Verifiable Secret Sharing as Secure Computation

Rosario Gennaro* and Silvio Micali

Laboratory for Computer Science
Massachusetts Institute of Technology

Abstract. Verifiable Secret Sharing is a fundamental primitive for secure cryp-
tographic design. We present a stronger notion of verifiable secret sharing and
exhibit a protocol implementing it. We show that our new notion is preferable
to the old ones whenever verifiable secret sharing is used as a tool within larger
protocols, rather than being a goal in itself. Indeed our definition, and so our
protocol satisfying it, provably guarantees reducibilty. Applications of this new
notion in the field of secure multiparty computation are also provided.

1 Introduction

Secret Sharing and Verifiable Secret Sharing (V5SS for short) are fundamental notions
and tools for secure cryptographic design. Despite the centrality and the maturity of
this concept (almost 10 years passed from its original introduction), we shall advocate
that a stronger and better definition of a VSS is needed in order to achieve the very
desirable property of reducibility for secure protocols. We shall then provide the first
provably correct implementation of this stronger definition.

REDUCIBILITY is an essential tool for secure protocols design because it allows such
protocols to be built in a modular way. In our case this means that one can first design
a protocol P for a given task assuming that an “abstract” and “perfect” VSS protocol
exists. Then one designs a correct (according to a given definition!) VSS protocol Q.
Finally one substitutes Q in place of the abstract sub-protocol in P. However this way
of proceeding yields a secure protocol P if and only if the definition of VSS satisfied by
Q enjoys the reducibility property. Unfortunately no prior notion of a VSS provably
guarantees reducibility. Thus it is a goal of this paper to provide such a definition and
a VSS protocol that satisfies it.

THE INTUITIVE NOTION OF A VSS. As first introduced by Chor, Goldwasser, Micali
and Awerbuch in [4], a VSS protocol consists of a two-stage protocol. Informally, there
are n players, t of which may be bad and deviate from their prescribed instructions. One
of the players, the dealer, possesses a value s as a secret input. In the first stage, the
dealer commits to a unique value v (no matter what the bad players may do); moreover,
v = s whenever the dealer is honest. In the second stage, the already committed value
v will be recovered by all good players (no matter what the bad players might do).

* Contact author. Email address: rosario@theory.lcs.mit.edu. Research supported
by NSF grant no.9121466-CCR

L.C. Guillou and J.-J. Quisquater (Eds.): Advances in Cryptology - EUROCRYPT °95, LNCS 921, pp. 168-182, 1995.
© Springer-Verlag Berlin Heidelberg 1995

169

PRIOR WORK. Several definitions and protocols for VSS have been proposed in the
past ten years (E.g., [4, 1, 3, 7, 10].) We contend, however, that these notions and
these protocols are of very limited use. In fact, their security concerns “begin when
the dealer’s secret is committed, and end when it 1s recovered.” That is these notions
do not concern themselves with what happens when VSS is used as a subprotocol. Be-
cause in many applications running a single VSS protocol is exactly what is wanted,
these prior definitions and protocols are totally adequate in those scenarios. However,
they are not adequate in more general scenarios since it is by now a well-known phe-
nomenon that protocols that are secure by themselves, cease to be secure when used
as a sub-protocols. In these cases the security of the entire protocol must be proven
“from scratch” (for instance, this is the case in [7] where they use VSS as a tool
to reach Byzantine agreement) rather than in a more natural and elegant “modular
way.” A notion of security that guarantees reducibility has been presented by Micali
and Rogaway [9] for the problem of function evaluation, but not for general multiparty
protocols.

Our WORK. We extend reducibility-guaranteeing notions of security to verifiable secret
sharing protocols and concretely exhibit VSS protocols that provably satisfy these
notions. More precisely, in this paper we achieve the following goals:

1. We propose a new definition of VSS casted as a special istance of secure function
evaluation.

2. We compare our new notion with the previously proposed ones, and show that it
is strictly and inherently stronger.

3. We modify earlier VSS protocols of [1, 10] and show that our new protocol is secure
according to our notion.

4. Finally we present some applications that use VSS as a subroutine and need our
stronger notion of VSS to be secure. These include shared authentications and
signatures and a very elegant proof of the security of the completeness theoren: on
multiparty secure computation by Ben-Or, Goldwasser and Wigderson. {1]

2 Prior work

In order to focus on the difficulties that are proper of VSS, we shall deal with a simple
computational model, both when reviewing prior work and when presenting our new
one.

CoMPUTATIONAL MODEL. We consider n players communicating via a very convenient
synchronous network. Namely, to avoid the use of Byzantine Agreement protocols we
allow players to broadcast messages, and, in order to avoid the use of cryptography,
we assume that each pair of players is connected by a private communication channel
(i.e., no adversary can interfere with or have any access to messages between good
players).

We model the corrupted processors as being coordinated by an adversary A. This
adversary will be dynamic (i.e., decides during the execution of the protocol which pro-
cessors corrupt); all-powerful: (i.e., can perform arbitrarily long computations); and
completely-informed (i.e., when corrupting a player she finds out all his computational
history: private input, previous messages sent and received, coin tosses, etc.). Further,
the adversary is also allowed rushing (i.e., in a given round of communication, bad play-
ers receive messages before the good ones and, based on those messages, the adversary

170

can decide whom to corrupt next). We say that such an adversary is a ¢-adversary (
0 <t <n)iftisan upper bound on the number of processors she can corrupt {1
is also referred to as the fault-tolerance of the protocol.) This computational model is
precisely discussed in [7] and [9].

