
Verifiable Secret Sharing as Secure Computation

Rosario Gennaro* and Silvio Micali

Laboratory for Computer Science
Massachusetts Institute of Technology

Abstract. Verifiable Secret Sharing is a fundamental primitive for secure cryp-
tographic design. We present a stronger nation of verifiable secret sharing and
exhibit a protocol implementing it. We show that our new notion is preferable
to the old ones whenever verifiable secret sharing is used as a tool within larger
protocols, rather than being a goal in itself. Indeed our definition, and so our
protocol satisfying it, provably guarantees reducibilty. Applications of this new
notion in the field of secure multiparty computation are also provided.

1 Introduction

Secret Sharing and Verifiable Secret Sharirig (VSS for short) are fundamental notions
and tools for secure cryptographic design. Despite the centrality and t,he maturity of
this concept (almost 10 years passed from its original introduction), we shall advocate
tha t a stronger and better definition of a VSS is needed in order l o achiere the very
desirable property of reducibility for secure protocols. We shall then provide the first
provably correct implementation of this stronger definition.

REDUCIBILITY is an essential tool for secure protocols design because it allows such
protocols to be built in a m o d u l a r way. In our case this means tha t one can first design
a protocol P for a given t,ask assuming that an “abstract” and “perfect” VSS protocol
exists. Then one designs a correct (according to a given definition!) VSS protocol Q.
Finally one substitutes Q in place of tlie abstract sub-protocol in P. However this way
of proceeding yields a secure protocol P if and only if the definition of VSS satisfied by
Q enjoys the reducibility property. Unfortunately no prior notion of a VSS provably
guarantees reducibility. Thus it is a goal of this paper t o provide such a definition and
a VSS protocol tha t satisfies it.

THE INTUITIVE NOTION OF A VSS. As first introduced by Chor, Goldwasser, Micali
and Awerbuch in [4], a VSS protocol consists of a two-stage protocol. Informally, there
are n players, t of which may be bud and deviate from their prescribed instructions. One
of the players, the dealer , possesses a value s as a secret input. In the first stage, the
dealer commits t o a unique value z, (no matter what the bad players may do); inoreover,
v = s whenever the dealer is honest. In tlie second stage, the already committed value
zi will be recovered by all good players (no matter what the bad players might do).

~

* Contact author. Email address: rosa r ioQtheory , lcs. nit. edu. Research supported
by NSF grant no.9121466-CCR

L.C. Guillou and J.-J. Quisquater (Eds.): Advances in Cryptology - EUROCRYPT ’95, LNCS 921, pp. 168-182, 1995.
0 Springer-Verlag Berlin Heidelberg 1995

169

PRIOR WORK. Several definitions and protocols for VSS have been proposed in the
past ten years (E.g., [4, 1, 3 , 7 , 101.) We contend, however, that these not,ions and
these protocols are of very limited use. In fact, their security concerns “begin when
the dealer’s secret is committed, and end when it, is recovered.” T h a t is these notions
do not concern themselves with what happens when VSS is used as a subprotocol. Be-
cause in many applications running a single VSS protocol is exactly what is wanted,
these prior definitions and protocols are totally adequate in those scenarios. However,
they are not adequat.e in more general scenarios since it is by now a well-known phe-
nomenon t h a t protocols t h a t are secure by themselves, cease t o be secure when used
as a sub-protocols. In these cases the security of t,he entire protocol must be proven
“from scratch” (for instance, this is the case in [7] where they use VSS as a tool
to reach Byzantine agreement) rather than in a more natural and elegant “modular
way.” A notion of security that guarantees reducibility has been presented by Micah
and Rogaway 193 for the problem of funcl ion enal~uatzon, but not for general multiparty
protocols.

OUR WORK. We extend reducibility-guaranteeing notions of security to verifiable secret
sharing protocols and concretely exhibit, VSS protocols that provably satisfy these
notions. More precisely, in this paper we achieve the following goals:

1. We propose a new definition of VSS cast,ed as a special istance of secure function
evaluation,

2. We compare our new notion with t.he previously proposed ones, aiid show that it
is strictly and inherenlly stronger.

3. We modify earlier VSS protocols of [l , 101 and show t h a t our new protocol is secure
according to our notion.

4. Finally we present some applications that use VSS as a subroutine aiid need our
stronger notion of VSS to be secure. These include shared aut,hentications and
signatures and a very elegant proof of the security of the completeness theorem on
multiparty secure computation by Ben-Or, Goldwasser and Wigderson. [l]

2 Prior work

In order to focus on the difficulties tha t are proper of VSS, we shall deal with a simple
computational model, both when reviewing prior work and when presenting our new
one.

COMPUTATIONAL MODEL. We consider n players communicating via a very convenient
synchronous network. Namely, to avoid the use of Byzantine Agreemerit protocols we
allow players to broadcast messages, and , in order to avoid the use of cryptography,
we assume t h a t each pair of players is connected by a private communication channel
(i.e., no adversary can interfere with or have any access t o messages between good
players).

We model the corrupted processors as being coordinated by an adversary A. This
adversary will be dynamic (i.e., decides during the execution of the protocol which pro-
cessors corrupt); all-powerful: (i.e., can perform arbitrarily long computations); and
completely-informed (i.e., when corrupting a player she finds out all his computational
history: private input, previous messages sent and received, coin tosses, etc.). Further,
the adversary is also allowed rushzng (i.e,, in a given round of communication, bad play-
ers receive messages before the good Ones and, based on those messages, the adversary

170

can decide whom to corrupt next)). \Ve say that such an adversary is a t-adversary (
0 5 1 5 n) if 1 is an upper bound on the number of processors she can corrupt (t
is also referred to as the f a u l f - f o l e r a n c e of t,lie protocol.) This coinputational model is
precisely discussed in [TI and [9].

