition- 
ally secure authentication of long messages. However Gehrmann showed 
that the proof of the security of the protocol was incorrect. Here we 
generalize the multiround protocol model. We prove the security of a 
3-round protocol and give for this case a new easy implementable con- 
struction which has a key size close to the fundamental lower bound for 
even extremely long messages. Furthermore, we give a proof of a secure 
multiround protocol for an arbitrary number of rounds. 

1 Introduction 

Gemmell and  Naor [ 13 proposed an  unconditionally secure authentication scheme 
(or A-code) without secrecy in which, by following a protocol, codewords are 
passed back and forth. This scheme makes it possible, albeit at the expense of 
increasing data exchange, to authenticate very large messages while keeping the  
key size small. I t  was shown by Johansson, Kabatanskii and  Smeets in [2] tha t  
for single round authentication the key size is bounded by t>he logarithm of the 
message size. 

Denote by 10g(~) (z )  a Ic-times logarithm log(log( ... log(.))). Gemmell and  
Naor showed tha t  their Ic-round protocol for a message size of TI bits demands a 
key size 

(1) 
1 
ps 

H ( K )  x log(”)(n) + 2log(-), 

where P, is the probability of a successful substitution attack for the  scheme. 
However, the  security analysis made by Gemmell and Naor only took into 

account a certain substitution attack. In [3] Gehrmann, by considering the im- 
personation attack, showed that protocols where the number of rounds is even 
are of no interest. Furthermore, he introduced a special six step substitution at- 
tack for which tbc probability calculation of P8 madc by Gcmmell and  Naor did 
not hold. In this paper, we push the analysis further. We propose new protocols 
and prove their security. 

In Section 2 we give a classification of possible attacks on multiround pro- 
tocols. In the  next section we propose a new %round protocol and also give a 
specific construction based on Reed-Solomon codes. Using the  tools of Section 
2 we give a proof of its security. In  Section 4 we show how to make a secure 
protocol for a n  arbitrary number of rounds. 
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2 Attacks on multiround protocols 

We will consider a system for message authentication in which a transmitter A 
wants to  send a message to a receiver B by exchanging codewords. The trans- 
mission channel is supposed to be controlled by an opponent 0, who can send 
own (new) codewords over the channel to A and B or substitute codewords sent 
by A or B with own new ones. A and B are assumed to share secret information, 
Le., the key, unknown to the opponent. We denote by k the total number of 
codewords sent over the channel to authenticate the original message. Since the 
original message is sent by A we will denote this message by m A .  The correspond- 
ing message observed by B may have been changed by the opponent and will 
be denoted by mB. The codewords used by the protocol in the authentication 
process we will denote by subindex. For example mi dcnotes the i-th exchanged 
codeword. A k = 3 round authentication protocol is shown in the figure below. -- 

Figure 1: Multiround authentication for k = 3 

We will use the following notation: 

- mA = m t ,  (mf) ,  ..., mf-,: a by A sent and (received) codeword sequence. 
- mB = (mf), mF, ...,  IF-^): a by B sent and (received) codeword sequence. 
M :  the set of possible codeword sequences. 
K : the secret key. 
PI : probability of a successful impersonation attack. 
Ps : probability of a successful substitution attack. 

For the Gemmell and Naor milltiround protocol it was shown [3] that  the last 
round should be omitted if k is even. This implies that in contrast with the 
Gemmell and Naor model it always have to be the receiver that detects the 
intruder. Hence, in our generalized multiround authentication model we will in 
the sequel assume k to be odd. 
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The attack described by Gehrmann follows an asynchronous model, which 
was the model used by Gemmell and Naor. The attacks we describe in this 
paper will also be in accordance with an asynchronous protocol model. To avoid 
meaningless complications we make the assumption that B(A) immediately after 
receiving an even(odd) codeword responds with his own odd(even) codeword, Le., 
we don't take into account the time delay for A and B. Depending on the secret 
key, not all sequences M are acceptable sequences. Denote by M(K) the subset 
of that are allowable sequences under the specific key I<'. Depending on the 
odd number received codeword, his own chosen even number codeword and the 
key K ,  A will create and observe a sequence mA E M ( K ) .  In a similar way B, by 
receiving even numbered codewords and responding odd numbered codewords, 
will observe a sequence mB . He accepts the sequence as a message from A if and 
only if mB E M ( K ) .  We will deal with two attack scenarios depending on the 
capabilities given to  the opponent. 

