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Abstract. Verifiable Secret Sharing is a fundamental primitive for secure cryp- 
tographic design. We present a stronger nation of verifiable secret sharing and 
exhibit a protocol implementing it. We show that our new notion is preferable 
to the old ones whenever verifiable secret sharing is used as a tool within larger 
protocols, rather than being a goal in itself. Indeed our definition, and so our 
protocol satisfying it, provably guarantees reducibilty. Applications of this new 
notion in the field of secure multiparty computation are also provided. 

1 Introduction 

Secret Sharing and Verifiable Secret Sharirig (VSS for short) are fundamental notions 
and tools for secure cryptographic design. Despite the centrality and t,he maturity of 
this concept (almost 10 years passed from its original introduction), we shall advocate 
tha t  a stronger and better definition of a VSS is needed in order l o  achiere the very 
desirable property of reducibility for secure protocols. We shall then provide the first 
provably correct implementation of this stronger definition. 

REDUCIBILITY is an essential tool for secure protocols design because it allows such 
protocols to be built in a m o d u l a r  way. In our case this means tha t  one can first design 
a protocol P for a given t,ask assuming that  an “abstract” and “perfect” VSS protocol 
exists. Then  one designs a correct (according to a given definition!) VSS protocol Q. 
Finally one substitutes Q in place of tlie abstract sub-protocol in P. However this way 
of proceeding yields a secure protocol P if and only if the definition of VSS satisfied by 
Q enjoys the  reducibility property. Unfortunately no prior notion of a VSS provably 
guarantees reducibility. Thus it is a goal of this paper t o  provide such a definition and 
a VSS protocol tha t  satisfies it. 

THE INTUITIVE NOTION OF A VSS. As first introduced by Chor, Goldwasser, Micali 
and Awerbuch in [4], a VSS protocol consists of a two-stage protocol. Informally, there 
are n players, t of which may be bud and deviate from their prescribed instructions. One 
of the players, the dealer ,  possesses a value s as a secret input. In the first stage, the 
dealer commits t o  a unique value z, (no matter what the bad players may do); inoreover, 
v = s whenever the dealer is honest. In tlie second stage, the already committed value 
zi will be recovered by all good players (no matter what the bad players might do). 

~ 

* Contact author. Email address: rosa r ioQtheory  , lcs. nit. edu. Research supported 
by NSF grant no.9121466-CCR 

L.C. Guillou and J.-J. Quisquater (Eds.): Advances in Cryptology - EUROCRYPT ’95, LNCS 921, pp. 168-182, 1995. 
0 Springer-Verlag Berlin Heidelberg 1995 



169 

PRIOR WORK. Several definitions and protocols for VSS have been proposed in the  
past ten years (E.g., [4, 1, 3 ,  7 ,  101.) We contend, however, that  these not,ions and 
these protocols are of very limited use. In fact, their security concerns “begin when 
the dealer’s secret is committed, and end when it, is recovered.” T h a t  is these notions 
do not concern themselves with what happens when VSS is used as a subprotocol. Be- 
cause in many applications running a single VSS protocol is exactly what is wanted, 
these prior definitions and protocols are totally adequate in those scenarios. However, 
they are not adequat.e in more general scenarios since it is by now a well-known phe- 
nomenon t h a t  protocols t h a t  are secure by themselves, cease t o  be secure when used 
as a sub-protocols. In these cases the security of t,he entire protocol must be proven 
“from scratch” (for instance, this is the case in [7] where they use VSS as a tool 
to reach Byzantine agreement) rather than in a more natural and elegant “modular 
way.” A notion of security that  guarantees reducibility has been presented by Micah 
and Rogaway 193 for the problem of funcl ion enal~uatzon, but  not for general multiparty 
protocols. 

OUR WORK.  We extend reducibility-guaranteeing notions of security to  verifiable secret 
sharing protocols and concretely exhibit, VSS protocols that  provably satisfy these 
notions. More precisely, in this paper we achieve the following goals: 

1. We propose a new definition of VSS cast,ed as a special istance of secure function 
evaluation, 

2. We compare our  new notion with t.he previously proposed ones, aiid show that  it 
is strictly and inherenlly stronger. 

3. We modify earlier VSS protocols of [l ,  101 and show t h a t  our new protocol is secure 
according to our notion. 

4. Finally we present some applications that  use VSS as a subroutine aiid need our 
stronger notion of VSS to be secure. These include shared aut,hentications and 
signatures and a very elegant proof of the security of the completeness theorem on 
multiparty secure computation by Ben-Or, Goldwasser and Wigderson. [l] 

2 Prior work 

In order to focus on the difficulties tha t  are proper of VSS, we shall deal with a simple 
computational model, both when reviewing prior work and when presenting our new 
one. 

COMPUTATIONAL MODEL. We consider n players communicating via a very convenient 
synchronous network. Namely, to  avoid the use of Byzantine Agreemerit protocols we 
allow players to broadcast messages, and ,  in order to avoid the use of cryptography, 
we assume t h a t  each pair of players is connected by a private communication channel 
(i.e., no adversary can interfere with or have any access t o  messages between good 
players). 

We model the corrupted processors as being coordinated by an adversary A. This  
adversary will be  dynamic (i.e., decides during the execution of the  protocol which pro- 
cessors corrupt); all-powerful: (i.e., can perform arbitrarily long computations); and 
completely-informed (i.e., when corrupting a player she finds out  all his computational 
history: private input, previous messages sent and received, coin tosses, etc.). Further, 
the adversary is also allowed rushzng (i.e,, in a given round of communication, bad play- 
ers receive messages before the good Ones and,  based on those messages, the adversary 
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can decide whom to corrupt next)). \Ve say that  such an adversary is a t-adversary ( 
0 5 1 5 n ) if 1 is an upper bound on the number of processors she can corrupt ( t  
is also referred to  as the f a u l f - f o l e r a n c e  of t,lie protocol.) This  coinputational model is 
precisely discussed in [TI and [9]. 