PRIOR DEFINITIONS O F Vss. To exactly capture the informal idea of a Vss, has
proven to be a.n hard task in it,self. The definition reviewed below is tha t of [7] , which
relies on the not,ioii of a f ized e v e n t

Definition: We say tha t an eveiit X is f ized a t a given round in an execution E of a
prot,ocol, if X occurs in any execution E’ of t,he protocol coinciding with E up t.0 the
given round.

Definitionl. Let P be a pair of protocols where the second is always execut.ed after
t,he first one, P =(Share-Verify , Recover). In protocol Share-Ver i fy , the identity
of the dealer is a coinmon input t o all players, and the secret is a privat,e input to
the dealer; the out,put of player Pi is a value werificationi E {yes,no}. In protocol
Recover , t,he input of each player Pi is his cornput,ational history at, t.lie end of the
previous execution of Share-Verify; the output of each P, is a st,ring ai. ’We say P is
a VSS prot>ocol with fault-tolerance t if the following 3 properties are satisfied:

1. Accepiance of good secrets: In all executions of Share-Ver i fy with a t-adversary
A in which the dealer is good, v e r i f i c a t i m j = yes for all good players Pi.

2. Veri f iabi l i ty: If less t.han t players output veri f icat icn = no a t t,he cnd of Share-
V e r i f y then at this time a value u has been fixed and a t the end of Recover all
good players will output tshe same value c and rnoreover if the dealer is good D =
t.he secret.

3. Unprediclabzl i iy I n a random execut,ion of Share-Ver i fy wi th a good dealer and
t,he secret chosen randomly in a set of cardina1it.y m any t-adversary A won’t be
able t o predict t3he secret better than a t random i.e. if A outputs a number a a t
the end of Share-Ver i fy then Prob[a = s] = $

SECURE COMPUTATION. Let us summarize the definition of secure function evaluat,ioii
of [9]. Inforinally the problem is the following: n players P1, . . . , P,, holding, respec-
tively, private input>s 1 1 , . . . , I,, want t>o evaluate a vector-valued function f on their
individual secret inputs wit.hout revealing them (more than already implied by f ’ s
output) . T h a t is, they want t o cornput,e (yl,. . . , yn) = f(xl,. , . , x n) such that each
player Pi will learn exactly yi.

This goal is easily achievable if t.here is an external and trusted party, who privately
receives all individual inputs and then computes aiid privately hands out all individual
outputs. Of course, even in this idcal scenario, t,he adversary can create some problems.
She can corrupt aplayer Pi before he gives his input zi to the external party and change
it with some other number xi. And she can still corrupt players after the fuuction has
been evaluated aiid learn their outputs. These problems should, however, be regarded
a.s inevi table . Indeed, following [8], 191 call a protocol for evaluating f secure if i t

Notice that if we simply ask in the Verifiabllity condition that “all t h e good players output
the same number o at the end of the Recover phase” it would not be sufficient for our
purposes. In fact, we would still allow the adversary to decide during Recover what value
0 the good players will oiitput. Thus Share-Verify would not model a secret commitment
as required.

171

approximates the above ideal scenario “as closely as possible.” The nature of this
approximation is informally summarized below.

Definition (initial configuration, trafjic, input and output): Let us define the following
quantities within the context of a protocol P .

T h e i n d i a l configuralion for P is a vector ic, whose it.h component, ici = (xi, r i)
consists of t h e private input and the random tape of player Pi.

T h e t ra f f ic of player P; in protocol P a t round q , 2 4 , is the set of messages sent and
received by Pi u p to that round.

A l o c d inpu t f u n c f i o n I = (I l l . . . , In) for P is an n-tuple of functions such that there
exists a specific round r such t,hat, by applying Ii t o the traffic tr , we get the input
player Pi is “contributing t.o the computation.’’ I(ic) will denote the vector of those
values when P is run on initial configuration ic.

A local ou tput f unc t ion 0 = (01,. . . ~ 0,) for P is a n n-tuple of functions such t,liat
by applying Oi to t.he final traffic t!Znal of player Pi we get, his output,.

Definition (A d v e w a r y v iew): T h e adversary view, during P is t,he
probability distribution over the set of coinputational histories (traffic and coin tosses)
of the bad players.

Definition (S imu la tor and ideal evaluatian oracle): A simulator Sim is a n algorithm
t h a t “plays the role of the good players”. The adversary interack with the sitnulator
as if she was interacting with the network. ‘The simulator tries t o creat,e a view for the
adversary t h a t is indistinguishable from the real one. He does this wit,hout knowing the
input of the players, but it is given access t o a special oracle called the ideal evaluation
oracle. For a protocol P wit8h local input function I evaluatable a t round r , the rules
of the interaction between Sint and the oracle are the following:

- if A corrupts player Pi before round r Sim get,s from t8he oracle the input zi and
gives it t o A.

- at round r Sim get.s the output yl for all the players corrupted so far, where
(y i , . . . ,&) = f(t;, . . . ,zk) where z i = ti if Pi is still good, ot,herwise xi = I i (tT)

- if A corrupts a player Pi after round r , S im gets from the oracle the pair (xi, yi)
and gives i t to A.

Definition2. Secure Funct ion Evaluation: Let f be a vector-valued function, P a
protocol, Sim a simulator, and I and 0 local input and output functions. We say tha t
P securely evaluat,es the function f if

- Correc fness: If ic is the initial configuration of the network, then
1. xi = ii(ic) for all good players Pi
2. with high probability, O(tfinal) = f(l(ic))

(1.e. n o matter what the adversary does, t.he function is e v a h t e d during the
protocol on some definite inputs defined by the local input functions over the
traffic of the players. These input.s coincide with the original inputs for the good
players)

- Privacy: For all initial configurations ic, if VIEIV&nl is the adversary view of the
simulated execution of the protocol, we have tha t

V I E I V ~ ~ ~ ~ ~ , . ~ E VIEW;,

(I.e., the two views are stat,istically indistinguishable.)