PRIOR DEFINITIONS OF VS8S. To exactly capture the informal idea of a VSS, has
proven to be an hard task in itself. The definition reviewed below is that of [7], which
relies on the notion of a fized event:

Definition: We say that an event X is fized at a given round in an execution E of a
protocol, if X occurs in any execution E' of the protocol coinciding with F up to the
given round.

Definition1. Let P be a pair of protocols where the second is always executed after
the first one, P =(Share-Verify, Recover). In protocol Share-Verify, the identity
of the dealer is a common input to all players, and the secret is a private input to
the dealer; the output of player P is a value verification; € {yes,no}. In protocol
Recover, the input of each player P; is his computational history at the end of the
previous execution of Share-Verify; the output of each P; is a string ;. We say P is
a VSS protocol with fault-tolerance t if the following 3 properties are satisfied:

1. Acceptance of good secrets: In all executions of Share-Verify with a t-adversary
A in which the dealer is good, verification; = yes for all good players F;.

2. Verifiability: If less than t players output verificaticn = no at the end of Share-
Verify then at this time a value ¢ has been fixed and at the end of Recover all
good players will output the same value o and moreover if the dealer is good ¢ =
the secret. 2 :

3. Unpredictability In a random execution of Share~Verify with a good dealer and
the secret chosen randomly in a set of cardinality m any t-adversary A won’t be
able to predict the secret better than at random i.e. if A outputs a number a at
the end of Share-Verify then Probla=s] = -

SECURE COMPUTATION. Let us summarize the definition of secure function evaluation
of [9). Informally the problem is the following: n players Py, ..., Py, holding, respec-
tively, private inputs z1, ..., z,, want to evaluate a vector-valued function f on their
individual secret inputs without revealing them (more than already implied by f’s
output). That is, they want to compute (y1,...,yn) = f(21,...,25) such that each
player P; will learn exactly ;.

This goal is easily achievable if there is an external and trusted party, who privately
receives all individual inputs and then computes and privately hands out all individual
outputs. Of course, even in this ideal scenario, the adversary can create some problems.
She can corrupt a player P; before he gives his input z; to the external party and change
it with some other number #;. And she can still corrupt players after the function has
been evaluated and learn their outputs. These problems should, however, be regarded
as inevitable. Indeed, following [8], [9] call a protocol for evaluating f secure if it

2 Notice that if we simply ask in the Verifiability condition that “all the good players output
the same number ¢ at the end of the Recover phase” it would not be sufficient for our
purposes. In fact, we would still allow the adversary to decide during Recover what value
o the good players will ontput. Thus Share-Verify would not model a secret commitment
as required.

171

approximates the above ideal scenario “as closely as possible.” The nature of this
approximation is informally summarized below.

Definition (Initial configuration, traffic, inpul and outpui): Let us define the following
quantities within the context of a protocol P.

The initial configuration for P is a vector ic, whose ith component, ic; = {(zi,)
consists of the private input and the random tape of player P;.

The traffic of player P; in protocol P at round g, t, is the set of messages sent and
received by P; up to that round.

A local input function 1= (I,,...,I,) for P is an n-tuple of functions such that there
exists a specific round r such that, by applying I; to the traffic t7, we get the input
player P; is “contributing to the computation.” I(ic) will denote the vector of those
values when P is run on initial configuration ic.

A local output funclion O = (Oy,...,0y) for P is an n-tuple of functions such that
by applying O; to the final traffic t/*"% of player P; we get his output.

Definition (Adversary view): The adversary view, VIEWX,‘etwork, during P is the
probability distribution over the set of computational histories (traffic and coin tosses)
of the bad players.

Definition (Simulator and ideal evaluation oracle): A simulator Sim is an algorithm
that “plays the role of the good players”. The adversary interacts with the simulator
as if she was interacting with the network. The simulator tries to create a view for the
adversary that is indistinguishable from the real one. He does this without knowing the
input of the players, but it is given access to a special oracle called the ideal evaluation
oracle. For a protocol P with local input function I evaluatable at round r, the rules
of the interaction between Sim and the oracle are the following:

— if A corrupts player P; before round r Sim gets from the oracle the input z; and
gives 1t to A.

— at round r Sim gets the output y/ for all the players corrupted so far, where
(W, b)) = f(21, ..., zh) where zi = z; if P; is still good, otherwise @} = Li(t])

— if A corrupts a player P; after round r, Sim gets from the oracle the pair {z;, y})
and gives it to 4.

Definition2. Secure Function Evaluaiion: Let f be a vector-valued function, P a
protocol, Sim a simulator, and I and O local input and output functions. We say that
P securely evaluates the function f if

— Correctness: If ic is the initial configuration of the network, then
1. z; = Li{ic) for all good players P;

2. with high probability, O(t/"?") = f(I(ic))
(I.e. no matter what the adversary does, the function is evaluated during the
protocol on some definite inputs defined by the local input functions over the
traffic of the players. These inputs coincide with the original inputs for the good
players)

— Privacy: For all initial configurations ic, if VIEWZ | is the adversary view of the
simulated execution of the protocol, we have that

VIEWZ jworr = VIEWZ

etwor

(I.e., the two views are statistically indistinguishable.)