PRIOR DEFINITIONS O F  Vss. To exactly capture the informal idea of a Vss, has 
proven to  be a.n hard task in it,self. The definition reviewed below is tha t  of [ 7 ] ,  which 
relies on the not,ioii of a f ized e v e n t  

Definition: We say tha t  an eveiit X is f ized a t  a given round in an execution E of a 
prot,ocol, if X occurs in any execution E’ of t,he protocol coinciding with E up t.0 the  
given round. 

Definitionl. Let P be a pair of protocols where the second is always execut.ed after 
t,he first one, P =(Share-Verify , Recover). In protocol Share-Ver i fy ,  the identity 
of the dealer  is a coinmon input t o  all players, and the secret is a privat,e input to 
the dealer; the out,put of player Pi is a value werificationi E {yes,no}. In protocol 
Recover ,  t,he input of each player Pi is his cornput,ational history at, t.lie end of the 
previous execution of Share-Verify;  the output of each P, is a st,ring ai. ’We say P is 
a VSS prot>ocol with fault-tolerance t if the following 3 properties are satisfied: 

1. Accepiance of good secrets: In all executions of Share-Ver i fy  with a t-adversary 
A in which the dealer is good, v e r i f i c a t i m j  = yes for all good players Pi. 

2. Veri f iabi l i ty:  If less t.han t players output veri  f icat icn = no a t  t,he cnd of Share-  
V e r i f y  then at this time a value u has been fixed and a t  the end of Recover all 
good players will output  tshe same value c and rnoreover if the  dealer is good D = 
t.he secret. 

3. Unprediclabzl i iy  I n  a random execut,ion of Share-Ver i fy  wi th  a good dealer and 
t,he secret chosen randomly in a set of cardina1it.y m any t-adversary A won’t be  
able t o  predict t3he secret better than a t  random i.e. if A outputs  a number a a t  
the end of Share-Ver i fy  then Prob[a = s] = $ 

SECURE COMPUTATION. Let us summarize the definition of secure function evaluat,ioii 
of [9]. Inforinally the problem is the following: n players P1, . . . , P,, holding, respec- 
tively, private input>s 1 1 ,  . . . , I,, want t>o evaluate a vector-valued function f on their 
individual secret inputs wit.hout revealing them (more than already implied by f ’ s  
output) .  T h a t  is, they want t o  cornput,e (yl,. . . , yn) = f(xl,. , . , x n )  such that  each 
player Pi will learn exactly yi. 

This  goal is easily achievable if t.here is an external and trusted party, who privately 
receives all individual inputs and then computes aiid privately hands out  all individual 
outputs. Of course, even in this idcal  scenario, t,he adversary can create some problems. 
She can corrupt aplayer Pi before he gives his input zi to  the  external party and change 
it with some other number xi. And she can still corrupt players after the fuuction has 
been evaluated aiid learn their outputs. These problems should, however, be regarded 
a.s inevi table .  Indeed, following [8], 191 call a protocol for evaluating f secure if i t  

Notice that if we simply ask in the Verifiabllity condition that “all t h e  good players output 
the same number o at the end of the Recover phase” it would not be sufficient for our 
purposes. In fact, we would still allow the adversary to decide during Recover what value 
0 the good players will oiitput. Thus  Share-Verify would not model a secret commitment 
as required. 
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approximates the above ideal scenario “as closely as possible.” The  nature of this 
approximation is informally summarized below. 

Definition (initial configuration, trafjic, input and output):  Let us  define the following 
quantities within the context of a protocol P .  

T h e  i n d i a l  configuralion for P is a vector ic, whose it.h component, ici = (xi, r i )  
consists of t h e  private input and the random tape of player Pi. 

T h e  t ra f f ic  of player P; in protocol P a t  round q ,  2 4 ,  is the set of messages sent and 
received by Pi u p  to  that  round. 

A l o c d  inpu t  f u n c f i o n  I = ( I l l . .  . , In) for P is an n-tuple of functions such that  there 
exists a specific round r such t,hat, by applying Ii t o  the traffic tr ,  we get the input 
player Pi is “contributing t.o the computation.’’ I(ic) will denote the vector of those 
values when P is run on initial configuration ic. 

A local ou tput  f unc t ion  0 = (01,. . . ~ 0,) for P is a n  n-tuple of functions such t,liat 
by applying Oi to t.he final traffic t!Znal of player Pi we get, his output,. 

Definition ( A d v e w a r y  v iew):  T h e  adversary view, during P is t,he 
probability distribution over the set of coinputational histories (traffic and coin tosses) 
of the bad players. 

Definition (S imu la tor  and ideal evaluatian oracle): A simulator Sim is a n  algorithm 
t h a t  “plays the  role of the good players”. The  adversary interack with the sitnulator 
as if she was interacting with the network. ‘The simulator tries t o  creat,e a view for the 
adversary t h a t  is indistinguishable from the real one. He does this wit,hout knowing the 
input of the  players, but  it is given access t o  a special oracle called the ideal evaluation 
oracle. For a protocol P wit8h local input function I evaluatable a t  round r ,  the rules 
of the  interaction between Sint and the oracle are the following: 

- if A corrupts player Pi before round r Sim get,s from t8he oracle the input zi and 
gives it t o  A.  

- at round r Sim get.s the output  yl for all the  players corrupted so far, where 
( y i , .  . . ,&) = f(t;, . . . ,zk) where z i  = ti if Pi is still good, ot,herwise xi = I i ( tT)  

- if A corrupts a player Pi after round r ,  S im gets from the oracle the pair (xi, yi) 
and gives i t  to A. 