172

There are many reasons for which this definition captures correctly the notion of a
secure computation. In particular, the following one: the definition in [9] allows one to
prove formally many desirable properties of secure protocols, the most interesting for
us being reducibility:

Theorem3 [9]. Let f and g be two functions. Suppose there is a protocol P that
securely evaluates f in the model of computation in which it can perform ideal evalu-
ations ofg . Suppose also that there is a protocol Q that securely computes g . Denote
with PQ the protocol in which the code for Q is substituted in P in the places where P
ideally computes g . Then PQ is secure.

Interested readers are referred to the original paper [9] for a proof of this statement
and a complete and a formal description of their definition.

3 Our definition of VSS

In this section we provide a new definition of VSS t h a t guarantees reducibility. The key
idea for achieving this property is to cast VSS in terms of secure function evaluation.
Accordingly, we shall define two special functions SHAR and REC, and demand t h a t
both of them be securely evaluated in the sense of [9].

We assume a network of n players P I , . . . ~ Pn- 1 and P,, where P, = R the dealer.
Let C be a set. Consider the vector space C" and the following metric on it: given
two vectors a, b in E", let us define the distance between them as the number of
components in which t,hey differ; tha t is, d(a, b) = 1{1 5 i 5 n , a i # bi}l We define
the t-disc of a as the set of points a t distance 5 t from a i.e. disct(a) = {b E C" :

We will define again VSS as a pair of prot,ocols, called Share-Verify and Recover,
tha t comput>e, respectively, two functions, S H A R and REC, satisfying the following prop-
erties. SHAR is the function we use to share t,he secret among the players. It is defined
on the entire space for tlhe 72 ~ 1 players (their private input does not mat ter in this
phase) and on two finite special sets R and S for the dealer. S is the space of possible
secret,s while R is a set of random strings. I've will ask even after seeing any 1 shares
(! 5 1) all secrets are equally likely to generate those shares. We call this property
t-uniformity (see 2 below). Similarly REC is tlie function we use to reconstruct the
secret. We will run it on the output of the previous phase. W h a t we want is that we
will be able t o d o so even if up t o t components of the output of the sharing process
are arbitrarily changed. We call this propertry t-robustness of tlie function REC (see 3
below).

Definitioii: TWO functions S H A R and REC are a shariizg-recons2ructing pair with pa-
rameter t if t,hey have the following properties:

4% b) I t3

1. (Domain.)
SWAR : En-' X (R X s) - c"

REC : En --, En
2. (t-uniformity.) V l 5 t there exists an int.eger such t h a t V sil,. . . , si, E C and V

~ 1 , . . . , vn-l E C , V s E S, and Vx E C" such t.liat V j E [I, I] zij = sj,, there exist
exactly nf'values 7 1 , . . . , P,,, E R such tha t for i = 1, . . . , a (,

S H A R (Z I ~ , . . . , v ~ ~ - ~ , vi o s) = x

173

3. (t-robustness.) V v1,. . . , v n - l E C , V s E S , V r E R,

REC(X) = (s, s, . . . , s)
if x E & S C ~ (S H A R (O ~ , . . . v n - l , r o s)), then

A VSS protocol will be composed by two protocols tha t securely evaluate these two
functions; the second being evaluated over the output of the first.

Definition4. A VSS protocol of fault-tolerance t is a pair of protocols (Share-
Verify, Recover) such tha t

Share-Verify securely evaluates the function y = S H A R (X ~ , . . . , t n - l , r o s),
- Recover securely evaluates the function REC(Y), and
- SHAR and REC are a sharing-reconstructing pair with parameter t .

Remarks: Though the above definition may appear “tailored on some specific VSS
protocols,’’ in the final paper we shall argue that i t does not loose any generality.
Also, as we shall see below, by demanding t h a t both components (and particularly
the second one) of a share-reconstructing pair be securely evaluated, we are putting
a n unusually strong requirement on a VSS protocol. But i t is exactly this requirement
t h a t will guarantee the desired reducibility property.

4

Let us compare now Definition 4 and Definition 1, our token example of prior Vss
definitions. To begin with, there is a minor syntactical difference between the two
definitions: according to Definition 1 when good players find out the dealer is bad
they just stop playing and output verification = no. In our new definit,ion instead
the computation goes on, no matter what. This discrepancy can be eliminated by
having protocols in the first definition agree on a default value when the dealer is
clearly bad and protocols in the second definition always output veri f icat ion = yes
at the end of Share-Verif y (since we are dealing with a secure function evalua.tion, we
are guaranteed that all good players will output a common value). With these minor
changes we can prove the following (the proof can be found in the appendix):

Theorein 5. If P is a VSS protocol o f /ault-tolerance t satisfying Definition 4, then
P is also a protocol o f fault-tolerance t satisfying Definition 1.

NOW the natural question t o ask is: Are Definitions 3 a.nd 1 equivalent? That is, if
a given VSS protocol P’ satisfies Definition 1, does it also satisfy Definition 3? T h e
answer to this important question, provided by the following Theorem 3, is NO. And
i t better be t h a t way if we want to preserve reducibility of VSS protocols. Indeed as
we will see later the formal specifications of Definition 1 are not sufficient to guarantee
composition of VSS protocols inside larger protocols.

Theorem 6. Definition 4 i s strictly stronger than Definition I , that is, there are VSS
protocols satisfying Definition 1, but not Definition 4.

T h e proof of this theorem (see t.he appendix for a detailed proof) is based on the fact.
tha t usually VSS protocols (consider for example the one in [I]) reconstruct the secret
by having each player distributing his own share t o all other players. This does satisfy

Coiiiparisoii with previous definitions of VSS

174

Definition 1 since there we do not put any requirement on tlie secrecy of t,he shares.
But this does not, satisfy Definition 4 since doing so we do not compute securely the
function REC. The problem is that the players reveal too much information about their
own input share during the protocol. In ot,her words we want t h a t , when we coinput>e
REC(Y) over y = S H A R (U ~ , . . . ~ v, -1, o s), no knowledge about y should leak except
the secret s (including no extra informa.tion about the secret s itself). T h e rationale
for asking this is again t.he fact tha t we want our VSS protocols to be secure not just
by theinselves but when used inside s u b r o u h e s of more complex protocols. Leaking
knowledge about the shares (or extra knowledge about the secret) may create problems
t o the security of tlhe overall protocol. Consider the following example.