172

There are many reasons for which this definition captures correctly the notion of a
secure computation. In particular, the following one: the definition in [9] allows one to
prove formally many desirable properties of secure protocols, the most interesting for
us being reducibility:

Theorem 3 [9]. Let [and g be two funclions. Suppose there is a protocol P ihat
securely evaluates f in the model of computaiion in which @t can perform ideal evalu-
ations of g. Suppose also that there is a protocol Q@ that securely compules g. Denole
with P2 the protocol in which the code for () is substituted in P in the places where P
ideally computes g. Then P® is secure.

Interested readers are referred to the original paper [9] for a proof of this statement
and a complete and a formal description of their definition.

3 Our definition of VSS

In this section we provide a new definition of VSS that guarantees reducibility. The key
idea for achieving this property is to cast VSS in terms of secure function evaluation.
Accordingly, we shall define two special functions SHAR and REC, and demand that
both of them be securely evaluated in the sense of {9].

We assume a network of n players Py, ..., P,_1 and P, where P, = D the dealer.
Let X be a set. Consider the vector space L™ and the following metric on it: given
two vectors a,b in L, let us define the distance between them as the number of
components in which they differ; that is, d(a,b) = {{1 < i < n,a; # b;}| We define
the ¢-disc of a as the set of points at distance < { from a ie. disc;(a) = {b € " :
d(a,b) < 1}

We will define again VSS as a pair of protocols, called Share-Verify and Recover,
that compute, respectively, two functions, SHAR and REC, satisfying the following prop-
erties. SHAR is the function we use to share the secret among the players. It is defined
on the entire space for the n — 1 players (their private input does not matter in this
phase) and on two finite special sets R and S for the dealer. S is the space of possible
secrets while R is a set of random strings. We will ask even after seeing any [shares
(I < 1) all secrets are equally likely to generate those shares. We call this property
t-uniformity (see 2 below). Similarly REC is the function we use to reconstruct the
secret. We will run it on the output of the previous phase. What we want is that we
will be able to do so even if up to { components of the output of the sharing process
are arbitrarily changed. We call this property t-robustness of the function REC (see 3
below).

Definition: Two functions sHAR and REC are a sharing-reconsiructing pair with pa-
rameter ¢ if they have the following properties:

1. {Domain.)
SHAR : I P x (Rx §) — &7
REC: X" - X7
2. (t-uniformity.) ¥l <t there exists an integer m; such that V s;,,...,s, € Z and ¥
Vi, Un1 € X,V s € 5, and Vx € L7 such that Vj € [1,{} z;; = si;, there exist
exactly n;'values ri,...,7,, € Rsuch that fort=1,...,n,

SHAR(U1, ..., Vpe1,7508) =X

173

3. (t-robustness)Vuvy,...,vn1 €EX,Vs€ S, Vre R,
if x € disc;(SHAR(v1,...0n_1,705)), then

REC(x) = (s,5,...,8)

A VSS protocol will be composed by two protocols that securely evaluate these two
functions; the second being evaluated over the output of the first.

Definition4. A VSS protocol of fault-tolerance t is a pair of protocols (Share-
Verify, Recover) such that

- Share-Verify securely evaluates the function y = sHAR(z1,...,2n_1,7 ©5),
— Recover securely evaluates the function REC(y), and
— SHAR and REC are a sharing-reconstructing pair with parameter t.

Remarks: Though the above definition may appear “tailored on some specific VSS
protocols,” in the final paper we shall argue that it does not loose any generality.
Also, as we shall see below, by demanding that both components (and particularly
the second one) of a share-reconstructing pair be securely evaluated, we are putting
an unusually strong requirement on a VSS protocol. But it is exactly this requirement
that will guarantee the desired reducibility property.

4 Comparison with previous definitions of VSS

Let us compare now Definition 4 and Definition 1, our token example of prior VS5
definitions. To begin with, there is a minor syntactical difference between the two
definitions: according to Definition 1 when good players find out the dealer is bad
they just stop playing and output verification = no. In our new definition instead
the computation goes on, no matter what. This discrepancy can be eliminated by
having protocols in the first definition agree on a default value when the dealer is
clearly bad and protocols in the second definition always output verification = yes
at the end of Share-Verify (since we are dealing with a secure function evaluation, we
are guaranteed that all good players will cutput a common value). With these minor
changes we can prove the following (the proof can be found in the appendix):

Theorem 5. If P is a V5SS protocol of faull-tolerance i satisfying Definition 4, then
P is also a protocol of fault-tolerance t satisfying Definition 1.

Now the natural question to ask is: Are Definitions 3 and 1 equivalent? That is, if
a given VSS protocol P’ satisfies Definition 1, does it also satisfy Definition 37 The
answer to this important question, provided by the following Theorem 3, is NO. And
it better be that way if we want to preserve reducibility of VSS protocols. Indeed as
we will see later the formal specifications of Definition 1 are not sufficient to guarantee
composition of VSS protocols inside larger protocols.

Theorem 6. Definition 4 is strictly stronger than Definition 1, that is, there are VSS
protocols salisfying Definition 1, but not Definition 4.

The proof of this theorem (see the appendix for a detailed proof) is based on the fact
that usually VSS protocols (consider for example the one in [1]) reconstruct the secret
by having each player distributing his own share to all other players. This does satisfy

174

Definition 1 since there we do not put any requirement on the secrecy of the shares.
But this does not satisfy Definition 4 since doing so we do not compute securely the
function REC. The problem is that the players reveal too much information about their
own input share during the protocol. In other words we want that, when we compute
REC(y) over y = SHAR(%1,...,Un_1,7 ¢ §), No knowledge about y should leak except
the secret s (including no extra information about the secret s itself). The rationale
for asking this is again the fact that we want our VSS protocols to be secure not just
by themselves but when used inside subroutines of more complex protocols. Leaking
knowledge about the shares (or extra knowledge about the secret) may create problems
to the security of the overall protocol. Consider the following example.