2.1 Ordinary substitution attacks 

This case corresponds to the ordinary model for single round authentication [4], 
[5], [6]. Here we assume that 0 has no capability to choose the message mA 
to  be authenticated. This original message mA is for example in the Gemmell 
and Naor protocol equivalent with the first codeword m$ sent by A. All even 
numbered codewords observed by A and all odd numbered codewords observed 
by B are chosen by A and B respectively and hence the opponent 0 has only 
control over the codewords in the set 

0 succeeds in a substitution attack if and only if he, during observation of 
the even codewords of mA and odd codewords of mB, creats a sequence of 
codewords from the set 0, such that the corresponding sequence observed by B 
- mB E M ( K ) ,  mB # mA. 

However as in the attack in [3], the order of the codewords substituted by 
the opponent could be chosen in an asynchronous way. Changing the order may 
increase P, and thus all possible order of substitution must be taken into ac- 
count when calculating P,. Denote by t one particular substitution order (or 
type of attack) and by ~ ( t ) , m i ( t )  E 0, the corresponding sequence of code- 
words created by 0 (0-sequence). Furthermore, denote by T,(k) the set of valid 
differently ordered substitution sequences for a k-round protocol and by ITs(k)l 
the cardinality of this set. 

We illustrate the notation with the following example. 

Example 1. There are IT,(3)1 = 3 different types of attacks for the k = 3 round 
protocol. We have listed all the types in the table below together with the com- 
plete sequence of codewords observed on the channel(the codewords that 0 uses 
for a substitution attack are marked with arrows). 
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lo-seouence IWhole seauence 

Here m(3) is of the attack type analyzed in [3]. 

We have the following theorem on the number of different ordered 0-sequences. 

Proof. The subsequences r n f  , mf , ... and mf , m t  , ... in rn(t) have to  be ordered. 
There are 9 codewords in the A-subsequence, these should be chosen out of 
k differents positions in the 0-sequence. Hence tjhere are (A) different 0- 
sequences of length k .  

a 

Using the introduced definitions P, may be written as 

2.2 Chosen message substitution attacks 

We will in the sequel deal with an attack model where the original message might 
freely be chosen by the opponent. T h i s  includes that 0 has the capability to 
choose both the first original message mA and mB, the one to substitute it with. 
When the opponent is also given the additional possibility to  freely choose the 
original message mA that should be authenticated, the situation looks different. 
The first codeword mt sent by A may consists of just mA or mA and a second 
part created by A. In the chosen-message substitution scenario we assume thal 
0 may freely choose the part mA of m# and 0 thus has control over the set 

A 0’ = {mbA, m f ,  m f ,  m f ,  ... , mk-21 mf-l}, 

where the ’ marks that 0 maybe not might control me completely. Similar to 
the ordinary substitution attack case we denote by T,(k) the different ordered 
0-sequences of length k + 1. We then have the following Corollary. 

Corollary 2. 

Proof, This case corresponds to that for Theorem 
k + 1 and an A-subsequence of length (k+l) . 

(4) 

1 with a 0-sequence of length 
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Similar to  the ordinary substitution attack case we denote one particular ordered 
sequence by ~ ( t ) .  Denote by Pi the probability of successful substitution attack 
for the chosen message scenario. Pi may be written as 

Adding the chosen-message attack to  the model increases the demands on the 
authentication protocol. A protocol that is secure in a model including the 
chosen-message attack is obviously also secure for the ordinary substitution at- 
tack model. We will from now on only consider protocol that are secure in the 
stronger chosen-message attack model sense. Change the demands on the proto- 
cols and only letting them be secure for the ordinary substitution attack might 
reduce the complexity. 

Remark. In the single round authentication case there are different definitions 
of P, in use. To ensure secure single authentication when the chosen-message 
attack is added to the model it is necessary to  use the maxmax definition of P, 
as for example made in [2], [7]. 

