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Abstract. Unconditionally secure authentication codes with arbitration 
(A2-codes) protect against deceptions from the transmitter and the re- 
ceiver as well as that from the opponent. 
In this paper, we present combinatorial lower bounds on the cheating 
probabilities for A2-codes in terms of the number of source states, that 
of the whole messages and that of messages which the receiver accepts 
as authentic for each source state. Previously, only entropy based lower 
bounds were known. Our bounds for the model without secrecy are tight 
because the A2-codes given by Johansson meet our bounds with equality. 

1 Introduction 

In the model of unconditionally secure authentication codes (A-codes) [l], there 
are three participants, a transmitter, a receiver and an opponent. The opponent 
tries to  cheat the receiver by impersonation attack and substitution attack. This 
model has been studied extensively so far. Lower bounds on the cheating proba- 
bilities based on entropy were given by [2, 31. Combinatorial lower bounds were 
given by [4, 5, 6, 7, 8, 91. In this model, the transmitter and the receiver are 
both honest and trust each other. However, it is not always the case that the 
two parties want to trust each other. 

Inspired by this problem, Simmons introduced an extended model, A2-mde 
model, in which there is a fourth person, an arbiter [lo, 111. In this model, 
caution is taken against deception of the transmitter and the receiver as well 
as that of the opponent. The arbiter has access t o  all key information of the 
transmitter and the receiver, and solves disputes between them. We denote by 
ER the set of keys of the receiver and by ET denotes the set of keys of the 
transmitter, respectively. 

In this model, there are essentially five different kinds of cheating, imper- 
sonation by the opponent, substitution by the opponent, impersonation by the 
transmitter, impersonation by the receiver and substitution by the receiver. De- 
note these cheating probabilities by PI, Ps, PT, P R ~  and P R ~ .  Johansson showed 
an entropy based lower bound on these five cheating probabilities [12]. By assum- 
ing max(P1, Ps, PT, PR,, P R ~ )  = l/q, he also showed a lower bound on the size 
of keys in terms of q [12]. Recently, Kurosawa showed a more tight lower bound 
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for a larger set of source states by assuming PI = Ps = PT = PR, = P R ~  = l / q  
[15]. However, combinatorial lower bounds on the cheating probabilities are not 
known. (The structure of A2-codes is not well known.) 

In this paper, we present combinatorial lower bounds on PI, Ps, PT, PR,, P R ~ ,  
IERI and IETI. First, we show the following bounds for a A’-code model without 
secrecy. Let IS1 denote the number of source states and !MI denote that of 
messages, respectively. Assume that each f E ER accepts c messages for each 
source state s. Let 1 = IMI/cISI. Then PI 2 1/1 and PT 2 ( c -  l)lSl/(lMI - IS[). 
If PI = 1/1, then Ps 1 1/1.  For a separable case, if PI = 1/1, then PT 2 1/1. If 
PI = Ps = PT = 1/1, then (ER( 2 c(S((1 - 1) + 1. Similar bounds are obtained 
for P R ~ ,  P R ~  and (&I. Our bounds on PI, Ps, PT, PR, and PR1 are tight because 
the A’-codes given by Johansson [13, 141 (in which c = 1 = q)  meet our bounds 
with equality. 

Further, we show such combinatorial lower bounds for general A’-codes. 

A 

2 Preliminaries 

2.1 Authentication code (A-code) 

In the model of A-codes, there are three participants, a transmitter T, a receiver 
R and an opponent 0. The transmitter T and thc receiver R share a common 
encoding rule e. On input a source state s, T computes a message m = e(s) and 
sends rn  to R. R accepts or rejects rn based on e. An A-code is called an A-code 
without secrecy if a source state is uniquely determined from a message m. It is 
possible that more than one message can be used to communicate a particular 
source state; this is called splitting. Defining 

A M ( e , s )  = { m  I e(s)  = m }  

splitting means JM(e, s)I > 1. If JM(e, s)1 = 1 for Ve and Vs, the A-code is called 
an A-code without splitting. 