Consider a VSS protocol P, satisfying Definition 1, in which the secret is a 3-
colorable graph. During the Recover protocol the graph is reconstructed together
with a 3-coloring of it kindly provided by the dealer. Notice that Definition 1 is not
violated, but notice also that an adversary gains from the execution of such a protocol
some knowledge about the secret she could not obtain by herself. This in turns means
that there exists no simulator for this protocol and so that Definition 4 cannot be
satisfied. And the serious problem with P is that, if used inside a larger protocol in
which it is crucial that the knowledge of that particular 3-coloring stays hidden, P,
though “secure” as a VSS protocol on its own, jeopardizes the security of the larger
protocol.

This problem is solved by our definition substituting property 3 (unpredictability)
with a stronger one based on zero-knowledge and simulatability, which is exactly what
we do by asking for a secure computation of the functions sHAR and REC. In particular
the secure computation of the function REC is the most important difference between
the two definitions. In particular we want to stress the importance of maintaining the
secrecy of the shares of each individual good player. In the appendix we will show that
protecting the secrecy of the shares is necessary for some applications in which VSS is
used as a subroutine inside some specific protocols.

Probably one of the reasons this point may appear somewhat moot is that in
Shamir’s secret sharing scheme [11] the shares consist of the value of a polynomial of
degree ¢ with free term s. For a t-adversary who corrupts exactly ¢ players, knowing
the secret is equivalent to knowing the shares of all players. In fact, knowing the ¢
shares of the corrupted players and the secret at the end of Recover, she has ¢ + 1
points of the t-degree polynomial, and by evaluating the so inferred polynomial at the
names of all good players, she easily computes all shares. However, we object that
what happens to be true for the VSS protocols based on Shamir’s scheme, may not be
true for all VSS protocols 2. And one should not “wire in” a general definition what
happens to be true in a specific case. Moreover, even in Shamir-based VSS protocols,
if the polynomial has degree strictly larger than the number of corrupted players, then
it is no longer true that for the adversary knowledge of the secret is equivalent to
knowledge of all shares. Indeed, as we will show later this is the crucial point in our
application protocols described in the appendix. I is thus needed that the knowledge
gainable by an adversary at the end of a secure VSS protocol exactly coincides with the
original secret whenever the dealer is honest.

? For example consider Blakley secret sharing scheme {2] in which the secret is a point in a
t + 1-dimensional space and shares are random hyperplanes passing through that point.

175

5 A VSS protocol that satisfies our definition

In this section we will exhibit a VSS protocol satisfying our definition and of fault-
tolerance & —1, by modifying an older protocol of Ben-Or, Goldwasser, and Wigderson
[1). The modification actually occurs only in the Recover part, and uses techniques
also developed by [1], but within their “computational protocol” rather than in their
VSS protocol. We have also found a protocol of fault-tolerance % — 1 based on Tal
Rabin’s protocol [10], but we will not describe it here for space limitations.

Suppose we are dealing with a ¢-adversary A. Let n = 3t +4 and Pi,..., Py_1,
P, = D be the set of players, D being the dealer. We will make all our computations
modulo a large prime p > n. It is known from the error-correcting codes theory that
if we evaluate a polynomial f of degree ¢ + 1 over the n — 1 different points ¢ for
i=1,...,n— 1 then given the sequence s; = f(#) we can reconstruct the coefficients
of the polynomial in polynomial time cven if up to t elements in the sequence are
arbitrarily changed. This is the well known Berlekamp-Welch variant of the Reed-
Solomon error-correcting code. For details readers can refer to a standard text like
[12]. Let K be a security parameter. With K /n we mean [%-]

The protocol appears in the boxes. The Share-Verify part is identical to the one
in [1]. The Recover protocol is modified with respect to the one in [1] in order to
make it a secure computation of the function REC. The hasic idea is that each player
will distribute his share to all the other players, but covering it up appropriately with
some randomness so that no information about the share is revealed but the secret
reconstruction process is not compromised.

Theorem 7. The protocol P = (Share — Verify, Recover) is a VSS protocel accord-
ing to Definition § with fault-tolerance 5 —

Remark: A completely error-free version of this protocol can be obtained as in [7] by
running a different zero-knowledge proof that the shares lie on a single polynomial.
The proof uses a bivariate polynomial and it is out of the scope of this paper. Details
can be found in [1, 7]. Notice that this is the first time a formal proof of the security
of the protocol of {1] appeared.

Remark: Notice how, assuming the dealer is honest, at the end of the Recover phase
the adversary, even knowing the secret s and { sharcs of the corrupted players, knows
nothing about the shares of the honest players (since the polynomial is of degree ¢ + 1
and to interpolate it t + 2 points are needed).

176

Protocol Share-Verify from [1]}

1.

w

-3

The dealer chooses a random polynomial fo(z) of degree ¢t 4+ 1 with the only condition
that fo(0) = s his secret. Then he sends to player P; the share s; = fo(i). Moreover he
chooses 2K random polynomials f1,..., fox of degree t 4+ 1 as well and sends to P; the
values f;(i) foreach y =1,...,2K.