Definition2. Secure Funct ion  Evaluation: Let f be a vector-valued function, P a 
protocol, Sim a simulator, and I and 0 local input and output  functions. We say tha t  
P securely evaluat,es the function f if 

- Correc fness:  If ic is the initial configuration of the network, then 
1. xi = ii(ic) for all good players Pi 
2.  with high probability, O(tfinal) = f(l( ic))  

(1.e. n o  matter  what the adversary does, t.he function is e v a h t e d  during the 
protocol on some definite inputs defined by the local input  functions over the 
traffic of the  players. These input.s coincide with the original inputs for the good 
players) 

- Privacy:  For all initial configurations ic, if VIEIV&nl is the adversary view of the 
simulated execution of the protocol, we have tha t  

V I E I V ~ ~ ~ ~ ~ , . ~  E VIEW;,  

(I.e., the  two views are stat,istically indistinguishable.) 
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There are many reasons for which this definition captures correctly the notion of a 
secure computation. In particular, the  following one: the  definition in [9] allows one to 
prove formally many desirable properties of secure protocols, the most interesting for 
us being reducibility: 

Theorem3 [9]. Let  f and g be two functions. Suppose there is a protocol P that 
securely evaluates f in the model of computation in which it can perform ideal evalu- 
ations ofg .  Suppose also that there is a protocol Q that securely computes g .  Denote 
with PQ the protocol in which the code for Q is substituted in  P in the places where P 
ideally computes g .  Then PQ is secure. 

Interested readers are referred to the original paper [9] for a proof of this statement 
and a complete and a formal description of their definition. 

3 Our definition of VSS 

In this section we provide a new definition of VSS t h a t  guarantees reducibility. The  key 
idea for achieving this property is to cast VSS in terms of secure function evaluation. 
Accordingly, we shall define two special functions SHAR and REC, and demand t h a t  
both of them be  securely evaluated in the sense of [9]. 

We assume a network of n players P I , .  . . ~ Pn- 1 and P,, where P, = R the  dealer. 
Let C be a set. Consider the vector space C" and the  following metric on it: given 
two vectors a, b in E", let us define the distance between them as the number of 
components in which t,hey differ; tha t  is, d(a, b) = 1{1 5 i 5 n , a i  # bi}l We define 
the t-disc of a as the set of points a t  distance 5 t from a i.e. disct(a)  = {b E C" : 

We will define again VSS as a pair of prot,ocols, called Share-Verify and Recover, 
tha t  comput>e, respectively, two functions, S H A R  and REC, satisfying the following prop- 
erties. SHAR is the  function we use to  share t,he secret among the  players. It is defined 
on the entire space for tlhe 72 ~ 1 players (their private input does not mat ter  in this 
phase) and on two finite special sets R and S for the dealer. S is the  space of possible 
secret,s while R is a set of random strings. I've will ask even after seeing any 1 shares 
(! 5 1 )  all secrets are equally likely to generate those shares. We call this property 
t-uniformity (see 2 below). Similarly REC is tlie function we use to  reconstruct the  
secret. We will run it on the  output  of the previous phase. W h a t  we want is that  we 
will be able t o  d o  so even if up t o  t components of the output  of the sharing process 
are arbitrarily changed. We call this propertry t-robustness of tlie function REC (see 3 
below). 

Definitioii: TWO functions S H A R  and REC are a shariizg-recons2ructing pair with pa- 
rameter t if t,hey have the following properties: 

4% b) I t3 

1. (Domain.)  
SWAR : En-' X ( R  X s) - c" 

REC : En --, En 
2. (t-uniformity.) V l  5 t there exists an int.eger such t h a t  V sil,. . . , si, E C and V 

~ 1 , .  . . , vn-l E C ,  V s E S, and Vx E C" such t.liat V j  E [I, I ]  zij = sj,, there exist 
exactly nf'values 7 1 , .  . . , P,,, E R such tha t  for i = 1, .  . . , a ( ,  

S H A R ( Z I ~ ,  . . . , v ~ ~ - ~ ,  vi o s) = x 
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3. (t-robustness.) V v1,. . . , v n - l  E C ,  V s E S ,  V r E R, 

REC(X) = (s, s, . . . , s) 
if x E & S C ~ ( S H A R ( O ~ ,  . . . v n - l ,  r o s)), then 

A VSS protocol will be composed by two protocols tha t  securely evaluate these two 
functions; the second being evaluated over the output  of the first. 

Definition4. A VSS protocol of fault-tolerance t is a pair of protocols (Share- 
Verify, Recover) such tha t  

Share-Verify securely evaluates the function y = S H A R ( X ~ ,  . . . , t n - l ,  r o s), 
- Recover securely evaluates the function REC(Y), and 
- SHAR and REC are a sharing-reconstructing pair with parameter t .  

Remarks: Though the above definition may appear “tailored on some specific VSS 
protocols,’’ in the final paper we shall argue that  i t  does not loose any generality. 
Also, as we shall see below, by demanding t h a t  both components (and particularly 
the second one) of a share-reconstructing pair be securely evaluated, we are putting 
a n  unusually strong requirement on a VSS protocol. But  i t  is exactly this requirement 
t h a t  will guarantee the desired reducibility property. 

4 

Let us compare now Definition 4 and Definition 1, our token example of prior Vss 
definitions. To begin with, there is a minor syntactical difference between the two 
definitions: according to Definition 1 when good players find out  the dealer is bad 
they just  stop playing and output  verification = no. In our new definit,ion instead 
the  computation goes on,  no matter  what. This discrepancy can be eliminated by 
having protocols in the first definition agree on a default value when the dealer is 
clearly bad and protocols in the second definition always output  veri f icat ion = yes 
at the end of Share-Verif y (since we are dealing with a secure function evalua.tion, we 
are  guaranteed that  all good players will output  a common value). With these minor 
changes we can prove the following (the proof can be found in the  appendix): 

Theorein 5. If P is a VSS protocol o f  /ault-tolerance t satisfying Definition 4, then 
P is also a protocol o f  fault-tolerance t satisfying Definition 1. 

NOW the  natural question t o  ask is: Are Definitions 3 a.nd 1 equivalent? That  is, if 
a given VSS protocol P’ satisfies Definition 1, does it also satisfy Definition 3? T h e  
answer to this important question, provided by the following Theorem 3, is NO. And 
i t  better be t h a t  way if we want to preserve reducibility of VSS protocols. Indeed as 
we will see later the formal specifications of Definition 1 are not sufficient to guarantee 
composition of VSS protocols inside larger protocols. 

Theorem 6. Definition 4 i s  strictly stronger than Definition I ,  that is, there are VSS 
protocols satisfying Definition 1, but not Definition 4.  