We assume independent probability distributions on source states and on 
encoding rules, respectively. In the impersonation attack, the opponent 0 sends 
a message m to the receiver. 0 succeeds if m is accepted by the receiver 
authentic. The impersonation attack probability PI is defined by 

A PI = max Pr[R accepts m] 
mEM 

In the substitution attack, 0 observes a message m that is transmitted by T 
and substitutes m with another message m. 0 succeeds if m is accepted by the 
receiver as authentic. For no splitting, the substitution attack probability P ,  is 
defined by 

(2.2) 
A 

PS = Pr(M = m) max Pr[R accepts ri.LIR accepts m] 
7h#m 

rnEM 
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For splitting, the maximum is taken over 7iz such that the source state conveyed 
by fh is different from that of m. Let S = { s } , E  = {e} and M = {m}. We 
denote an A-code by ( S ,  E ,  M ) .  

Proposition 1. 141 In  an A-code without splitting, PI 2 ISl/lMI. The equality 
holds i f  and only if Pr[R accepts m] = ISl/lMI for  Vm. 

A A A 

Proposition 2. [7] I n  a n  A-code without splitting and without secrecy, if PI = 
lSl/IMl, then ps 2 ISl/lMI. 

Definition 3. An orthogonal array OA(1, k, A) is a X12 x k array of 1 symbols 
such that, in any two columns of the array, every one of the possible l 2  pairs of 
symbols occurs in exactly X rows. 

Proposition 4. Suppose we have an A-code without splitting and without secrecy 
such that PI = PS = ISl/lMI = 1/1. 

1. IEl 2 ISl(1 - 1) + 1. The equality occurs if and only zf the incidence matrix 
of E is  a n  orthogonal array OA(l,  ISI, A), where X = (ISl(l - 1) + 1)/12 and 
each e E E is used with equal probability [a]. 

2. Also, \El 2 l 2  171. 

A Proposition5. [9/ I n  a splitting A-code, let M ( e )  = {m I e accepts m} Then, 

2.2 Authentication code with arbitration (A’-code) 

We denote an A2-code by (S ,  M ,  ER, ET),  where S = {s} is a set of source states, 
M = {m} is a set of messages, ER = {f} is a set of the receiver’s decoding rules 
and ET = { e }  is a set of the transmitter’s encoding rules. 

The selection of e and f may be done in several ways. One choice is to let 
the receiver R choose his f and then secretly pass this on to the arbiter. In this 
case, the arbiter constructs e and passes this on to the transmitter T. Another 
choice is to do the other way around and the third approach is to let the arbiter 
construct both rules. In any case, on input s, T sends m such that m = e(s) to 
R. R accepts m iff f ( m )  is valid. The arbiter accepts m as authentic iff e can 
generate m. 

I ,  Impersonation by the opponent. The cheating probability PI is defined in the 
same way as eq.(2.1). S, Substitution by the opponent. The cheating probability 
PS is defined in the same way as eq.(2.2). T ,  Impersonation by the transmitter. 
The transmitter sends a message to the receiver and denies having sent it. The 
transmitter succeeds if the message is accepted by the receiver as authentic and if 

In this model, there are five different kinds of attacks. 
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the message is not one of the messages that the transmitter could have generated 
due to his encoding rule. This cheating probability PT is defined as follows 

PT = rnax rnax Pr[R accepts m and m is not generated by elT has e] 
A 

(2.3) 

Ro, Impersonation by the receiver. The receiver claims to  have received a message 
from the transmitter. The receiver succeeds if the message could have been 
generated by the transmitter due to  his encoding rule. This cheating probability 
P R ~  is defined by 

eEET 7nEM 

(2.4) 
A P R ~  = rnax rnax Pr[Arbiter (or T) accepts rnlR has f E ER] 

f E E R  m E M  

R1, Substitution by the receiver. The receiver receives a message from the trans- 
mitter but claims to have received another message. The receiver succeeds if this 
other message could have been generated by the transmitter due to  his encoding 
rule. This cheating probability PR, is defined by 

max Pr[Arbiter (or T) accepts h IR  has f and T sends m] 
m f m  

(2.5) 

Let 
ER 0 ET {(e, f )  1 Pr[T has e E ET and R has f E ER] > 0) 

For A2-codes, Johansson showed an information theoretic bound such as follows. 