Consider a VSS protocol P, satisfying Definition 1, in which the secret is a 3-
colorable graph. During the Recover prot,ocol the graph is reconstructed together
with a 3-coloring of it kindly provided by the dealer. Notice t h a t Definition 1 is not
violated, but notice also tha t an adversary gains froin t,he execution of such a protocol
some knowledge about t,he secret she could not obtain by herself. This in turns means
tha t t,here exist.s no simulator for this prot,ocol and so t,hat Definition 4 cannot be
satisfied. And the serious problem with P is that,, if used inside a larger protocol in
which it is crucial that the knowledge of that particular 3-coloring stays hidden, P ,
though “secure” as a VSS protocol on its own, jeopardizes the securit#y of the larger
protocol.

This problcin is solved by our definition substituting property 3 (unpredictability)
with a stronger one bascd 011 zero-knowledge and simulatability, which is exact,ly what
we d o by asking for a secure computation of t.he funct,ioiis SHAR and REG. In particular
the secure computat,ion of the funct,ion REC is t.lie most important difference between
the two definitions. 111 particular we want to stress the importance of maintaining the
secrecy of the shares of each individual good player. 111 the appendix me will show t h a t
protecting the secrecy of the shares is necessary for some applications in which VSS is
used as a subroutine inside some specific protocols.

Probably one of the reasons t,liis point inay appear somewhat moot is tha t in
Shamir’s secret sharing scheme [11] the shares consist of the value of a polynomial of
degree t wit,h free term s . For a t-adversary who corrupts exactly t players, knowing
the secret is equivalent t,o knowing the shares of all players. In fact, knowing t’he t
shares of the corrupted players and the secret a t the end of Recover, she has t + 1
points of t.he t-degree polynomial, and by evaluating the so inferred polynomial a t the
names of all good players, she easily computes all shares. However, we object t<liat
what happens to be h i e for the VSS prot,ocols based on Shamir’s scheme, may not be
true for all 1% prot.ocols ’. And one should not “wire in” a general definition what
happens t o be true in a. specific case. Moreover, even in Shamir-based VSS protocols,
if the polynomial has degree st.rictly larger than the number of corrupted players, then
it is no longer true tha t for the a.dversary knowledge of tlie secret is equivalent to
knowledge of all shares. Indeed, as we will show later this is the crucial point in our
application prot.ocols described in the appendix. if is f h u s needed that the knowledge
gainable by an a.doersary a t Ihe end of a secure VSS protocol exactly coincides wilh the
origina.1 secret whenever Ihe dealer is l ionest .

For example consider Blakley secret sharing scheme [2] in which the secret is a point in a
t + I-dirnenbional space and shares are random hyperplanes passing through that point.

175

5 A VSS protocol t ha t satisfies our definition

In this section we will exhibit a VSS protocol satisfying our definition and of fault-
tolerance 5 - 1, by modifying a n older prot,ocol of Ben-Or, Goldwasser, and Wigderson
[l]. The rnodification actually occurs only in the Recover par t , and uses techniques
also developed by [l], but within their “computational protocol” rather than in their
VSS protocol. We have also found a protocol of fault-tolerance 5 - 1 based on Tal
Rabin’s protocol [lo], but we will not describe it here for space limitations.

Suppose we are dealing with a t-adversary A. Let 71. = 3t + 4 and P I , . . . ~ Pn-l,
P, = D be the set of players, D being t,he dealer. We will make all our computat.ions
modulo a large prime p > n. It is known from the error-correct,irig codes t.lieory t h a t
if we evaluate a polynomial f of degree t + 1 over the n - 1 different points i for
i = 1,. . . , R - 1 then given the sequence si = f (i) we can reconstnict the coefficients
of the polynomial i n polynomial time even if up to t elements in the sequence are
arbitrarily changed. This is the well known Rerlekainp-Mklch variant of the Reed-
Solomon error-correct,irig code. For details readers can refer t o a standard t e s t like
[12]. Let K be a security parameter. With l</n we mean [51.

The prot,ocol appears in the boxes. The Share-Verif y par t is identical to the one
in [l]. The Recover protocol is modified with respect, t,o t,he one in [l] in order t o
make it a secure comptit,ation of t.he function REC. The hasic idea is tha t each player
will distribute his share t o all the other players, but covering it up appropriately with
some randomness so t,hat, 110 information about t,he share is revealed but t)he secret
reconstruct,ion process is not compromised.

Theoreill 7. The prolocol P = (Share - V e r i f y , Recover) is a VSS protocol accord-
ing t o Definit ion 4 with fault-folerance 2 - 1

Remark: A conipletely error-free XJersion of t,liis protocol can he obtained a.s in [7] by
running a different zero-knowledge proof that. the shares lie on a single polynomial.
The proof uses a bivariate polynomial a n d it is out. of the scope of this paper. Details
can be found in [I , 71. Notmice that t8his is the first time a formal proof of the securit,y
of the protocol of [I] appeared.

Remark: Notice how, assuming t,he dealer is honest, a t t,lie end of t,he Recover phase
the adversary, even knowing the secret s arid 2 sliarcs o f t.he corrupted players, knows
nothing about the shares of the honest players (since the polynoniial is of degree 1 + 1
and t,o interpolat,e it t + 2 points are needed).

176

’rotocol Share-Verify from [l]

1. The dealer chooses a random polynomial fo(z) of degree t + 1 wit.h the only condition
that fo(0) = s his secret. Then he sends to player P, the share s, = fo(i). Moreover he
chooses 2 K random polynomials f ~ , . . . , fm of degree t + 1 as well and sends to P, the
values fJ(i) for each j = 1,. . . , 2Ii.