T h e  proof of this theorem (see t.he appendix for a detailed proof) is based on the fact. 
tha t  usually VSS protocols (consider for example the one in [I])  reconstruct the secret 
by having each player distributing his own share t o  all other players. This  does satisfy 

Coiiiparisoii with previous definitions of VSS 
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Definition 1 since there we do not put any requirement on tlie secrecy of t,he shares. 
But  this does not, satisfy Definition 4 since doing so we do not compute securely the  
function REC. The  problem is that  the players reveal too much information about their 
own input  share during the protocol. In ot,her words we want t h a t ,  when we coinput>e 
REC(Y) over  y = S H A R ( U ~ ,  . . . ~ v, -1, o s), no knowledge about  y should leak except 
the secret s (including no extra informa.tion about the secret s itself). T h e  rationale 
for asking this is again t.he fact tha t  we want our VSS protocols to be secure not just  
by theinselves but when used inside s u b r o u h e s  of more complex protocols. Leaking 
knowledge about  the shares (or extra knowledge about  the secret) may create problems 
t o  the security of tlhe overall protocol. Consider the following example. 

Consider a VSS protocol P, satisfying Definition 1, in which the secret is a 3- 
colorable graph. During the Recover prot,ocol the graph is reconstructed together 
with a 3-coloring of it kindly provided by the dealer. Notice t h a t  Definition 1 is not 
violated, but  notice also tha t  an adversary gains froin t,he execution of such a protocol 
some knowledge about t,he secret she could not obtain by herself. This  in turns means 
tha t  t,here exist.s no simulator for this prot,ocol and so t,hat Definition 4 cannot be 
satisfied. And the serious problem with P is that,,  if used inside a larger protocol in 
which it is crucial that  the knowledge of that  particular 3-coloring stays hidden, P ,  
though “secure” as a VSS protocol on its own, jeopardizes the securit#y of the larger 
protocol. 

This  problcin is solved by our definition substituting property 3 (unpredictability) 
with a stronger one bascd 011 zero-knowledge and simulatability, which is exact,ly what 
we d o  by asking for a secure computation of t.he funct,ioiis SHAR and  REG. In  particular 
the secure computat,ion of the funct,ion REC is t.lie most important  difference between 
the two definitions. 111 particular we want to  stress the  importance of maintaining the 
secrecy of the  shares of each individual good player. 111 the appendix me will show t h a t  
protecting the secrecy of the shares is necessary for some applications in which VSS is 
used as a subroutine inside some specific protocols. 

Probably one of the reasons t,liis point inay appear somewhat moot  is tha t  in 
Shamir’s secret sharing scheme [11] the shares consist of the  value of a polynomial of 
degree t wit,h free term s .  For a t-adversary who corrupts exactly t players, knowing 
the secret is equivalent t,o knowing the shares of all players. In fact, knowing t’he t 
shares of the  corrupted players and the secret a t  the end of Recover, she has t + 1 
points of t.he t-degree polynomial, and by evaluating the so inferred polynomial a t  the 
names of all good players, she easily computes all shares. However, we object t<liat 
what happens to be h i e  for the VSS prot,ocols based on Shamir’s scheme, may not be 
true for all 1% prot.ocols ’. And one should not “wire in” a general definition what 
happens t o  be true in a. specific case. Moreover, even in Shamir-based VSS protocols, 
if the polynomial has degree st.rictly larger than the  number of corrupted players, then 
it is no longer true tha t  for the a.dversary knowledge of tlie secret is equivalent to  
knowledge of all shares. Indeed, as we will show later this is the  crucial point in our 
application prot.ocols described in the appendix. if is f h u s  needed that the  knowledge 
gainable by an a.doersary a t  Ihe  end  of a secure VSS protocol  exactly coincides  wilh the  
origina.1 secret whenever  Ihe dealer is l ionest .  

For example consider Blakley secret sharing scheme [ 2 ]  in which the secret is a point in a 
t + I-dirnenbional space and  shares are random hyperplanes passing through that point. 
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5 A VSS protocol t ha t  satisfies our  definition 

In this section we will exhibit a VSS protocol satisfying our definition and of fault- 
tolerance 5 - 1, by modifying a n  older prot,ocol of Ben-Or, Goldwasser, and Wigderson 
[l]. The  rnodification actually occurs only in  the Recover par t ,  and uses techniques 
also developed by [l], but  within their “computational protocol” rather than in their 
VSS protocol. We have also found a protocol of fault-tolerance 5 - 1 based on Tal 
Rabin’s protocol [lo], but  we will not describe it here for space limitations. 

Suppose we are dealing with a t-adversary A. Let 71. = 3t + 4 and P I , .  . . ~ Pn-l,  
P, = D be the  set of players, D being t,he dealer. We will make all our computat.ions 
modulo a large prime p > n. It is known from the error-correct,irig codes t.lieory t h a t  
if we evaluate a polynomial f of degree t + 1 over the n - 1 different points i for 
i = 1,. . . , R - 1 then given the sequence si = f ( i )  we can reconstnict the coefficients 
of the polynomial i n  polynomial time even if up to  t elements in the sequence are 
arbitrarily changed. This  is the well known Rerlekainp-Mklch variant of the Reed- 
Solomon error-correct,irig code. For details readers can refer t o  a standard t e s t  like 
[12]. Let K be a security parameter. With l</n we mean [51. 

The prot,ocol appears in the boxes. The  Share-Verif  y par t  is identical to the one 
in [l]. The  Recover protocol is modified with respect, t,o t,he one in [l] in order t o  
make it a secure comptit,ation of t.he function REC. The hasic idea is tha t  each player 
will distribute his share t o  all the other players, but  covering it up appropriately with 
some randomness so t,hat, 110 information about t,he share is revealed but  t)he secret 
reconstruct,ion process is not compromised. 

Theoreill 7. The prolocol P = (Share  - V e r i f y ,  Recover) is a VSS protocol accord- 
ing t o  Definit ion 4 with fault-folerance 2 - 1 

Remark: A conipletely error-free XJersion of t,liis protocol can he obtained a.s in [7] by 
running a different zero-knowledge proof that. the  shares lie on a single polynomial. 
The  proof uses a bivariate polynomial a n d  it is out. of the scope of this paper. Details 
can be found in [ I ,  71. Notmice that  t8his is the first time a formal proof of the securit,y 
of the protocol of [I] appeared. 