Proposition 6. 1121 I n  an A2-code without splitting 

p > 2- inf ~ ( E T ; M I E R )  
Ro - 
Ri - 

pI 2 2 - i n f I ( E ~ ; M )  

ps 2 2- infI(EH;M’IM) p > 2- inf I ( E . I ; M ’ I E H , M )  

pT 2 2- inf I ( E H ; M ( E T )  

where I ( X ;  Y )  denotes the mutual entropy of X and Y .  

Proposition 7. 11.21 

3 Combinatorial bounds for A2-codes without secrecy 

In this section, we present combinatorial lower bounds for A2-codes without 
splitting and without secrecy. To derive our bounds, we develop three techniques. 
The first technique is a reduction of an A2-code to an A-code. The second one 
is a restriction of messages which is described by the following Theorem. 
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Theorem8. For an A-code (S, E, M ) ,  consider a subcode (S ,  E, ~) such that 
fi M .  Then, for tlm E &€, 

Pr[R accepts m in the original A-code] 
= Pr[R accepts m in the subcode] 

The third technique is given by the following Theorem. This technique will be a 
basic Theorem for A-codes. 

Theorem9. In an A-code without splitting ( S ,  E , M ) ,  zfPr[R accepts m] = 1/Z 
forVm, then IMI = ISIl. 

Proof. Let X = {zij} be the incidence matrix of E.  That is, 

1 if ei E E accepts sj E S 
{ 0 otherwise 

xij = 

Then, Pr[R accepts mj] = xi  Pr[e = e i ] ~ i j .  If 
then 

IMI/l = Pr[R accepts mj] = 
j 

i 

= IS1 

Hence, (MI = IlSl. 

Pr[R accepts mj] = 1/Z for V m j ,  

For an A2-code (S, M ,  ER, &), we define a decoding rule of the receiver f E ER 
as follows. 

s E S if m is accepted as s. 
f (m) = { reject if m is rejected. 

Let 
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3.1 

To prevent the impersonation attack of the receiver, it must be that I M ( f ,  s ) ]  > 
1. That is, from a view point of the receiver, A2-codes must be splitting. TO 
derive our bounds, we assume the following assumption. 

Assumption 10. IM( f ,  .)I = c for  V f E ER and Vs E S .  

That is, each f E ER accepts c messages for each s E S. For each source state 
si E S, define 

Lower bound on PI and Ps 

n - A  s, = { sil, s i 2 , .  . . t sic} ,  s = s1 us2 u ..‘ 

Then, we can consider an A-code without splitting ( S ,  ER, M )  which corresponds 
to the original A2-code (S ,  M ,  ER, ET) in a natural way. Clearly, 131 = CIS/. 

Theoremll. Under assumption 10, PI 2 c lS I / JMI .  The equality holds z f  and 
only i f  

Pr[R accepts m] = clSI/IMI for  Vm E M 

Proof. It is clear that PI of the A2-code is equal to the impersonation at- 
tack probability for the splitting A-code (,’$, ER, M ) .  Apply proposition 1 to 
(3, ER, M ) .  0 

Assumption 12. PI = clSI/IMI = 1/Z. 

Theorem 13. Under assumption 10 and 12, lM,l = cl f o r  Vs E S.  

Proof. From assumption 12 and theorem 11, 

Pr[R accepts m] = 1/Z for V m  E M (3.1) 

We consider a subcode of ( S ,  ER, M )  such that the set of messages is restricted 
to M,. This is an A-code without splitting in which the number of messages is 
IM,I and that of source states is c (from assumption 10). Even for this restricted 
A-code, we have 

Pr[R accepts m] = 1/1 for V m  E M ,  

from Theorem 11. Then, from Theorem 9, IM,I = cl 0 

Theorem 14. Under assumption 10 and 12, 

ps 2 1/1 

Proof. PS is defined by 

(3-3) 
A 

Ps = Pr[T sends m’] max Pr[R accepts mlR accepts m’] 
m‘EM 
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Let m’ E Msi .  Then, the maximum is taken over m E M\M,,. For m‘ E M s i ,  
define 

Pf(m‘) = max Pr[R accepts mlR accepts m‘]. 

Then, this is the impersonation attack probability against an A-code without 
splitting ($\Si, ER, M\Msi), where the probability distribution on ER is condi- 
tioned by the fact that R accepts m’. Then, from proposition 1, 

(3.4) 
A 

me M\M., 

Now 

IS\SiI = ISl-lS,l = c ~ S ~ - C =  C ( l S l - l ) ,  IM\M,,I = ~ M ~ - ~ M s i ~  =CdlSl-cl 

from assumption 12 and Theorem 13. Therefore, we have Pf(m‘) 2 1/1 for Vm’. 
0 Then, we have eq.(3.2) from eq.(3.3) and eq.(3.4). 