2. Each player P, broadcasts I i /n random bits C Y (, - ~) J , - / ~ + , for j = 1,. . . , K/n
3. The dealer broadcasts the polynomials g, = f, + a,fo for all j = 1,. . . , h’
4. Player P, checks if the values he holds satisfy the polynomials broadcast by the dealer.

If he finds an error he broadcasts a complaint. If more than t players complain then the
dealer is faulty and all players assume the default zero value to be the dealer’s secret.

5. If less than t players complained the dealer broadcasts thc values he sent in the first
round to the players who complained.

6. Each player P, broadcasts K / n random bits /?(,-l)li.,n+J for j = 1, . . . , IC/n
7. The dealer broadcasts the polynomials h , = fIi+, + p,f~ for all j = 1, . . . , IC
8. Player P, checks if the values he holds and the values broadcast by t.he dealer in round

5 satisfy the polynomials broadcast by the dealer. If he finds an error he br0adcast.s a
complaint. If more than t players complain then the dealer is faulty and all players assume
the default zero value t,o be the dealer’s secret.

’rotocol Recover (modified)

1. Each player P, chooses a random polynomial h , of degree 1 + 1 such that hi(0) = sz his

2. Each player P, chooses random polynomials p , (z) , q,,] (z), . , . , q , , z r c (z) of degree t + 1 and

3. Each player P, broadcasts Ii random bits yi,(;-l)K/ntm for 1 = 1 , . . . ,n and m =

4. Each player P, broadcasts the following polynomials r3 = q,,, +yr,,pi for each j = 1,. . . , Ii-
5. Each player P, checks that the information player Pi sent him in round 1 is consistent with

what player Pi broadcast in round 3. If there is a mistake or Pi broadcast a polynomial
with non-zero free term Pi broadcasts b a d [. If there are more than 1 players broadcasting
b a d [, player Pi is disqualified and all the other players assume 0 to be Pl’sshare. Otherwise
Pi broadcasts the information he sent in round 1 to the players who broadcast bad!

6. Each player P, broadcasts K random bit,s 6L,(t-1)A-,ntm for 1 = 1, , . . , n and m =
1,. . . , K / n

7. Each player P, broadcasts the following polynomials t-, = q 1 , I c t J + 6,,,p, for each j =
1, . . . ,I<.

8. Each player P, checks that the information player Pi sent him in round 1 and broadcast
in round 5 is consistent with the polynomials player Pi broadcast in round 7. If there is
a mistake or A broadcast a polynonlial with non-zero free term P, broadcasts bad:. If
more than t players broadcast bad; then PI is bad and all players assume his share to be
0.

9. Each player Pi dist.ributes to all other players t,he following value si + p l (i) + p 2 (z) +
. . . + pn(z) then interpolates the polynomial F (z) = fo(z) + pl (z) + p Z (z) + . . . + p,(z)
using the error correct.ing algorithm of Derlekamp and Welch. The sccret will then be

own input share. He sends t,o player P, the value h , (j)

with free term 0. He sends to player P3 the values p t (j) , q t , l (j) , . . . , q 1 , 2 K (j)

l,,..,K/n.

s = F (0) = f (0) .

177

6 Conclusion

In the pas t cryptographic schemes a n d protocols used to b e considered secure until
no t broken. D u e to the increasing use and importance of cryptography, this approach
is no m o r e acceptablc. To call a protocol secure we need a proof of its security. T h i s
means that we need definitions and me thods to be able to prove security.

Following this philosophy we have presented a new and stronger definition for one
of the most i m p o r t a n t cryptographic protocols: Verifiable Secret Sharing. W e argued
that this definition is the correct one especially when VSS is to b e used its a sub-
protocol inside larger protocols (which is probably the most common case for VSS).
We also p r e s e n k d a protocol which provably satisfies our new definition. Finally some
applications of this new protocol (and of ou r new definition of VSS) a re described in
the appendix.

References

1 . Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for non-
cryptographic fault-t.olerant distributed computation. In 20th A CM Symposium on The-
ory of Computing, pages 1-10, 1988.

2. C.R. Blakley. Safeguarding cryptographic keys. In Nationol Computer Conference, pages

3. David Chaum, Claude Crepeau, and Ivan Damgard. Multiparty unconditionally secure
protocols. In 20th ACM Symposium on Theory of Computing, pages 11-19, 1988.

4. Benny Chor, Shafi Goldwasser, Silvio Micali, and Baruch Awerbuch. Verifiable secret
sharing and achieving simultaneity in the presence of faults. In 2Gfh IEEE Symposium
on Foundat ions of Computer Science, pages 383-395, 1985.

5. Yvo Desrnedt arid Yair Frankel. Shared generation of authentication and signatures. In
CRYPTO’SI, Lecture Notes in Computer Science, pages 457-469. Springer-Verlag, 1991.

6. Yvo Desmedt, Yair Frankel, and Moti Yung. Multi-receiver/multi-sender network secu-
rity: efficient authenticated multicast/feedback. In TNFOCOM, pages 2045-2054, 1992.

7. Paul Feldman and Silvio Micali. An optimal probabilistic protocol €or synchronous byzan-
tine agreement. In 20th ACM Symposium on Theory of Computing, 1988.

8. Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game. In
19th A C M Symposium on Theory of Computing, pages 218-229, 1987.

9. Silvio Micali and Philip Rogaway. Secure comput,at.ion. In CRYPTO’91, Lecture Notes
in Computer Science. Springer-Verlag, 1991. Current version available from the authors.

10. Tal Rabin and htichael Ben-Or. Verifiable secret sharing and multiparty protocols with
honest majority. In 21st ACM Symposium on Thcory of Computing, 1989.

11. Adi Shamir. How to share a secret. Communications of the A C M , 22(11):612-613, 7979.
12. \V.Peterson and E.Weldon. E r r o r Correcting Codes. MIT Press, second edition, 1972.