Remark: Notice how, assuming t,he dealer is honest, a t  t,lie end of t,he Recover phase 
the adversary, even knowing the secret s arid 2 sliarcs o f  t.he corrupted players, knows 
nothing about the shares of the honest players (since the polynoniial is of degree 1 + 1 
and t,o interpolat,e it t + 2 points are needed). 
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’rotocol Share-Verify from [l] 

1. The dealer chooses a random polynomial fo(z) of degree t + 1 wit.h the only condition 
that  fo(0) = s his secret. Then he sends to  player P, the share s, = fo(i). Moreover he 
chooses 2 K  random polynomials f ~ ,  . . . , fm of degree t + 1 as well and sends to P, the 
values fJ( i )  for each j = 1,.  . . , 2Ii. 

2. Each player P, broadcasts I i /n  random bits C Y ( , - ~ ) J , - / ~ + ,  for j = 1,. . . , K/n 
3. The dealer broadcasts the polynomials g, = f, + a,fo for all j = 1,.  . . , h’ 
4. Player P, checks if the values he holds satisfy the polynomials broadcast by the dealer. 

If he finds an error he broadcasts a complaint. If more than t players complain then the 
dealer is faulty and all players assume the default zero value to be the dealer’s secret. 

5. If less than t players complained the dealer broadcasts thc values he sent in the first 
round to the players who complained. 

6. Each player P, broadcasts K / n  random bits /?(,-l)li.,n+J for j = 1, .  . . , IC/n  
7. The dealer broadcasts the polynomials h ,  = fIi+, + p,f~ for all j = 1, .  . . , IC 
8. Player P, checks if the values he holds and the values broadcast by t.he dealer in round 

5 satisfy the polynomials broadcast by the dealer. If he finds an error he br0adcast.s a 
complaint. If more than t players complain then the dealer is faulty and all players assume 
the default zero value t,o be the  dealer’s secret. 

’rotocol Recover (modified) 

1. Each player P, chooses a random polynomial h ,  of degree 1 + 1 such that  hi(0) = sz his 

2. Each player P, chooses random polynomials p , ( z ) ,  q,,] (z), . , . , q , , z r c ( z )  of degree t +  1 and 

3. Each player P, broadcasts Ii random bits yi,(;-l)K/ntm for 1 = 1 , .  . . ,n and m = 

4. Each player P, broadcasts the following polynomials r3 = q,,, +yr,,pi for each j = 1,.  . . , Ii- 
5. Each player P, checks that the information player Pi sent him in round 1 is consistent with 

what player Pi broadcast in round 3. If there is a mistake or Pi broadcast a polynomial 
with non-zero free term Pi broadcasts b a d [ .  If there are more than 1 players broadcasting 
b a d [ ,  player Pi is disqualified and all the other players assume 0 to be Pl’sshare. Otherwise 
Pi broadcasts the information he sent in round 1 to the players who broadcast bad! 

6. Each player P, broadcasts K random bit,s 6L,(t-1)A-,ntm for 1 = 1, , . . , n  and m = 
1,.  . . , K / n  

7. Each player P, broadcasts the following polynomials t-, = q 1 , I c t J  + 6,,,p, for each j = 
1, .  . . ,I<. 

8. Each player P, checks that  the information player Pi sent him in round 1 and broadcast 
in round 5 is consistent with the polynomials player Pi broadcast in round 7. If there is 
a mistake or A broadcast a polynonlial with non-zero free term P, broadcasts bad:.  If 
more than t players broadcast bad;  then PI is bad and all players assume his share to  be 
0. 

9. Each player Pi dist.ributes to all other players t,he following value si + p l ( i )  + p 2 ( z )  + 
. . . + pn(z) then interpolates the polynomial F ( z )  = fo(z) + pl (z )  + p Z ( z )  + . . . + p,(z) 
using the error correct.ing algorithm of Derlekamp and Welch. The sccret will then be 

own input share. He sends t,o player P, the value h , ( j )  

with free term 0. He sends to player P3 the values p t ( j ) ,  q t , l  ( j ) ,  . . . , q 1 , 2 K ( j )  

l,,..,K/n. 

s = F ( 0 )  = f ( 0 ) .  
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6 Conclusion 

In  the  pas t  cryptographic schemes a n d  protocols used to b e  considered secure until  
no t  broken. D u e  to the increasing use and importance of cryptography, this approach 
is no m o r e  acceptablc.  To call a protocol secure we need a proof of its security. T h i s  
means  that we need definitions and me thods  to be able to prove security. 

Following this philosophy we have presented a new and  stronger definition for one 
of the most i m p o r t a n t  cryptographic protocols: Verifiable Secret  Sharing.  W e  argued 
that this definition is the correct one especially when VSS is to b e  used its a sub- 
protocol inside larger protocols (which is probably the most common case for VSS). 
We also p r e s e n k d  a protocol which provably satisfies our new definition. Finally some 
applications of this new protocol (and of ou r  new definition of VSS) a re  described in  
the appendix.  
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Appendix 

This  appendix is dedirated t o  the proofs of borne of the  s ta tements  in t h e  t h e  paper. 

Proof of Theorem 5 

Let P be  a VSS protocol of fault-tolerance 1 satisfying Definition 4 .  Let ic be  the  initial 
configuration vector of the  network. 

P satisfies t h e  Verifiability propcrty of Definition 1. Indeed at the  end of t h e  Share-Ver i fy  
phase, let u = In ( i cn )  i.e. the  value contributed by i.he dealer to  t h e  computat ion.  This  value 
is fixed a t  t h e  end of Share-Ver i fy  since it is a f u n d o n  of the  traffic of t h e  dealer. Moreover 
because of t h e  l-robustness of t h e  function REc we have t h e  same value u will b e  output  by 
all good players a t  the end of t h e  Recover par t .  Indeed because of t h e  t-robustness property 
i t  does  not  m a t t e r  tha t  t bad players may change their input  before computing the  funct,ion 
FLEC. Finally, if t h e  dealer is good then CT = I n ( i c n )  is equal to the  secret s. 