Each player P; broadcasts K'/n random bits a(i_1jx/ny; for j=1,...,K/n

The dealer broadcasts the polynomials g; = f; + a;fo forall j =1,... | K

Player P; checks if the values he holds satisfy the polynomials broadcast by the dealer.
If he finds an error he broadcasts a complaint. If more than ¢ players complain then the
dealer is faulty and all players assume the default zero value to be the dealer’s secret.

. If less than t players complained the dealer broadcasts the values he sent in the first

round to the players who complained.

. Each player P; broadcasts K /n random bits 8 _yyx/my; forj=1,..., K/n
. The dealer broadcasts the polynomials h; = fryj+ B fo forall j=1,.. | K
. Player P: checks if the values he holds and the values broadcast by the dealer in round

5 satisfy the polynomials broadcast by the dealer. If he finds an error he broadcasts a
complaint. If more than t players complain then the dealer is faulty and all players assume
the default zero value to be the dealer’s secret.

Protocol Recover (modified)

1.

Each player P; chooses a random polynomial A; of degree ¢ 4+ 1 such that k;(0) = s: his
own input share. He sends to player P; the value k;(j)

Each player P; chooses random polynomials p:(z), ¢i,1(2), - . ., ¢i2x (z) of degree t+1 and
with free term 0. He sends to player P; the values pi(5),¢:1(J),---, ¢ 2K (j)

Each player Pi broadcasts K random bits v (i—1)k/n4m for { = 1,...,n and m =
1,...,K/n

Each player P broadcasts the following polynomials r; = ¢ ;+v,;pi foreach j =1,..., K
Each player P; checks that the information player P, sent him in round 1 is consistent with
what player Pi broadcast in round 3. If there is a mistake or P; broadcast a polynomial
with non-zero free term P; broadcasts bad;. If there are more than ¢ players broadcasting
bad;, player P, is disqualified and all the other players assume 0 to be P;’s share. Otherwise
P, broadcasts the information he sent in round 1 to the players who broadcast bad;

. Each player P; broadcasts K random bits & (i_1yk/ngm for 1 = 1,...,n and m =

1,...,K/n
Each player P; broadcasts the following polynomials r; = gy x4, + 6 ,;pi for each j =
1,..., K

. Each player P; checks that the information player P, sent him in round 1 and broadcast

in round 5 is consistent with the polynomials player P, broadcast in round 7. If there is
a mistake or P; broadcast a polynomial with non-zero free term P; broadcasts bad;. If
more than ¢ players broadcast bad) then P is bad and all players assume his share to be
0.

Each player P; distributes to all other players the following value s; 4+ pi (i) + p2(3) +
...+ pna(7) then interpolates the polynomial F(z) = fo(z) + p1(z) + p2(z) + ... + pulz)
using the error correcting algorithm of Berlekamp and Welch. The secret will then be

s = F(0) = f(0),

177

6 Conclusion

In the past cryptographic schemes and protocols used to be considered secure until
not broken. Due to the increasing use and importance of cryptography, this approach
is no more acceptable. To call a protocol secure we need a proof of its security. This
means that we need definitions and methods to be able to prove security.

Following this philosophy we have presented a new and stronger definition for one
of the most important cryptographic protocols: Verifiable Secret Sharing. We argued
that this definition is the correct one especially when VSS is to be used as a sub-
protocol inside larger protocols (which is probably the most common case for VSS).
We also presented a protocol which provably satisfies our new definition. Finally some
applications of this new protocol (and of our new definition of VSS) are described in
the appendix.

References

1. Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for non-

cryptographic fault-tolerant distributed computation. In 20th 4 CM Symposium on The-

ory of Compuling, pages 1-10, 1988,

G.R. Blakley. Safeguarding cryptographic keys. In National Computer Conference, pages

313-317, 1979.

3. David Chaum, Claude Crepeau, and Ivan Damgard. Multiparty unconditionally secure
protocols. In 20th ACM Symposium on Theory of Computing, pages 11-19, 1988.

4. Benny Chor, Shafi Goldwasser, Silvio Micali, and Baruch Awerbuch. Verifiable secret

sharing and achieving simultaneity in the presence of faults. In 26th JEEE Symposium

on Foundations of Computer Science, pages 383-395, 1985.

Yvo Desmedt and Yair Frankel. Shared generation of authentication and signatures. In

CRYPTO’91, Lecture Notes in Computer Science, pages 457-469. Springer-Verlag, 1991.

6. Yvo Desmedt, Yair Frankel, and Moti Yung. Multi-receiver/multi-sender network secu-
rity: efficient authenticated multicast/feedback. In INFOCOM, pages 2045-2054, 1992.

7. Paul Feldman and Silvio Micali. An optimal probabilistic protocol for synchronous byzan-
tine agreement. In 20th ACM Symposium on Theory of Computing, 1988.

8. Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game. In
19th ACM Symposium on Theory of Computing, pages 218-229, 1987.

9. Silvio Micali and Philip Rogaway. Secure computation. In CRYPTO’91, Lecture Notes
in Computer Science. Springer-Verlag, 1991. Current version available from the authors.

10. Tal Rabin and Michael Ben-Or. Verifiable secret sharing and maultiparty protocols with
honest majority. In 21st ACM Symposium on Theory of Computing, 1989.