3.2 Lower bound on PT 
A Let h = min IER(e)(. 

eEET 

Theorem15. Under assumption 10, PT 2 max{(c - l)lSl/(lMI - JSJ),l/h}. 

Proof. It is easy to see that PT 2 l /h .  
Suppose that the transmitter T has an encoding rule e E ET. Let mi = e(.qi) 

for i = 1,2, .  . . IS(. T must send m to R such that m # mi for Qi for cheating. 
Consider the following subcode of (s, ER, M )  such as follows. Let X be the 
incidence matrix of E R ( e )  which is a IER(e)I x IMI binary matrix. Remove 
the columns corresponding to {mili = 1 , 2 , .  . . , IS[} from this matrix. Then, we 
obtain an incidence matrix of an A-code without splitting (S‘, ER(e), M\{m;}), 
where IS’I = I3l-lSl = clSI-ISI = (c-1)ISI. Theorem 11 holds for this subcode. 
The best strategy of the transmitter is at least as good as the impersonation 
attack against this modified A-code. Then from proposition 1, we have 

Corollary 16. Under assumption 10 and 12, 

1 
PT 2 max{(c - l)/(Zc - l),  l/h}. 

Next, we consider a separable case. 

Assumption 17. For Qs, M ,  can be grouped into A;, AS, . . . in such a way that 
[AS n M (  f, s)I = 1 for  Vs, VAY and Vf E ER. A n  A’-code given by  [l4] satisfies 
this assumption. 

Further, i f  c = 1 = q, then P > - 
T - * + l  
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Lemma 18. Under assumption 10, 12 and 17, lASl= 1 and I{Af}l = c for  VS. 

Proof. The proof is almost the same as that of Theorem 13. We consider a 
subcode of ( g ,  ER,  M )  such that the set of messages is restricted to Ai. In this 
restricted A-code, the number of messages is \Ail and that of source states is 1 
from assumption 17. From Theorem 11, assumption 12 and Theorem 11, even for 
this restricted A-code, Pr[R accepts rn] = 1/1 for Vrn E Ai. Then, from Theorem 

0 9, lAS1 = 1 x 1 = 1. From Theorem 13, l{A4}1 = IMdl/lAil = c 

Theorem 19. Under assumption 10, 12 and 17, PT 2 max{l/Z, l/h}. 

Proof. It is clear that PT 2 l /h.  
Suppose that the transmitter has e E &. Let m, = c ( s i )  for i = 1,2,. . . , 15'1. 
For simplicity, suppose that mi E A;+ for i = 1,2, .  . . , ISI. As in the proof of 
Theorem 15, we consider an A-code without splitting (S', ER(e) ,  M\{Aii}) such 
that IS'I = (c - 1)lSl. Then, as in that proof, we have 

From assumption 12, and lemma 18, 

3.3 Lower bound on PR, and PR, 

Let E*(f) { e  I Pr[T has elR has f] > 0). Suppose that R has f. Then,' R 
knows that T has some e E &(f). Consider an A-code (S, &(f), M ( f ) ) .  It is 
an A-code without splitting and without secrecy because the original A2-code 
is so. Let Pr(f) and P&) denote the impersonation attack probability and the 
substitution attack probability, respectively. Then it is easy to see that 

(Remember that the arbiter accepts m as authentic iff e can generate m.) From 
assumption 10, I M ( f ) l  = c)S1. Now, from proposition 1, we have Theorem 20. 

Theorem 20. Under assumption 10, 
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3.4 Tightness 

Corollary 21. Suppose that c = Z = q. Then 

1. PI 2 l /q,  pT 2 l / ( q  f I), PRO 2 l / q -  
2. If PI = l/q, then Ps 2 l /q ,  If P R ~  = l /q,  then PfiI 2 l / q .  
3. Under assumption 17, i f  PI = l / q ,  then PT 2 l /q .  

Corollary 21 is tight because all the bounds are satisfied with equality by the 
A2-codes given by Johansson [13, 141. 