P also sat,isfies the Unpredictability property of Definition 1. First notice t h a t  the t- 
uniformity property implies t h a t  the output  of the function SHAR is composed of t-wise inde- 
pendent  uniformly distributed random variables and so i t  is impossible (in a n  informafion- 
theoretic sense) to predict, t h e  secret bet ter  than a t  random for any algorithm t h a t  has 
knowledge of only I 5 t components of such output .  However a t-adversary has  not only 
t h a t  knowledge b u t  she also has a view of the entire protocol (i.e. traffic of bad players and  
messages broadcast  by good players). But  here is where secure comput,ation comes t o  our  
rescue. Because of the security of the  evaluation of the  funct.ion SHAR t h e  adversary can cre- 
a t e  t h e  entire view by herself using the  simulator, and so basically t h e  other  information is 
irrelevant. More precisely let‘s assume for the  sake of contradiction t h a t  protocol P does not 
satisfy t h e  Unpredictability cuiiditiori. ‘Yliis means t h a t  there  is an adversary A t ,hat docs nu1 
corrupt  t h e  dealer and such (,hat l ’ ~ o b [ A  guesses s] > $ where rn, = 1.5’1 is t h e  cardinality of 
t h e  space uf possible secrets. [Ye will exhihit an algorithm (for guesser) t h a t  guesses t h e  
secret with t h e  same probability but  having access only to  t components  of the  output  of t h e  
function SI1AR. Since Share-Verify is a protocol t h a t  securely evaluates t h e  fuiiction SHAR 
i t  must, have a simulator S7m. Cj runs  Sim with the  adversary A and uses A’s guess for t h e  
secret a.s his guess. Since the  simulated vicw of the  protocol is indistinguishable from the  real 
one,  A will guess the correct secret with probability bigger t,han 5 .  Notice t,Iiat by running 
t.he simulator i d  only know a t  most t components of the  out.put of the  function SHAR, 

t h e  ones which will be answered by the  oracle in response to request of corruption by A. So 
we have a contradiction since we found an algorithm t h a t  predicts t h e  secret bet ter  t h a n  a t  
random with knowledge of only t components of t h e  output  of SHAR, which contradicts the  
d-uniformity property. 0 

Proof of Theorem G 

T h e  proof of this theorem is based on t h e  fact that usually VSS protocols (consider for example 
the  one in [I]) reconstriict the  secret by Iiaviiig edch playcr distributing his own share  to all 
other  players. ‘I’his dom satisfy Definition 1 since there  we d o  not  p u t  any requirement on 
t h e  secrecy of t h e  shares. B u t ,  as the following lemma shows, this does not  sat,isfy Definition 
4 since doing so we do not compute sccurciyfhe function REc. 

Lemma 8. The protocol I‘ in which ot round 1 e w r y  ployer  broadcasts o r  distributes his ow7i 
s h a r e  i s  n o t  a secure computat ion of t he  func t ion  nEc. 

Proof. P is a 1-round protocol. Consider the  following t-adversary d1. dl corrupts  t players 
, P t )  right a t  the  beginning of the protocol. So in t h e  simulated execution t h e  

simulator Szm yi l l  receive from the oracle their inpi1t.s (shares) z1,. . . , z t .  N O W  Szni has to  
simulatc t h c  broadcast messages 01 t h e  good players. No mat te r  what orry Swr~  dues, there  
a re  only t.wo possibilities: 
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- either the  shares broadcast by Sim do not interpolate a secret 
- or they do interpolate a secret s‘, but since Sam has no knowlcdge a t  this point of what 

the “true” secret s is, only with probability 1 s = s’ IS1 
In both cases however the simulated execut,ion is distinguishable from the r e d  one to dl and 
so protocol P is not secure according to  definition 2. 

The above proof is sufficient t o  show tha t  prot.oco1 P is not secure. However let us describe 
an alternative proof of this statement, based on a different adversary. This will allow us to 
exemplify a different problem with protocol P .  ‘This will help the reader understand better 
the modification we will do  to  the Recover protocol in order to  achieve security for VSS 
protocols. 

Proof. (alternative proof o j  Lemma 8) 
Consider the following &adversary dz. d2 corrupts t - 1 players (say P I , .  . . , right at 
the beginning of the protocol. So in the simulated execution t,he simulator Sam will receive 
from the oracle their inputs (shares) z1,. . . , ~ ~ - 1 .  Now Sim has to  simulate the  broadcast 
messages of the good players. Sim does so and broadcasts z:, . . . , zh. As before no matter 
what a n y  Sim does, there are only two possibilities: 

- eit.her the shares broadcast by Sim do not interpolate a secret (in this case, as above, 

- or they do  interpolate a secret s’, 
the simulation is already a bad one) 

At this point d? corrupts her last player (say Pt) and so gets from the oracle the true 
pair ( z t ,  s) and only with probability 5 & we have tha t  z: = z t  and s = s’ and so t.he 
simulated execut.ion will not succeed in convincing the adversary t,hat she is talking wit,h the 
real network, hence P is not secure according to definition 2. 

Proof of Theorem 7 

Let SHAR be the  following function: 

SHAR(U],W,. . . , U , ~ . - ~ , Y  o S )  = ( s 1 , s 2 , .  . . , s,-,,c) 

with S, = fo(z)  wherefo(z) = s + a ~ z +  . . . + U ~ + ~ Z * ~ ’  and r = a l o  . . .  ond  (i.e. the polynomial 
is created using the coin tosses r of the dealer). Then we can state that  

Lemma 9. Protocol Share-Verify secwely evaluates the function SHAR accordzng to Dejini- 
tzon 2. 

Proof. If we look back a t  Definition 2 we see tha t  we have to check tha t  both conditions, 
correctness and privacy, are satisfied in the blended way they interact in the simulation process 
through t,he common input and output functions. 