11. Adi Shamir. How to share a secret. Communications of the ACM, 22(11):612-613, 1979.

12. W.Peterson and E.Weldon. Error Correcting Codes. MIT Press, second edition, 1972.

o

T

178

Appendix

This appendix is dedicated to the proofs of some of the statements in the the paper.

Proof of Theorem 5

Let P be a VSS protocol of fault-tolerance t satisfying Definition 4. Let ic be the initial
configuration vector of the network.

P satisfies the Verifiability property of Definition 1. Indeed at the end of the Share-Verify
phase, let ¢ = In(icy) i.e. the value contributed by the dealer to the computation. This value
is fized at the end of Share-Verify since it is a function of the traffic of the dealer. Moreover
because of the t-robustness of the function REC we have the same value ¢ will be output by
all good players at the end of the Recover part. Indeed because of the t-robustness property
it does not matter that ¢ bad players may change their input before computing the function
REC. Finally, if the dealer is good then ¢ = I,.(icy,) is equal to the secret s.

P also satisfies the Unpredictability property of Definition 1. First notice that the -
uniformity property implies that the output of the function SHAR is composed of {-wise inde-
pendent uniformly distributed random variables and so it is impossible (in an information-
theoretic scnse) to predict the secret better than at random for any algorithm that has
knowledge of only ! < ¢ components of such output. However a t-adversary has not only
that knowledge but she also has a view of the entire protocol (i.e. traffic of bad players and
messages broadcast by good players). But here is where secure computation comes to our
rescue. Because of the security of the evaluation of the function SHAR the adversary can cre-
ate the entire view by herself using the simulator, and so basically the other information is
irrelevant. More precisely let’s assume for the sake of contradiction that protocol P does not
satisfy the Unpredictability condition. This means that there is an adversary .4 that does not
corrupt the dealer and such that I’rob[A guesses 5] > L where m = |S] is the cardinality of
the space of possible secrets. We will exhibit an algorithm § (for guesser) that guesses the
secret with the same probability but having access only to t components of the output of the
function SHAR. Since Share-Verify is a protocol that securely evaluates the function SHAR
it must have a simulator Sim. § runs Sim with the adversary .4 and uses .A’s guess for the
secret as his guess. Since the simulated view of the protocal is indistinguishable from the real
one, A will guess the correct secret with probability bigger than L. Notice that by running
the simulator ¢ will only know at most ¢t components of the output of the function SHAR,
the ones which will be answered by the oracle in response to request of corruption by A. So
we have a contradiction since we found an algorithm that predicts the secret better than at
random with knowledge of only ¢ components of the output of SHAR, which contradicts the
t-uniformity property. 0

Proof of Theorem 6

The proof of this theorem is based on the fact that usually VSS protocols (consider for example
the one in [1]) reconstruct the secret by having each playcr distributing his own share to all
other players. This does satisfy Definition 1 since there we do not put any requirement on
the secrecy of the shares. But, as the following lemma shows, this does not satisfy Definition
4 since doing so we do not compute securely the function REC.

Lemma 8. The protocol P in which at round 1 every player broadcasts or distributes his oun
share s not a secure computation of the function REC,

Proof. P is a 1-round protocol. Consider the following t-adversary A;. A; corrupts t players
(say Pi,...,P:) right at the beginning of the protocol. So in the simulated execution the
simulator Sum will receive from the oracle their inputs (shares) zi1,...,z:. Now Sim has to
simulate the broadcast messages of the good players. No matter what any Som does, there
are only two possibilities:

179

— cither the shares broadcast by Stm do not interpolate a secret
— or they do interpolate a secret s’, but since Simn has no knowledge at this point of what
the “true” secret s is, only with probability Ttl‘?—l s=3s

In both cases however the simulated execution is distinguishable from the real one to A and
so protocol P is not secure according to definition 2.

The above proof is sufficient to show that protocol P is not secure. However let us describe
an alternative proof of this statement, based on a different adversary. This will allow us to
exemplify a different problem with protocol P. This will help the reader understand better
the modification we will do to the Recover protocol in order to achieve security for VSS
protocols.

Proof. (alternative proof of Lemma 8)

Consider the following t-adversary Az. A2 corrupts t — 1 players (say P1,..., Pi—1) right at
the beginning of the protocol. So in the simulated execution the simulator Sim will receive
from the oracle their inputs (shares) z1,...,2:—;. Now Sim has to simulate the broadcast
messages of the good players. Sim does so and broadcasts zi,...,z,. As before no matter
what any Sim does, there are only two possibilities:

— either the shares broadcast by Sim do not interpolate a secret {(in this case, as above,
the simulation is already a bad one)
— or they do interpolate a secret s',

At this point Az corrupts her last player (say P:) and so gels from the oracle the true
pair (z:,s) and only with probability < l—;T we have that z} = z, and s = s’ and so the
simulated execution will not succeed in convincing the adversary that she is talking with the

real network, hence P is not secure according to definition 2.

Proof of Theorem 7

Let sHAR be the following function:
SHAR(v1,v2,...,Un-1,708) = (81,82,...,5n—1,€)

with s; = fo(i) where fo(z) = s4+a1z+... 4 ar412'7! and r = a;0...0a4 (i.e. the polynomial
is created using the coin tosses r of the dealer). Then we can state that

Lemma9. Protocol Share-Verify securely evaluates the function SHAR according to Defini-
tion 2.

Proof. I{ we look back at Definition 2 we see that we have to check that both conditions,
correctness and privacy, are satisfied in the blended way they interact in the simulation process
through the common input and output functions.