313-317, 1979.

Appendix

This appendix is dedirated t o the proofs of borne of the s ta tements in t h e t h e paper.

Proof of Theorem 5

Let P be a VSS protocol of fault-tolerance 1 satisfying Definition 4 . Let ic be the initial
configuration vector of the network.

P satisfies t h e Verifiability propcrty of Definition 1. Indeed at the end of t h e Share-Ver i fy
phase, let u = In (i cn) i.e. the value contributed by i.he dealer to t h e computat ion. This value
is fixed a t t h e end of Share-Ver i fy since it is a f u n d o n of the traffic of t h e dealer. Moreover
because of t h e l-robustness of t h e function REc we have t h e same value u will b e output by
all good players a t the end of t h e Recover par t . Indeed because of t h e t-robustness property
i t does not m a t t e r tha t t bad players may change their input before computing the funct,ion
FLEC. Finally, if t h e dealer is good then CT = I n (i c n) is equal to the secret s.

P also sat,isfies the Unpredictability property of Definition 1. First notice t h a t the t-
uniformity property implies t h a t the output of the function SHAR is composed of t-wise inde-
pendent uniformly distributed random variables and so i t is impossible (in a n informafion-
theoretic sense) to predict, t h e secret bet ter than a t random for any algorithm t h a t has
knowledge of only I 5 t components of such output . However a t-adversary has not only
t h a t knowledge b u t she also has a view of the entire protocol (i.e. traffic of bad players and
messages broadcast by good players). But here is where secure comput,ation comes t o our
rescue. Because of the security of the evaluation of the funct.ion SHAR t h e adversary can cre-
a t e t h e entire view by herself using the simulator, and so basically t h e other information is
irrelevant. More precisely let‘s assume for the sake of contradiction t h a t protocol P does not
satisfy t h e Unpredictability cuiiditiori. ‘Yliis means t h a t there is an adversary A t ,hat docs nu1
corrupt t h e dealer and such (,hat l ’ ~ o b [A guesses s] > $ where rn, = 1.5’1 is t h e cardinality of
t h e space uf possible secrets. [Ye will exhihit an algorithm (for guesser) t h a t guesses t h e
secret with t h e same probability but having access only to t components of the output of t h e
function SI1AR. Since Share-Verify is a protocol t h a t securely evaluates t h e fuiiction SHAR
i t must, have a simulator S7m. Cj runs Sim with the adversary A and uses A’s guess for t h e
secret a.s his guess. Since the simulated vicw of the protocol is indistinguishable from the real
one, A will guess the correct secret with probability bigger t,han 5 . Notice t,Iiat by running
t.he simulator i d only know a t most t components of the out.put of the function SHAR,

t h e ones which will be answered by the oracle in response to request of corruption by A. So
we have a contradiction since we found an algorithm t h a t predicts t h e secret bet ter t h a n a t
random with knowledge of only t components of t h e output of SHAR, which contradicts the
d-uniformity property. 0

Proof of Theorem G

T h e proof of this theorem is based on t h e fact that usually VSS protocols (consider for example
the one in [I]) reconstriict the secret by Iiaviiig edch playcr distributing his own share to all
other players. ‘I’his dom satisfy Definition 1 since there we d o not p u t any requirement on
t h e secrecy of t h e shares. B u t , as the following lemma shows, this does not sat,isfy Definition
4 since doing so we do not compute sccurciyfhe function REc.

Lemma 8. The protocol I‘ in which ot round 1 e w r y ployer broadcasts o r distributes his ow7i
s h a r e i s n o t a secure computat ion of t he func t ion nEc.

Proof. P is a 1-round protocol. Consider the following t-adversary d1. dl corrupts t players
, P t) right a t the beginning of the protocol. So in t h e simulated execution t h e

simulator Szm yi l l receive from the oracle their inpi1t.s (shares) z1,. . . , z t . N O W Szni has to
simulatc t h c broadcast messages 01 t h e good players. No mat te r what orry Swr~ dues, there
a re only t.wo possibilities:

179

- either the shares broadcast by Sim do not interpolate a secret
- or they do interpolate a secret s‘, but since Sam has no knowlcdge a t this point of what

the “true” secret s is, only with probability 1 s = s’ IS1
In both cases however the simulated execut,ion is distinguishable from the r e d one to dl and
so protocol P is not secure according to definition 2.

The above proof is sufficient t o show tha t prot.oco1 P is not secure. However let us describe
an alternative proof of this statement, based on a different adversary. This will allow us to
exemplify a different problem with protocol P . ‘This will help the reader understand better
the modification we will do to the Recover protocol in order to achieve security for VSS
protocols.

Proof. (alternative proof o j Lemma 8)
Consider the following &adversary dz. d2 corrupts t - 1 players (say P I , . . . , right at
the beginning of the protocol. So in the simulated execution t,he simulator Sam will receive
from the oracle their inputs (shares) z1,. . . , ~ ~ - 1 . Now Sim has to simulate the broadcast
messages of the good players. Sim does so and broadcasts z:, . . . , zh. As before no matter
what a n y Sim does, there are only two possibilities:

- eit.her the shares broadcast by Sim do not interpolate a secret (in this case, as above,

- or they do interpolate a secret s’,
the simulation is already a bad one)

At this point d? corrupts her last player (say Pt) and so gets from the oracle the true
pair (z t , s) and only with probability 5 & we have tha t z: = z t and s = s’ and so t.he
simulated execut.ion will not succeed in convincing the adversary t,hat she is talking wit,h the
real network, hence P is not secure according to definition 2.

Proof of Theorem 7

Let SHAR be the following function:

SHAR(U],W,. . . , U , ~ . - ~ , Y o S) = (s 1 , s 2 , . . . , s,-,,c)

with S, = fo(z) wherefo(z) = s + a ~ z + . . . + U ~ + ~ Z * ~ ’ and r = a l o . . . ond (i.e. the polynomial
is created using the coin tosses r of the dealer). Then we can state that

Lemma 9. Protocol Share-Verify secwely evaluates the function SHAR accordzng to Dejini-
tzon 2.

