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Abstract. We investigate the complexity of breaking cryptosystems of 
which security is based on the discrete logarithm problem. We denote 
the algorithms of breaking the Diffie-Hellman’s key exchange scheme by 
DH, the Bellare-Micali’s non-interactive oblivious transfer scheme by BH, 
the ElGamal’s public-key cryptosystem by EG, the Okamoto’s conference- 
key sharing scheme by CONF, and the Shamir’s 3-pass key-transmission 
scheme by BPASS, respectively. We show a relation among these cryp- 
tosystems that 

FP BPASS 5:’ CDNF 5:’ EG BM DH, 

where 5;‘ denotes the polynomial-time functionally many-teone re- 
ducibility, i.e. a function version of the <% -reducibility. We further 
give some condition in which these algorithms have equivalent difficulty. 
Namely, 

1. If the complete factorization of p - 1 is given, i.e. if the the dis- 
crete logarithm problem is a certified one, then these cryptosystems 
are equivalent w.r.t. expected polynomial-time functionally Turing 
reducibility. 

2. If the underlying group is the Jacobian of an elliptic curve over 2, 
with a prime order, then these cryptosystems are equivalent w.r.t. 
polynomial-time functionally many-to-one reducibility. 

We also discuss the complexity of several languages related to those 
computing problems. 

1 Introduction 

1.1 Motivation 

The discrete logarithm problem, DLP for short, is the  problem tha t  on input 
y, g E G, outputs  an integer x such that y = gz, where G is some finite group 
with efficiently computable group law. A cryptosystem based on DLP is secure if 
t h e  DLP is hard to solve. A typical DLP is t he  case where G = Z; with p prime. 

* A part of this work was done while the first author was working for Mitsubishi 
Electric Corp. 
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In 1976, Diffie and Hellman [DH76] first proposed a key exchange scheme that is 
secure if the DLP over Z; is hard to  solve. A lot of cryptosystems based on DLP 
have been proposed to construct a public-key cryptosystem, an oblivious transfer 
protocol, a key-transmission scheme, a zereknowledge proof of possession of 
information, and so on. It is clear that all these cryptosystems would no longer 
be secure if there were an efficient algorithm to  solve the DLP, but no such 
algorithm is known to  exist (see, e.g. [COSSS, Od1841). However, it is worth 
noting that the converse does not generally hold, i.e. it is not, known that a 
polynomial-time algorithm to  crack one of these cryptosystems implies feasibility 
of the DLP. Recently, a great progress has been made by Maurer toward the 
equivalence of the DLP and breaking the Diffie-Hellman scheme [Ma94], but the 
equivalence is not known to  hold without assumption. Therefore, in general, all 
these cryptosystems could be breakable without solving the DLP. 

In this paper, instead of studying whether there exists a cracking algorithm 
for cryptosystems without breaking DLP, we investigate the relation among such 
cryptosystems. Let S1 and S2 be two cryptosystems both based on some DLP. 
Our interest is whether S1 remains secure even if a polynomial-time algorithm 
to  break Sz has been found, and vice versa. Although such discussion appears 
to  be essential to clarify the security level of the cryptosystem, we know little 
about that, surprisingly. 

1.2 Summary of Results 

Let us denote the problems of breaking the Diffie-Hellman’s key exchange scheme 
by DH, the Bellare-Micali’s non-interactive oblivious transfer scheme [BeMi89] 
by BM, the ElGamal’s public-key cryptosystem [ElG85] by EG, the Okamoto’s 
conference-key sharing scheme [OMS]  by CONF and the Shamir’s 3-pass key- 
transmission scheme [SRA79, RivW] by 3PASS, respectively. 

We first show a relation among these cryptosystems that 

3PASS 5;: CONF =zp BM EL’ DH, 
where 5;‘ denotes the polynomial-time functionally many to one reducibility. 
We further gives some condition in which these algorithms have equivalent w.r.t. 
certain reductions. Namely, 

1. If the complete factorization of p -  1 is given, i.e. if the the discrete logarithm 
problem is a certified one, then these cryptosystems are equivalent, w.r.t. 
expected polynomid-time functionally Turing reduction, i.e., 3PASS =FEp 
CONF =YEPEG ~5‘ BM DH. 