3.5 

In this subsection, we show more tight lower bounds on JERI, I ERO ETI and IET~ 
than proposition 7. 

Assumption22. PI = Ps = PT = clSl/lMI = 1/1 

Theorem23. Under assumption 10, f7 and 22, lERl 2 clSI(I - 1) + 1. The 
equality holds if and only zf the incidence matrix of ER i s  a n  orthogonal array 
OA(1, clSI, A)  where X = (clSI(Z - 1) + 1)/12 and each f E ER i s  used with equal 
probability. 

Proof. &om assumption 17, we can consider that our A-code without splitting 
(3, ER, M )  is without secrecy. Remember that 131 = CIS]. For this A-code with- 
out secrecy, let PI and PS be the impersonation attack probability and the 
substitution attack probability, respectively. Then, clearly 4 = PI = clSl/lMI- 
From assumption 22, Ps = max{Ps, = c ~ s ~ / ~ M I .  NOW, from proposition 4, 
we have this Theorem. o 
Remark. From proposition 7,  we have another bound such that IER~ 2 1 3 .  If 
clSl 2 Z2 + 1 + 1, Theorem 23 is more tight than this bound. 

Assumption24. PR, = PRI = l / c  

Theorem25. Under assumption 10 and 24, ET(f) 2 max{c2, ISl(c - 1)  + 1 ) .  

Lower bound on IERI, JER o & I  and l E ~ l  

Proof. From proposition 4. 0 

Theorem26. Under assumption 10 and 24, 

IER 0 ETI 2 [ E R ~  x max{c2, ISl(c - 1 )  + 1). 

Proof. Ftom Theorem 25. 

Rom Theorem 19, if PT = 1/Z, then 1 5 h = mine IER(e)I 

Assumption27. For Ve E &, IER(e)( = Z 
Theorem28. Under assumption 10, 24 and 27, 

0 

lERl 
1 

2 - x max{c2, I s ~ ( c  - 1) + I } .  

Proof. From assumption 27, 1 x l E ~ l  = IER o ,?+I. Then, from Theorcm 26, 
Theorem 28 holds. 0 
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4 Combinatorial bounds for general A2-codes 

In this section, we show combinatorial bounds for general A2-codes without 
splitting. 
Theorem 29. 

Proof. We consider a splitting A-code (S ,  ER, M )  which corresponds to  the origi- 
nal A2-code ( S ,  M ,  ER,  ET) in a natural way (where l M ( f ,  s)1 > 1). From propo- 
sition 5, we have this theorem. 0 

Theorem 30. 

The proof is almost the same as that of theorem 15. 

Theorem 31. IS1 P > max- 
Ro - f E E R  l M ( f ) /  

Proof. We consider an A-code without splitting (S, &(f), M ( f ) )  as shown in 
0 subsection 3.3. From proposition 1, we have this theorem. 

Proof. Fix f E ER and rn E M ( f )  arbitrarily. For Vm’ E M ( f )  - M ( f , f ( m ) ) ,  
let 

P,I = Pr[Arbiter accepts rn’ I R has f and T sends m] 

Then 

n 

C{,  I m , m ’ € M ( e ) }  W E T  = 4% = fl Pr[S = f(m>l 
C{,  1 mtM(e)}  P r P T  = 4ER = f l  Pr[S = f(m)l 

Pml = 

Now, we have 
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Further, 

Therefore, there exists 2 E M ( f ) \ M ( f ,  f ( m ) )  such that 

Thus 

PR1 rn? Pr(m) rnax Pr[Arbiter accepts &(R has f and T sends m] 
f E b R  mfm 

m E M  

2 max PG, 
fEEx 

5 

We can define PR,, and PR, in a different way from eq.(2.4) and eq.(2.5). The 
alternative definitions are 

Another definition of Pn, and P R ,  

PRO 5 Pr(f)  inax Pr[Arbiter (or T) accepts mlR has f E ER! 
m E M  

f E E R  

f E E R  naEM 

max Pr[Arbiter (or T) acccpts h l R  has f and T sends m] 
m f m  

For the model without secrecy, the lower bounds on the above PR, and PR, are 
the same as those on the original P R ~  and P R ~ .  For the general model, we obtain 
the following bound. 
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Theorem 33. 
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