Proof. If we look back a t Definition 2 we see tha t we have to check tha t both conditions,
correctness and privacy, are satisfied in the blended way they interact in the simulation process
through t,he common input and output functions.

So first of all let’s define these functions for our protocol. Remember tha t with t , we
define the traffic of player Pi. Clearly for all players P, i 5 n the input function always
returns the empty string, I i (t i) = E , since the players do not contribute any input during
the cornpiitation of the function W A R . For t,he dealer, D = P,+I, the input function is a
littlc bit more complicated. Let us denote wit.h m, the message the dealer broadcast to player
P, in round 5 if P, complained in round 4, or the message the dealer sent to player P, in
round 1 if P, did not complain. Then I D (~ D) = f (0) where f = BW(rn1, . . . , m,) is the
t + I-degree polynomial resulting from the Berlekamp-Welch interpolation of the m,’s. The
output function is simpler: Gi(t,) = m, (where m~ = t). Now we can check both conditions.

Correctness: First we have to prove tha t for all good players P,, I , (t ,) is equal to the
correct inpnt. In our specific case this has to be checked only for t.he dealer. If the dealer
is good, m, = f (z) where f is a t + 1-degree polynomial with free term s the secret. So

180

I o (t ~) = s if the dealer is good. The second correctness condition is tha t with high probability
O (t) = S H A R (I (t)) . In our case this means that with high probability the values m, held by
good players must be on a single polynomial of degree i + 1. This is true with probability
> - 2 - 9 since a t least bits are chosen truly randomly by good players in rounds (2) and
(6). Each bit represents a “question” that a bad dealer who distributed bad shares will be
able t o answer correctly in the following round only with probability f (i.e, if he predicted the
bit correctly when he distributed the shares). Hence the bound on the probability of error.

Privacy: We have to exhibit a simulator for the protocol. We distinguish 2 cases:
Case A: The dealer is corrupted before round 1. Then t,he simulator will just follow the

instructions of the players, with the only exception tha t it will turn them over to the adversary
in case of corruption. Since the players do not contribute any input to the computation this
will reduce the simulated execution to one of VSS wibh a bad dealer. So the aimulation will
be indistinguishable to the eyes of the adversary.

Case B: The dealer is not corrupted before round 1. Then the simulator in round 1 will
just create a random “fake” secret s‘ and will share it to the players according to the protocol
instructions with a polynomial f’. If the dealer is not corrupted at all during the protocol then
everything will run smoothly since to the eyes of the adversary the execution will look like
an ordinary VSS wit,h a good dealer (again this is true because the players do not contribute
any input tlo the computation). If the dealer is corrupted after round 1 however the adversary
and the simulat,or will get from the oracle the t,rue input s of the dealer. At tha t point the
simulator turns over the control of the dealer to the adversary, but changes t,he polynomial
used t.0 share the secret t o a new polynomial f ” such tha t f ” (0) = s and j ” (z) = j’(i) for
all players P, tha t were corrupted so far by the adversary. The simulator changes accordingl!:
the random polynomials j , used for the zero-knowledge proof to make them consistent with
whatever h a s been broadcast so far. The simulator can always do this since the adversary has
at most t points of a 1. + 1-degree polynomial. For the rest of the simulation the simulator
will use the polynomial f” for the computation of the good players st,ill under his control.
R e claim tha t this execution is indistinguishable to the adversary from a real one. This is SO

because the only thing different from a true execution is the fact tha t the shares the adversary
gets before corrupting the dealer are created using a different polynomial t.han t,he real one,
bu t thanks to the properties of polpnomials t,his is not a problem for the simulator once the
dealer is corrupted.

Let REC be the function
R E C (S ~ , . . . , s , , -] , c) = (3 , . . . , s , s)

where s is the result of the Berlekamp-Welch “interpolation” of the s,.

Lemma 10. Protocol Recover securely euuluutes the function KEC according to Definzlzon 2.

Remark: Before embarking in the formal proof of this leninia let us give some intuition of
why t,his is true. For example notice how the adversaries dl arid dz tha t we described in t.he
proof of Lemma 8 are helpless with the new protocol Recover-A. We added round 1 so t,hat
the simulator can learn the true secret before the shares have been given out publicly and this
takes care of an adversarial attack like A] . Moreover we added the “masking” polynomials
p , so tha t the players reveal shares of a random polynomial F whose only property is tha t
F (0) = s, so while reconstructing t.he secret no information is revealed about the true input
shares; t,his solves the problem raised by adversary d2.

Proof. As in the proof of Lemma 9 we start by defining the input and output functions of
our protocol. The input function I , of player P, is defined as follow: let m,,3 be the message
P, sends to player P, at round 1; I , (&) = h,(O) where h , = d lW(m, , l , . . . , m,,n) is the i + 1-
degree polynomial resulting fioin the Beilehamp-Welch interpolation of the rri , , l’s (if t,here is
no such polynomial then assume I , (t ,) = 0). The output function is the following: let Af, be the

181

message broadcast by player P, at round 9; U,(t ,) = F (0) = s where F = BIY(M1,. . . , h4,,)
is the 1 + 1-degree polynomial resulting from the Berlekamp-Welch interpolat,ion of the M,’s.

Correctness: It is clear that for all good players I , (t c) = s, the correct input share. Then
we have to check that at least with high probahilit,y O (t) =REC(I(t)) . In our case this means
to prove that

R E C (M ~ , .. . ,M,, ,c) = REC(SI,. . . , sn, c)

Now this equation is not satisfied if one of the following things happens:

- either a bad player Pi succeeds in sharing random “garbage” instead of the values pi(j)

- or Pi does distribute pi(j) in round 2 but manages to use a polynomial with free term

Since the sharing process is exactly identical t.o the one of the protocol Share-Verify, we
already know that Pi succeeds in any of the two cases only with probability 2-F. So since
t,here are at most, bad players, the probability that the protocol computes an incorrect
output is at most f 2 - % which for K large enough is exponentially small.