2. If the underlying group is the Jacobian of an ordinary elliptic curve over 2, 
with a prime order, then these cryptosystems are equivalent w.r.t. polynomial- 
time functionally many-to-one reduction, i.e. 3PASS $ CONF =:’ 
EG =FP m BM =Lp DH. 
We will also investigate the complexity of languages associated with these 

problems. Let L3pASS be the language associated with 3PASS defined as 
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L3PASS = {((A,B,C,P) ,s)  I3PASS(A,B,C,P) = s), 
i.e. its membership problem is to  recognize that the s is a correct answer to the 
instance (A,B,C,p)  of SPASS. Although L3pASS is not known to be in P or 
BPP, we show that if LSpASS is in P ,  there is a probabilistic polynomial-time 
algorithm that reduces DH to 3PASS. Thus, if L3pASS is in P,  all the problems 
to crack these cryptosystems become equivalent. 

In the same way, let LDH be the language associated with DH defined as 
LDH = {((A,B,g,p),C)I DH(A,B,g,p) = C ) .  

Although LDH is not known to be in P or BPP as observed in [B93], we show 
that LDH is random self-reducible in the sense of [TW87], and therefore LDH is 
in PZK, the class of languages that have perfect zero-knowledge proof systems. 

1.3 
Cryptographic Mechanisms 

Complexity assumption is an important measure of security of cryptographic 
protocols. In general, a protocol with sophisticated mechanism requires stronger 
complexity assumption. 

Impagliazzo and Rudich [IR89], in fact, presented evidence that secure se- 
cret key agreement protocols require stronger complexity assumption than the 
existence of one-way permutations. 

The protocol with sophisticated mechanism also requires a number of inter- 
actions. Rudich [RudSl] constructed an oracle relative to  which secret agreement 
can be done in Ic passes, but not in k - 1, and showed that there exists a 3-pass 
system based on an assumption which seems to  be weaker than the existence of 
trapdoor functions. 

We should note that the schemes discussed in this paper achieve different 
mechanisms and require different number of interactions. Thus, the results of this 
paper reveal relationships among computational complexity assumption, round 
complexity, and mechanisms in cryptographic protocols based on the discrete 
logarithms. 

Computational Complexity, Communication Complexity, and 

2 Preliminaries 

2.1 Cryptosystems based on DLP 

We give a brief review of the cryptosystems considered in this paper. All those 
are based on the discrete logarithm problem (DLP). To avoid complicated gener- 
alization of DLP defined over an generic finite group, we restrict ourselves to  the 
case where the underlying group is Z; with p prime. Thus, the DLP is now the 
problem that on input y, g , p ,  outputs z such that y = 9" (mod p) .  Here g does 
not necessarily generate 2;. For notational convenience, we will write simply 9" 
rather than g" mod p ,  etc. 

We will refer to Alice and Bob as two parties, respectively, that follow the 
scheme and communicate with each other. 
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Diffle-Hellman's Key Exchange Scheme [DH76] 
Alice and Bob agree on p and the base g E Z; before starting their communica- 
tion. Alice picks a randomly from Zp-l, computes A = ga, and sends A to  Bob. 
Bob picks b randomly from Zp-l, computes B = gb ,  and sends B to  Alice. Alice 
computes C = Ba and Bob computes C = Ab.  

Bellare-Micali's Non-Interactive Oblivious Transfer Scheme [BeMi89] 
Alice and Bob agree on p and the base g E Z; and some C E Z;. Bob picks 
i E (0, l )  at random, xi E Zp-l, and sets pi = 9"' and /Il-; = C . (g":)-'. 
Bob publishes (pO,P1) as his public key whereas he keeps ( i , x ; )  as his secret 
key. Suppose Alice wants t o  send Bob one of the strings (so, sl) in an oblivious 
transfer manner. Alice picks at random yo,y l  E Zp-l and sends a0 = gya, a1 = 
9"' to Bob. Alice then computes 70 = and y1 = f l y ' ,  and sends ro = so CB yo 
and T I  = s1 @ 71 to  Bob, where (3 designates the bitwise addition mod 2. 

On receiving ao and ~ 1 ,  Bob uses his secret key to  compute af' = yi. He 
then computes yi r; = si. 

ElGamal's Public-Key Cryptosystem [ElG85] 
Bob sets g E 26 ag the base, picks z E Z,-1 at random, and computes y = g2. 
Bob publishes y,g,p as his public key whereas he keeps x as his secret key. 
Suppose Alice wants to  send a string m to Bob. Alice picks T E ZPp1 at random, 
computes C1 = gr,Cz = myr and sends (C1, Cz) to Bob. On receiving (CI, CQ), 
Bob uses his secret key to  compute m = Cz/(Cl)". 