So first of all let’s define these functions for our protocol. Remember tha t  with t ,  we 
define the  traffic of player Pi. Clearly for all players P, i 5 n the input function always 
returns the empty string, I i ( t i )  = E ,  since the players do  not contribute any input during 
the cornpiitation of the function W A R .  For t,he dealer, D = P,+I, the  input function is a 
littlc bit more complicated. Let us denote wit.h m, the message the  dealer broadcast to  player 
P, in round 5 if P, complained in round 4,  or the message the dealer sent to  player P, in 
round 1 if P, did not complain. Then I D ( ~ D )  = f ( 0 )  where f = BW(rn1, . . . ,  m,) is the 
t + I-degree polynomial resulting from the Berlekamp-Welch interpolation of the  m,’s. The  
output function is simpler: Gi(t,) = m, (where m~ = t). Now we can check both conditions. 

Correctness: First we have to  prove tha t  for all good players P,, I , ( t , )  is equal to  the 
correct inpnt.  In  our specific case this has to be checked only for t.he dealer. If the dealer 
is good, m,  = f ( z )  where f is a t + 1-degree polynomial with free term s the secret. So 
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I o ( t ~ )  = s if the  dealer is good. The  second correctness condition is tha t  with high probability 
O ( t )  = S H A R ( I ( t ) ) .  In our case this means that with high probability the values m, held by 
good players must be on a single polynomial of degree i + 1. This is true with probability 
> - 2 - 9  since a t  least bits are chosen truly randomly by good players in rounds ( 2 )  and 
(6). Each bit represents a “question” that a bad dealer who distributed bad shares will be 
able t o  answer correctly in the following round only with probability f (i.e, if he predicted the 
bit correctly when he distributed the shares). Hence the bound on the probability of error. 

Privacy: We have to  exhibit a simulator for the protocol. We distinguish 2 cases: 
Case A: The  dealer is corrupted before round 1. Then t,he simulator will just follow the  

instructions of the players, with the only exception tha t  it will turn them over to  the adversary 
in case of corruption. Since the players do not contribute any input to  the computation this 
will reduce the simulated execution to one of VSS wibh a bad dealer. So the aimulation will 
be  indistinguishable to  the eyes of the  adversary. 

Case B: The  dealer is not corrupted before round 1. Then the simulator in round 1 will 
just  create a random “fake” secret s‘ and will share it to the players according to the protocol 
instructions with a polynomial f’. If the dealer is not corrupted at  all during the protocol then 
everything will run smoothly since to  the eyes of the adversary the execution will look like 
an ordinary VSS wit,h a good dealer (again this is true because the players do not contribute 
any input tlo the computation). If the dealer is corrupted after round 1 however the adversary 
and the simulat,or will get from the oracle the t,rue input s of the dealer. At tha t  point the 
simulator turns over the control of the dealer to  the adversary, but changes t,he polynomial 
used t.0 share the secret t o  a new polynomial f ”  such tha t  f ” ( 0 )  = s and j ” ( z )  = j’(i) for 
all players P, tha t  were corrupted so far by the adversary. The  simulator changes accordingl!: 
the random polynomials j ,  used for the zero-knowledge proof to  make them consistent with 
whatever h a s  been broadcast so far. The simulator can always do this since the adversary has 
at  most t points of a 1. + 1-degree polynomial. For the rest of the simulation the simulator 
will use the polynomial f” for the computation of the good players st,ill under his control. 
R e  claim tha t  this execution is indistinguishable to  the adversary from a real one. This is SO 

because the only thing different from a true execution is the fact tha t  the shares the adversary 
gets before corrupting the dealer are created using a different polynomial t.han t,he real one, 
bu t  thanks to  the properties of polpnomials t,his is not a problem for the simulator once the 
dealer is corrupted. 

Let REC be the function 
R E C ( S ~ ,  . . . , s , , - ] , c )  = ( 3 , .  . . , s , s )  

where s is the result of the Berlekamp-Welch “interpolation” of the s,. 

Lemma 10. Protocol Recover securely euuluutes the function KEC according to Definzlzon 2. 

Remark: Before embarking in the formal proof of this leninia let us give some intuition of 
why t,his is true. For example notice how the adversaries dl arid dz tha t  we described in t.he 
proof of Lemma 8 are helpless with the new protocol Recover-A. We added round 1 so t,hat 
the simulator can learn the true secret before the shares have been given out publicly and this 
takes care of an adversarial attack like A ] .  Moreover we added the “masking” polynomials 
p ,  so tha t  the  players reveal shares of a random polynomial F whose only property is tha t  
F ( 0 )  = s, so while reconstructing t.he secret no information is revealed about the true input 
shares; t,his solves the problem raised by adversary d2. 

Proof. As in the  proof of Lemma 9 we start  by defining the input and output functions of 
our protocol. The  input function I ,  of player P, is defined as follow: let m,,3 be the message 
P, sends to  player P, at round 1; I , ( & )  = h,(O) where h ,  = d lW(m, , l , .  . . , m,,n) is the i + 1- 
degree polynomial resulting fioin the Beilehamp-Welch interpolation of the rri , , l’s  (if t,here is 
no  such polynomial then assume I , ( t , )  = 0). The output function is the following: let Af, be the 
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message broadcast by player P, at round 9; U,(t , )  = F ( 0 )  = s where F = BIY(M1,. . . , h4,,) 
is the 1 + 1-degree polynomial resulting from the Berlekamp-Welch interpolat,ion of the M,’s. 

Correctness: It is clear that  for all good players I , ( t c )  = s, the correct input share. Then 
we have to check that at  least with high probahilit,y O ( t )  =REC(I( t ) ) .  In our case this means 
to  prove that  

R E C ( M ~ ,  .. . ,M,, ,c)  = REC(SI,. . . , sn, c )  

Now this equation is not satisfied if one of the following things happens: 

- either a bad player Pi succeeds in sharing random “garbage” instead of the values pi(j) 

- or Pi does distribute pi(j) in round 2 but manages to use a polynomial with free term 

Since the sharing process is exactly identical t.o the one of the protocol Share-Verify, we 
already know that  Pi succeeds in any of the two cases only with probability 2-F. So since 
t,here are at  most, bad players, the probability that  the protocol computes an incorrect 
output is at most f 2 - %  which for K large enough is exponentially small. 