Privacy: We have t.o exhibit a simulator and then prove that the simulation is indistin-
guishable from the true network execution. Consider the following simulator S i m ~ :

1 At round 1 , SimR simulates player P, by choosing a random polynomial h: of degree t + 1
and sending h. : (j) t.o P,. At this point the simulator is allowed to receive from the oracle
the output of the function, so SimR will learn the true secret 3. If some player A is
corrupted by the adversary A a t the end of this round (or in the following rounds), then
both SimR and A learn the true share S I and S i m ~ has ’ to change the polynomial hl
accordingly so that hL(0) = si but without changing its value on points already known
to the adversary. SimR can always do this because the adversary has at most t points of
a t + 1 degree polynomial.

2-8 During rounds 2 to 8 the simulator just follows plairily the instructions of the players.
Since what players do in t,hese rounds is completely random and not related to their
inputs, Sim R will always be ahle t,o create an indist.inguishable view.

9 Finally a t round 9, S i m ~ chooses a polynomial g of degree t + 1 such that g(0) = s
and then fur each player P, SiniR broadcasts g(z) + p l (i) + . . , + pn(i) where p , is the
polynomial distributed by player Pj during rounds 2-8 of the simulation. The Reed-
Solomon interpolation of these values will give as result s. If a player Pi is corrupted a t
the end of this round, then b0t.h SemR and A will learn from the oracle the true input
share si. If si # g (l) t,hen S i m ~ just changes the value of pi a t the point I so to make the
entire sum consistent with what broadcast.

in round 2 (in this case the M,’s will not interpolate a polynomial)

different. than zero (in this case t,he A4,’s wlll reconstruct a different secret)

The simulation is indistinguishable from a real execution to the eyes of the adversary. In fact
as we already said, in round 2-8 all messages are random and unrelated to the input so the
simulat,or can easily play the role of the good players. In round 1 the adversary sees at most
only t shares of the real input of a good player. Because of the property of Shamir secret,
sharing scheme, these shares are completely random and so can be simulated even with no
knowledge of the real input (as in the case of the simulator). In round 9 the real share is
broadcast “hidden” by some random “garbage”, t,his will allow the simulator to broadcast
the message of a good player with the right distribution even without knowing the real input,.

Applications

Unfortunately there is no space in this extended abstract for a detailed description of the
applications. However let 11s briefly sketch some of them.

A PROOF FOR TIIE BGW PROTOCOL: In the final paper we will describe what is probably
the nicest feature of our new definition and new protocols for VSS. \Ye will present a very

182

simple and “modular” proof for the theorem of Ben-Or, Goldwasser and Wigderson tha t any
function can be computed securely with fault-tolerance of :. ‘This result first appeared in a
S T O C abstract without a formal proof [I]

They claim that i t is enough to prove that it is possible t o compute securely addition and
multiplication, since any function F can indeed be reduced t o an arkhmetic circuit whose
nodes are indeed just addition and multiplication. By repeatingly using these 2 protocols we
can then compute securely the entire function. Notice however tha t this line of reasoning gives
for granted the reducibility property for secure protocols. However at tha t time a satisfac-
tory definition of security had not been presented and the reducibilty theorem was generally
considered true but never proven.

However we stand on the privileged position of having had these tasks completed for us
by [9] . This will allow us to present a simple and modular proof for t,he theorem of [l]. Notice
tha t in order t o use the reducibility theorem we need t,o use our new notion and protocols for
VSS. This does not mean tha t the theorem of [I] is wrong as it is, bu t t h a t in order to have
our simpler and modnlar proof their VSS protocol is not appropriate.

SHARED AUTHENTICATIONS AND SIGNATURES: A first idea would be to use these shares for
aulhenlzcotion purposes. More precisely after being shared among the players, the secret is
given to some authent icators . A t a certain point if a subset. of the players (of opport.une size)
wants t o prove their identity to or sign a message for an authenticator they just recover the
secret toget.her with her and if the reconstruction succeeds then the authenticator knows she
is dealing with the right people. However since the shares are never revealed the authenticator
(or any of t,he players) will never be abie to prove herself as sonieoiie else.

The idea of shared authenticat.ion and signatures appears in [5, 61: we will briefly describe
their scheme here. All operations (as usual) are modulo a big public prime p . A t,rust.ed key
distribution cent.er generates two random polynomials Qo(z) and Q1 (2) of degree t and shares
them among the players, i.e. player P, receives Qo(i) and Ql(z). T h e authenticators receive
Q o (0) and Ql(0). Later suppose players P,, , . . . , P,. (s 2 t) want t o sign a message Af for the
authenticat,or. P,, broadcasts the message Qo(Zl) + A l Q , (il). The authenticator interpolates
the broadcast shares into a polynomial F and checks tha t F (0) = QO(0) + A l Q l (0) . This
protocol has two problems:
(1) If a player waiits to jam t,he signature process all he has to do is to broadcast garbage
(they solve it assuming players to be honest).
(2) I t is a one-time scheme since after signing two different messages A41 and A42 the secret
key of player P, is easily computable.

Using our VSS Recover protocol to reconstruct the secrct Q o (0) + M Q 1 (0) we will
solve both problems a t once. Indeed bad shares contributed by players will be detected and
eliminat,ed. Moreover the share broadcast by player I: bet,rays nothing of the true secret
(Q o (i) , Q l (z)) and so even after numerous signatures no information leaks about it; so we caii
do without the t,rust,ed combiner.

Finally notice that since usually the key management center is trusted, we do not need
the verification process during the Share-Verify part making t.hat part much simpler.

	Introduction
	Prior work
	Our definition of VSS
	Comparison
 with previous definitions of VSS
	A VSS protocol that satisfies our definition
	Conclusion
	References
	Appendix