Okamoto's Conference-Key Sharing Scheme [Oka88] 
Alice and Bob agree on p and the base g E Z; before starting their communica- 
tion. Alice picks a randomly from Zg-,, computes A = g", and sends A to Bob. 
Bob picks b randomly from Zp-l, computes B = Ab, and sends B to  Alice. Alice 
computes c = 13a-l and Bob computes C = g b .  

We shall note that the established key depends only on Bob's randomness b. 
Thus Bob can decide the value of the key gb by himself although Bob can not 
send directly a message. This property has an advantage over Diffie-Hellman's 
key exchange scheme in the case of a conference-key sharing scheme for multiple 
users [OkaSS]. 

Shamir's 3-Pass Message Transmission Scheme [SRA79] 
This is also called the Massey-Omura's cryptosystem (see, e.g. [Kob87b]), and 
originally proposed as a tool for mental poker by Shamir et al. [SRA79, RivSO]. 
Alice and Bob agree on p before their communication. Suppose Alice wants to  
send a string (message) s to  Bob. Alice picks a E Z;-l at random, computes 
A = s", and sends A t o  Bob. On receiving A ,  Bob picks b E Z;-l at random, 
computes C = Ab, an? sends C to  Alice. On receiving C ,  Alice uses her secret a 
t o  compute B = C"- and sends B to Bob. On receiving B,  Bob uses his secret 
b to compute s = Bb-'.  
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Remark. 
Shamir's 3-pass key transmission scheme is useful not only for secret message 
transferring but also for an oblivious transfer [RaSl]. An oblivious transfer is a 
protocol satisfying the following three conditions. 

1. Alice can send any message mo or ml. 
2. Bob gets only one of message mo or ml. 
3. Alice cannot know which message, mo or ml Bob obtains. 

However, certain attacks (on the third condition above) were pointed out (e.g. 
[Co85]). Shamir et al. [SRA79, Ml] applied the protocol above into shuffling 
cards together among two parties in an electronic poker game. Thus, we consider 
that the Shamir's 3-pass has a more sophisticated mechanism than an oblivious 
transfer. The protocol is as follows: 

Before starting the protocol, A (Alice) and B (Bob) agree on a prime p. 
1. For two message mo and ml, A randomly picks a E Zlf-l, computes a0 = 

mo" and a1 = mla, and sends ( a 0 , a l )  t o  B. 
2. B picks e E (0,l)  and randomly selects b E Zlf-l, then computes PO = sob, 

and sends P to A.  
3. A computes y = p"-l, and send: it to  B. 
4. B obtains me by computing yb-  . 

2.2 Definitions of Problems 

We give the formal definitions of the problems to  crack the cryptosystems consid- 
ered in this paper. These problems will be formalized as something like functions 
from some tuple of C*'s to C*, where C* is the set of all possible strings over 
the finite alphabet E = (0,l) .  

DLP(y, g,p) is the problem that on input p prime and y,g E Zf,  outputs z E Z,-1 
such that y = g" if such an 2 exists. 

DH(A, B,g,p) is the problem that on input p prime and A, B,g E Z;, outputs 
C E Zlf such that C = gab, A = y" and B = gb if such a C exists. 

BM((ao,al), ( T O , T ~ ) ,  C, (Po,P1),g,p) is the problem that on input p prime and 
a o , ~ ,  T O , Q ,  C, Po,P1, g E Z; with POPI = C, outputs one of   SO,^) 
such that si = yi @ ri, yi = gx*Yi, ai = gY1, PZ = 9"' if such an si exists 
(i = O or 1). 

EG(Cl,Cz,y,g,p) is the problem that on input p prime and Cl ,C~ ,y ,g  E Z I ,  
outputs m E Zlf such that CZ = mgxr, y = gx, C1 = gT if such an m 
exists. 

CONF(A, B, g,p) is the problem that on input p prime and A,  B, g E Zlf, outputs 
C E 2; such that A = g" where a E Zlf-l, B = Ab where b E Z,-1 and 
C = gb if such an C exists. 

3PASS (A, B, C,p) is the problem that on input p prime and A , B ,  C E Z1;, out- 
puts s such that A = sa, B = sb,  C = sab and a ,  b E Z;-l if such an s 
exists. 
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The functions above always returns a correct answer if there is a solution 
to  the query. However, there are no mentions of the behavior in the case when 
there is no solution to  the query. However, we consider stronger functions which 
output I if there are no solutions, where I is the special string to  designate the 
status that the function has no returnable value (Theorem 5). 

2.3 Reducibility 

In order to  compare the relative complexity of different functions, we use the 
concept of reducibility. Intuitively a function f is reducible to  another function 
g if the value of the first function f is computed by an algorithm which uses 
an algorithm for the second function g as a subroutine. We will consider three 
types of such reducibilities based on the types of subroutines. 