3 Secure k = 3 round protocols 

We start with a special treatment for k = 3. We propose a protocol which is a 
modified version of that of Gemmell and Naor [l]. 

Let Q be a power of a prime and denote by C a code over G F ( Q )  with length 
n. Let p > and the minimum distance d of the code C satisfy 

d 2 n - n p .  

Denote by C A  an  A-code for which the probability of a successful substitution 
attack is less or equal to p ,  and the probability of a successful impersonation 
attack is less or equal to  P I  < p , .  Let Ci(m) E G F ( Q )  be the code symbol a t  
i-th coordinate of the codeword corresponding to message m. Denote by a 0 b a 
concatenation between two words a and b .  We suggest the following protocol for 
authentiation of the message mA: 

( i )  A chooses a random number j ,  1 5 j 5 I ,  where 1 is chosen according to 
the desired security. A sends the codeword mg = j o mA 

(ii) B receives codeword mf and chooses a random number i, 1 5 i 5 n.  B 
sends codeword 7nF = i .  

(iii) A receives codeword mf and uses the code C A  to transmit 

(iv) B receives codeword mf and calculates C A ( m F , C r n ~ ( m f ) )  and ac- 
mf = CA(rnf ,Crnp(rnf))  = CA(mf,Cmp(jomA)). 

cepts the codeword sequence as authentic if and only if 
mf = ~ " ( m f , ~ , , q ( r n ~ ) ) .  
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Theorem3. Let  a = niax,,i,, l { j  : C;( jom)  = c}l. For the  k = 3 round protocol 
above 

(6) 
a a 
1 I P:=maX(-+(1- - )p , ,p+(1  - P ) P s )  

the probability f o r  a successful  subst i tut ion at tack w h e n  we also take i n t o  accounl 
t he  chosen-message attack.  

Proof. Denote by Pt = n i a h ( t ) , , ~ # , , ~  - Pr{mR E A4(1<)}. According to  (4) 
there are ITc(3)1 = (:) = 6 possible attacks, when we also take into account the 
chosen-message attack, corresponding to  the sequences 

(1) + mLA, + mf!, m f l  + m;l, m f ,  + mf. 
(2) -+ mdA,+- n i f ' ,mf I+  mf,mB,-  ni2. B 
(3) - rnbA -+ mo B , m?, --+ mt , +- m;i T,L$ . 
(4) --+ m, B , m r l  --+ mbAl + m f l  + mf , m i .  
(5) - m ~ , m ~ , t m ~ A , t m f ' , m ~ , ~ ~ ~ 2 .  R 

(6) 

(3),(4),(6) Here 0 sends the last codeword rnf before receiving mf and hence 
he gets no information about the secret key and the probability of a successful 
attack P3 = P4 = Ps = 271 < p,. 

+ mf my + r n f ,  + nibA, + m f ,  mf. 

(1) 0 chooses a mf # nibA and receives mf . He succeeds with his attack by just 
letting m;? = mf and mf = mf if C,p(mf) = Cm~(mbA) .  Otherwise 
mf,C,F(mf!) # mf,Cm~(rnbA) independent of the choice mf' and 0 has to 
find CA(mF, C m ~ ( m t ) )  given CA(m;?, C,p(mhA)). By the definition of the A- 
codc the probability for this < p, .  B chooses m? uniformly over { 1 , n }  and this 
together with the definition of the code C gives Pr{C,~(mf) = C,?(mbA)} = p 
and hence the overall probability 

Pl = p + ( l - p ) p s .  

(2) 0 receives mf after choosing m;? and hence 

1 
n 

P r { m ~ l C m ~ ( m ~ )  = m f l C m ~ ( m { ~ ) }  5 - < p .  