Privacy: We have t.o exhibit a simulator and then prove that the simulation is indistin- 
guishable from the true network execution. Consider the following simulator S i m ~ :  

1 At round 1 ,  SimR simulates player P, by choosing a random polynomial h: of degree t + 1 
and sending h. : ( j )  t.o P,. At this point the simulator is allowed to receive from the oracle 
the output of the function, so SimR will learn the true secret 3. If some player A is 
corrupted by the adversary A a t  the end of this round (or in the following rounds), then 
both SimR and A learn the true share S I  and S i m ~  has ’ to  change the polynomial hl 
accordingly so that hL(0) = si but without changing its value on points already known 
to the adversary. SimR can always do this because the adversary has at most t points of 
a t + 1 degree polynomial. 

2-8 During rounds 2 to 8 the simulator just follows plairily the instructions of the players. 
Since what players do in t,hese rounds is completely random and not related to their 
inputs, Sim R will always be ahle t,o create an indist.inguishable view. 

9 Finally a t  round 9, S i m ~  chooses a polynomial g of degree t + 1 such that  g(0) = s 
and then fur each player P, SiniR broadcasts g(z) + p l ( i )  + . . , + pn(i)  where p ,  is the 
polynomial distributed by player Pj during rounds 2-8 of the simulation. The  Reed- 
Solomon interpolation of these values will give as result s. If a player Pi is corrupted a t  
the end of this round, then b0t.h SemR and A will learn from the oracle the true input 
share si. If si # g ( l )  t,hen S i m ~  just changes the value of pi a t  the point I so to  make the 
entire sum consistent with what broadcast. 

in round 2 (in this case the M,’s will not interpolate a polynomial) 

different. than zero (in this case t,he A4,’s wlll reconstruct a different secret) 

The simulation is indistinguishable from a real execution to  the eyes of the adversary. In fact 
as we already said, in round 2-8 all messages are random and unrelated to the input so the 
simulat,or can easily play the role of the good players. In round 1 the adversary sees at most 
only t shares of the real input of a good player. Because of the property of Shamir secret, 
sharing scheme, these shares are completely random and so can be simulated even with no 
knowledge of the real input (as in the case of the simulator). In round 9 the real share is 
broadcast “hidden” by some random “garbage”, t,his will allow the simulator to broadcast 
the message of a good player with the right distribution even without knowing the real input,. 

Applications 

Unfortunately there is no space in this extended abstract for a detailed description of the 
applications. However let 11s briefly sketch some of them. 

A PROOF FOR TIIE BGW PROTOCOL: In the final paper we will describe what is probably 
the nicest feature of our new definition and new protocols for VSS. \Ye will present a very 
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simple and “modular” proof for the theorem of Ben-Or, Goldwasser and Wigderson tha t  any 
function can be computed securely with fault-tolerance of :. ‘This result first appeared in a 
S T O C  abstract without a formal proof [I] 

They claim that i t  is enough to  prove that it is possible t o  compute securely addition and 
multiplication, since any function F can indeed be reduced t o  an arkhmetic circuit whose 
nodes are indeed just addition and multiplication. By repeatingly using these 2 protocols we 
can then compute securely the entire function. Notice however tha t  this line of reasoning gives 
for granted the reducibility property for secure protocols. However at tha t  time a satisfac- 
tory definition of security had not been presented and the reducibilty theorem was generally 
considered true but never proven. 

However we stand on the  privileged position of having had these tasks completed for us 
by [9 ] .  This will allow us to present a simple and modular proof for t,he theorem of [l]. Notice 
tha t  in order t o  use the reducibility theorem we need t,o use our new notion and protocols for 
VSS. This does not mean tha t  the theorem of [I] is wrong as it is, bu t  t h a t  in order to have 
our  simpler and modnlar proof their VSS protocol is not appropriate. 

SHARED AUTHENTICATIONS AND SIGNATURES: A first idea would be to  use these shares for 
aulhenlzcotion purposes. More precisely after being shared among the players, the secret is 
given to  some authent icators .  A t  a certain point if a subset. of the  players (of opport.une size) 
wants t o  prove their identity to or sign a message for an authenticator they just  recover the 
secret toget.her with her and if the reconstruction succeeds then the authenticator knows she 
is dealing with the right people. However since the shares are never revealed the  authenticator 
(or any of t,he players) will never be abie to prove herself as sonieoiie else. 

The  idea of shared authenticat.ion and signatures appears in [5, 61: we will briefly describe 
their scheme here. All operations (as usual) are modulo a big public prime p .  A t,rust.ed key 
distribution cent.er generates two random polynomials Qo(z) and Q1 (2) of degree t and shares 
them among the players, i.e. player P, receives Qo(i) and Ql(z). T h e  authenticators receive 
Q o ( 0 )  and Ql(0).  Later suppose players P,, , . . . , P,. (s 2 t )  want t o  sign a message Af for the  
authenticat,or. P,, broadcasts the message Qo(Zl )  + A l Q ,  (il). The  authenticator interpolates 
the broadcast shares into a polynomial F and checks tha t  F ( 0 )  = QO(0) + A l Q l ( 0 ) .  This 
protocol has two problems: 
(1) If a player waiits to jam t,he signature process all he has to  do is to broadcast garbage 
(they solve it assuming players to be honest). 
(2) I t  is a one-time scheme since after signing two different messages A41 and A42 the secret 
key of player P, is easily computable. 

Using our VSS Recover protocol to reconstruct the secrct Q o ( 0 )  + M Q 1 ( 0 )  we will 
solve both problems a t  once. Indeed bad shares contributed by players will be  detected and 
eliminat,ed. Moreover the share broadcast by player I: bet,rays nothing of the true secret 
( Q o ( i ) ,  Q l ( z ) )  and so even after numerous signatures no information leaks about it; so we caii 
do without the  t,rust,ed combiner. 

Finally notice that since usually the key management center is trusted,  we do not need 
the verification process during the Share-Verify part making t.hat part  much simpler. 
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