So first of all let’s define these functions for our protocol. Remember that with t; we
define the traffic of player P;. Clearly for all players Pi i < n the input function always
returns the empty string, I;(t;) = ¢, since the players do not contribute any input during
the computation of the function sHAR. For the dealer, D = P,4;, the input function is a
little bit more complicated. Let us denote with m; the message the dealer broadcast te player
P; in round 5 if P; complained in round 4, or the message the dealer sent to player & in
round 1 if P; did not complain. Then Ip(tp) = f(0) where f = BW(my,...,mn) is the
t + 1-degree polynomial resulting from the Berlekamp-Welch interpolation of the m;’s. The
output function is simpler: Oi(%;) = m: (where mp = ¢). Now we can check both conditions.

Correctness: First we have to prove that for all good players P, I.‘(t.-) is equal to the
correct input. In our specific case this has to be checked only for the dealer. If the dealer
is good, mi = f(1) where f is a t + l-degree polynomial with free term s the secret. So

180

Ip(tp) = sif the dealer is good. The second correctness condition is that with high probability
O(t) =sHAR(I(t)). In our case this means that with high probability the values m, held by
good players must be on a single polynomial of degree t + 1. This is true with probability
> 2= since at least 235 bits are chosen truly randomly by good players in rounds {2) and
{6). Each bit represents a “question” that a bad dealer who distributed bad shares will be
able to answer correctly in the {ollowing round only with probability]5 (i.e. if he predicted the
bit correctly when he distributed the shares). Hence the bound on the probability of error.

Privacy: We have to exhibit a simulator for the protocol. We distinguish 2 cases:

Case A: The dealer is corrupted before round 1. Then the simulator will just follow the
instructions of the players, with the only exception that it will turn them over to the adversary
in case of corruption. Since the players do not contribute any input to the computation this
will reduce the simulated execution to one of VSS with a bad dealer. So the simulation will
be indistinguishable to the eyes of the adversary.

Case B: The dealer is not corrupted before round 1. Then the simulator in round 1 will
just create a random “fake” secret s’ and will share it to the players according to the protocol
instructions with a polynomial f'. If the dealer is not corrupted at all during the protocol then
everything will run smoothly since to the eyes of the adversary the execution will look like
an ordinary VSS with a good dealer (again this is true because the players do not contribute
any input to the computation). If the dealer is corrupted after round 1 however the adversary
and the simulator will get from the oracle the true input s of the dealer. At that point the
simulator turns over the control of the dealer to the adversary, but changes the polynomial
used to share the secret to a new polynomial f” such that f7(0) = s and f*(i) = f'(7) for
all players P; that were corrupted so far by the adversary. The simulator changes accordingly
the random polynomials fi; used for the zero-knowledge proof to make them consistent with
whatever has been broadcast so far. The simulator can always do this since the adversary has
at most t points of a t + 1-degree polynomial. For the rest of the simulation the simulator
will use the polynomial f” for the computation of the good players still under his control.
We claim that this execution is indistinguishable to the adversary from a real one. This is so
because the only thing different from a true execution is the fact that the shares the adversary
gets before corrupting the dealer are created using a different polynomial than the real one,
but thanks to the properties of polynomials this is not a problem for the simulator once the
dealer is corrupted.

Let REC be the function
REC(S1,...,8n-1,€) = (8,...,8,5)

where s is the result of the Berlekamp-Welch “interpolation” of the s;.
Lemma 10. Protocol Recover securely evaluates the function REC according to Definition 2.

Remark: Before embarking in the formal proof of this lemma let us give some intuition of
why this is true. For example notice how the adversaries .41 and .4z that we described in the
proof of Lemma 8 are helpless with the new protocol Recover-A. We added round 1 so that
the simulator can learn the true secret before the shares have been given out publicly and this
takes care of an adversarial attack like 4;. Moreover we added the “masking” polynomials
pi so that the players reveal shares of a random polynomial F whose only property is that
F(0) = s, so while reconstructing the secret no information is revealed about the true input
shares; this solves the problem raised by adversary A,.

Proof. As in the proof of Lemma 9 we start by defining the input and output functions of
our protocol. The input function I; of player P; is defined as follow: let m; ; be the message
P; sends to player P; at round 1; Ji(¢;) = hi(0) where by = BW(mia,...,min) is the t 4 1-
degree polynomial resulting from the Berlekamp-Welch interpolation of the m, ;’s (if there is
no such polynomial then assume /;(1;) = 0). The output function is the following: let A, be the

181

message broadcast by player P; at round 9; Oi(1;) = F{0) = s where F = BW(My,..., M»)
is the t 4+ 1-degree polynomial resulting from the Berlekamp-Welch interpolation of the M,’s.
Correctness: It is clear that for all good players Ii(t:) = s; the correct input share. Then
we have to check that at least with high probability O(t) =Rec(I(t)). In our case this means
to prove that
REC(Mi1,..., Mn,€) = REC(s), ..., 8n,€)

Now this equation is not satisfied if one of the {following things happens:

— either a bad player P, succeeds in sharing random “garbage” instead of the values pi(y)
in round 2 (in this case the M;’s will not interpolate a polynomial)
— or Pi does distribute pi(j) in round 2 but manages to use a polynomial with free term
different than zero (in this case the My’s will reconstruct a different secret)
Since the sharing process is exactly identical to the one of the protocol Share-Verify, we
already know that P, succeeds in any of the two cases only with probability 2= So since
there are at most 3 bad players, the probability that the protocol computes an incorrect