If m? # mf' 0 must find CA(m', C,a(mf)) given CA(m;?, C,;(mbA)) and by 
the definition of the A-code the probability for that is less or equal to p ,  and 
hence the overall probability satisfies 

p2 < PS (1 - P I P S  

(5) If 0 after receiving mf finds an mA such that C , ~ ( m ~ )  = C,F(mdA) he 
will succeed by choosing mf = 7nf and m? = mf. Recall that 
a = max,,i,, l { j  : Ci(j o m) = c}I from the statement of the theorem. From 
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this definition and the fact that A choses j uniformly and at  random over { 1, I} 
follows 

m a h A  Pr{C,F(mt) = ~ ~ ~ ( r n ~ ~ ) l ~ , a ( r n f ) }  = 

m a h A  pr{cmF(rnf) = ~ , p ( j  o mA)l~mF(mo B 1) = 
I '  

Otherwise mf,C,g(mf) # m f ,  Cm,(mLA) independent of the choice rnf and 
0 has to find CA(rn~,Cm~(mf)) given CA(m;',Cmp(m~A)). By the definition 
of the A-code the probability €or this event 5 p,. Hence the overall probability i 

a U 
p5 = - 1 + (1 - -)ph. 1 

Now using (5) gives the desired result,. 

We will continue with giving an efficient construction by using Reed-Solomon 
codes (RS-codes). 

Construction: For simplicity let m = m A .  Let Q = 2', T = ~ 2 ' - ~ - '  1 -  I - 2' 
and let C be an RS-code over G F ( Q )  with k = 2", r - s = t .  Hence 

n = Q = 2 '  

d = n - k = 2' - 2'. 

Thus p = ( n  - d ) / n  = k / n  = 2'/2. = 2r- t /2r  = 2-t .  Further let j o m be 
regarded as the k-tuple ( j  o mo,  ml , . . . , r n k - I )  over G F ( Q ) ,  where j is the t first 
bits and mo the T - t next bits of the element j o rno E GF(&).  Additionally let 
the code symbol of index p be obtained by evaluating the polynomial Cp(jom) = 
jomo+mlp+. . .+mk_lp lC- '  as in the description of RS-codes [$I. Let the code 
C A  be the A-code obtained from a RS-code over GF(2"),  k = 2"-t1 as suggested 
in [a ] ,  i.e., pr  = 2 - " , p 3  = 2"-*/2" = 2- ' .  Thus we have a construction which 
needs t random bits at  the transmission side, T random bits at  the receiver side 
and with a key size of 2v bits. Furthermore, the construction allows a message 
size: 

log [MI = 7 9 s  - 1) + r - t = r2r-t - t = v2u-t-1 2 7J2*-*-'-t - t .  (7) 
Theorein4. F a r  the construction abave 

P: < 21-t. 

Proof. Denote as in Theorem 3 by a = maxm,i,cl{j  : C:(j 0 m) = c}l. V'm,B, c 
the number of solutions of the following equation with respect to  j 

~ p ( j  o rn> = j o mo + m1/3 + . . . + r n k - 2 ~ " '  = c 

is less or equal to 1 and hence a = 1. Further according to (6) 
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20 
20 

40 
40 

20 

40 
40 

The message size, key size and authenticator length for different parameters 
of the construction is list,ed in Table 1 below together with the concatenated 
RS-codes single authentication construction parameters of [7]. 

44 229 2R 
46 278 211 

82 82 210 
84 250  210 

48 2179 213 

86 2139 212 

88 2320 214 

tllcngth of kcylw message lengtl 
lnewl 

20 I 42 I 22 I 120 

Table 1. K e y  and message size i n  bits f o r  the constructzon with P, < 21- t .  

It follows from the table above that the 3-round authentication system re- 
alizes very long message authentication by using short keys and that the key 
size even for exhmely  long messages is close to the Gilbert, MacWilliams and 
Sloane [9] famous square root bound for single authentication, i.e., 210g( k). 
The data expansion of the protocol is just ~ 2 " - ~  + t bits for a protocol with a 
key size of 2v bits and with Pi < 21-t, and is hence almost negligible. 

4 k > - 5 round protocol 

As we have shown in the previous section, the 3-round protocol gives a secure 
authentication system with very short keys and few random bits for most prac- 
tical situations. However to make the treatment complete we now also prove the 
security of a multiround protocol for an arbitrary number of rounds. Consider 
the following protocol: 

Let p be a security parameter and C' a code over GF(Q,) ,Q,  2 
length n, and with minimum distance d satisfying 

with 

P 
d I nr - nr 2k-1-r 

and let CA be a Cartesian A-code with a probability for a successful substitution 
and impersonation attack less than p .  Furthermore, let Vr 5 k - 2 , l  5 i r  5 nr 
and V r  5 k - 4 , l  5 j ,  5 y, where the i's and j's chosen uniformly and 
random by either A or B when using the protocol. Let m A  and mg be defined 
as 

(9) 

(10) 

7riA = (c!L2 (. ' . ( C ; A  ( C i A  ( 7 r L A ) ,  i t ) ,  if, j,") . ' .), zk .A - 2 , ] k - 4 )  .A , 

mg = (c$-~ (. . . (c:B(c$ ( m B ) ,  if), 22 .B , 30  .B ) . . .), z k - 2 ,  .B ~ k - 4 ) .  .B 

' k - - 2  2 1  

k - 2  2 1  

A k 2 5 secure protocol is described below. 
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(i) r = 0, A chooses a random number j,", and sends the  codeword m f  = 

(ii) r = r + 1, B receives codeword mF-, and chooses two random numbers 
i: , j," . B sends codeword rn: 1 (i: , j:). 

(iii) If r = k - 2 then step v). 
(iv) T = r + 1, A receives codeword m$-, and chooses two random numbers 

i t l je.  A sends codeword m e  = ($ , j : ) ,  back to step ii). 
(v) A receives codeword mf-z and uses the A-code to  transmit codeword 

mf-l = C A ( r n ~ ) ,  where mA is given by (9). 
(vi) B receives codeword mfp1,  calculates C A ( m ~ ) ,  where mg is given 

by (10) and accepts the codeword sequence as authentic if and only if 

( . i f 1 m A ) .  

mfpl  = C A ( r n B ) .  

Theorem 5.  For the protocol above 

(11) 
1 

2 k  
P.5 < 2(1 - - ) p .  

Proof. Among all T,(k) att,acks we will consider only two types; i) either we 
follow the  order of the protocol, i.c., the sequencc 

A B A  A B  mfl , m E  m, I m1 1 . ' .> ms-1, r n k - 1 ,  

or ii) any of all the other types of attacks. 

i) This  case corresponds to  tha t  analyzed in [l] with adding the j's to the pro- 
tocol. However the j ' s  are not affecting the choice of indices and the proof still 
holds, giving the  probability of successful attack less than  

ii) As in the  proof of Theorem 3 if 0 sends the last codeword mF-l before 
receiving mfWi he succeeds with probability at most p .  Thus assume mf-l is 
Ihe last codeword in the attack scyuerice and tha t  after the  codeword I >_ 2, mf 
(or 1 2 3,  m f )  the order of the protocol is followed. An arbitrary attack sequence 
not equal to tlhat of i) may then be described as 

A A B B  . . , > ? - Z l  mp-1, " 1  1 ml 1 m1+11.. ' 1  m L 1  mF-1 

or 

where the dots . . marks any allowable combination of the remaining part of the 
codewords. 0 succeeds by just  forwarding the  codewords between A and B if 
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0 sends the codeword mf.,  (or m f z )  before receiving mfPz (or mf.,) and he 
has thus no knowledge of jt2 (or jf2) when choosing jf2 (or jtz). Hence 
the probability of equality in (12) at most fi. If j t ,  # j f ,  it follows from 
i) that he succeeds with probability at  most 2( 1 - & ) p  and thus the overall 
probability of successful attack 

P P 1 1 2”-1+ (1 - -)(2(1 - F ) P )  < 2(1 - 3 ) P  

5 Conclusion 

We have generalized the model of the Gernmell and Naor rnultiround protocol. A 
proof a secure 3-round protocol was given together with a very efficient construe.- 
tion for this protocol. The construction demands only a key size of 88 bits for a 
protocol which authenticate a message of size up to 2320 bits with probability of 
successful attack less than 2-39 and with a very small size of the data expansion. 
The 3-round protocol gives an unconditionally secure authentication system for 
most practical message sizes. Finally we have given a proof of a secure protocol 
for an arbitrary number of rounds. 
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