. _2E
output is at most 327°3 which for K large enough is exponentially small.
Privacy: We have to exhibit a simulator and then prove that the simulation is indistin-
guishable from the true network execution. Cansider the following simulator Simpg:

1 At round 1, Sim g simulates player P; by choosing a random polynomial k{ of degree ¢t 41
and sending %{(7) to Pj. At this point the simulator is allowed to receive from the oracle
the output of the function, so Simpg will learn the true secret s. If some player P is
corrupted by the adversary A at the end of this round (or in the following rounds), then
both Simp and A learn the true share s; and Simpg has to change the polynomial h;
accordingly so that k;(0) = s; but without changing its value on points already known
to the adversary. Stmg can always do this because the adversary has at most ¢ points of
a t + 1 degree polynomial.

2-8 During rounds 2 to 8 the simulator just follows plainly the instructions of the players.
Since what players do in these rounds is completely random and not related to their
inputs, Simg will always be able to create an indistinguishable view.

9 Finally at round 9, Simp chooses a polynomial g of degree t 4+ 1 such that g(0) = s
and then for each player Pi Simpg broadcasts g(¢) + pi(i) + ... + pn (i) where p; is the
polynomial distributed by player P; during rounds 2-8 of the simulation. The Reed-
Solomon interpolation of these values will give as result s. If a player P is corrupted at
the end of this round, then both Simg and A will learn from the oracle the true input
share s;. If s; # g(1) then Simg just changes the value of p; at the point ! so to make the
entire sum consistent with what broadcast.

The simulation is indistinguishable from a real execution to the eyes of the adversary. In fact
as we already said, in round 2-8 all messages are random and unrelated to the input so the
simulator can easily play the role of the good players. In round 1 the adversary sees at most
only ¢ shares of the real input of a good player. Because of the property of Shamir secret
sharing scheme, these shares are completely random and so can be simulated even with no
knowledge of the real input (as in the case of the simulator). In round 9 the real share is
broadcast “hidden” by some random “garbage”, this will allow the simulator to broadcast
the message of a good player with the right distribution even without knowing the real input.

Applications

Unfortunately there is no space in this extended abstract for a detailed description of the
applications. However let us briefly sketch some of them.

A PROOF FOR THE BGW PROTOCOL: In the final paper we will describe what is probably
the nicest feature of ocur new definition and new protocols for VSS. We will present a very

182

simple and “modular” proof for the theorem of Ben-Or, Goldwasser and Wigderson that any
function can be computed securely with fault-tolerance of 3. This result first appeared in a
STOC abstract without a formal proof [1]

They claim that it is enough to prove that it is possible to compute securely addition and
multiplication, since any function F can indeed be reduced to an arithmetic circuit whose
nodes are indeed just addition and multiplication. By repeatingly using these 2 protocols we
can then compute securely the entire function. Notice however that this line of reasoning gives
for granted the reducibility property for secure protocols. However at that time a satisfac-
tory definition of security had not been presented and the reducibilty theorem was generally
considered true but never proven.

However we stand on the privileged position of having had these tasks completed for us
by [9]). This will allow us to present a simple and modular proof for the theorem of [1]. Notice
that in order to use the reducibility theorem we need to use our new notion and protocols for
VSS. This does not mean that the theorem of {1] is wrong as it is, but that in order to have
our simpler and modular proof their VSS protocol is not appropriate.

SHARED AUTHENTICATIONS AND SIGNATURES: A first idea would be to use these shares for
authentication purposes. More precisely after being shared among the players, the secret is
given to some authenticators. At a certain point if a subset of the players (of opportune size)
wants to prove their identity to or sign a message for an authenticator they just recover the
secret together with her and if the reconstruction succeeds then the authenticator knows she
is dealing with the right people. However since the shares are never revealed the authenticator
(or any of the players) will never be able to prove herself as someone else.

The idea of shared authentication and signatures appears in' [5, 6]; we will briefly describe
their scheme here. All operations (as usnal} are modulo a big public prime p. A trusted key
distribution center generates two random polynomials Qo(z) and Q1{z) of degree t and shares
them among the players, i.e. player P; receives Qo(4) and Q:(z). The authenticators receive
@o(0) and Q1 (0). Later suppose players Pi,,..., Pi, (3 > t) want to sign a message M for the
authenticator. P, broadcasts the message Qo(i;) + M@Q1(i;). The authenticator interpolates
the broadcast shares into a polynomial F and checks that F(0) = Qo(0) + MQ:(0). This
protocol has two problems:

(1) If a player wants to jam the signature process all he has to do is to broadcast garbage
(they solve it assuming players to be honest).

(2) It is a one-time scheme since after signing two different messages M; and M> the secret
key of player P: is easily computable.

Using our VSS Recover protocol to reconstruct the secret Qo(0) + MQ1(0) we will
solve both problems at once. Indeed bad shares contributed by players will be detected and
eliminated. Moreover the share broadcast by player P betrays nothing of the true secret
(Qo(2}, Q1(1)) and so even after numerous signatures no information leaks about it; so we can
do without the trusted combiner.

Finally notice that since usually the key management center is trusted, we do not need
the verification process during the Share-Verify part making that part much simpler.

	Introduction
	Prior work
	Our definition of VSS
	Comparison
 with previous definitions of VSS
	A VSS protocol that satisfies our definition
	Conclusion
	References
	Appendix