Definition 1. A function f is polynomial-time functionally Turing reducible to  
a function g (in symbols f 5;' g) if a polynomial-time oracle Turing machine 
with access to values of g can compute f .  Regarding the complexity of such a 
algorithm we suppose that the cost of one calling the oracle B is just one step. 

Definition 2. A function f is expected polynomial-time functionally Turing re- 
ducible to  a function g (in symbols f <FEp g )  if an expected polynomial-time 
oracle Turing machine with access to values of g can compute f .  (NOTE: This 
paper says that a machine M is expected polynomial-time if there exists an e > 0 
such that, for all 2 E {0,1}*, the expectation, taken over the infinite bit se- 
quences T ,  of (tM(z,r))'  is bounded above by 1%) (i.e., E ( ( ~ M ( z , T ) ) ' )  5 [XI).) 
Definition 3. A function f is polynomial-time functionally many-one reducible 
to  a function g (in symbols f 5:: g) if there exists a pair of polynomial- 
time computable functions hl ,  hz such that for every input string 5, f(z) = 
hz Mhl(5))). 

3 Main Results 

3.1 Relationships among the Cryptosysterns 

We first show the following relation among these cryptosystems. 

Theorem4. 3PASS 2;' C O N F  5;' EG =FP rn BM f",' DH 5;' DLP. 

Proof. Since it is clear that DH 5:' DLP, we show that 3PASS 5:' C O N F ,  C O N F  
SF;$ EG, EG z:' DH, and BM ~5'  DH. 

3PASS 55' CONF: 
Let ( A , B , C , p )  = ( sa , sb ,  s a b , p )  be an instance of 3PASS. 

3PASS(A, B ,  C,p) = C O N F ( C ,  A , B , p )  = C O N F ( ( S ~ ) ~ ,  ( s ~ ) ~ - " ,  s b , p )  = (sb)*-' = 3. 
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CONF 5:' EG: 
Let ( A ,  B,  C,p) = (g", gab ,  g , p )  be an instance of CONF. 

CONF(A, B ,  C , P )  = 1/EG(g, l , g a b ,  g b , p ) .  

Thus, 

m = EG(CA, ABC, CB,  C , p )  
- - S a b + a + ~ ~ ( s a b ) a - ' b - l ( a + l ) ( l + l )  

- - s a b + a + b / S a b + a + b + l  = S-l. 

This implies that the oracle returns 77z = SKI. Therefore, we get s = m-l, which 
is computed in time polynomial in ( p ( .  

EG 2:' DH: 
This is a trivial reduction. Let ( C 1 , C 2 , y , g , p )  = ( g r , m g S T , g Z , g , p )  be an in- 
stance of EG. Since the oracle DH returns g"' to  the query ( C l , y , g , p ) ,  m is 
immediately computed by m = C 2 / g x T .  

DH 5:' EG [Oka94]: 
Let ( A , B , g , p )  = ( g a , g b , g , p )  be an instance of DH. gab is the inverse of the 
answer of the oracle EG to the query (A ,  1, B , g , p ) .  

BM =Lp DH: 
It is not hard to  see that BM 55' DH because DH returns y; = g"*Y* to the query 
(ai , ,$,g,p),  and s; is computed by si = ~i @ ~ i .  Conversely, for (A,B,g,p) = 
(ga, g b ,  g ,  p ) ,  an instance of DH, we let 

where u,t  are picked randomly from Z,-1 and Z;, respectively. Since we set 
TO = 0, the oracle BM((A, g"), ( O , O ) , t ,  ( B ,  tB- ' ) ,  g , p )  returns so = TO &, -yo = 

This completes the proof. I 

instance (A, B, C , p )  = ( s a ,  sb, sab ,p )  of 3PASS, 

" 0 ,  ad, ( T o ,  n), c, (Po, Pl), 9, P) = ( (A ,  9% (070) 1 t ,  (B ,  t w ,  g , d  , 

0 CB gab = gab. 

We give a simple alternative proof for 3PASS <zp DH. It holds that for an 

D H ( A , B , C , ~ )  = D H ( ( ~  ab b - l  , ( S a b ) a - ' , s a b , p )  = ( 3  a b  a-lb- '  = 5 ,  

We do not know if EG 5:; 3PASS. However, if we consider more stronger 
cracking algorithms which answer the special symbol "1" when there is no solu- 
tion to  the instance, we obtain a further result. Consider the following function: 



348 

3PASS*(A, B ,  C,p) is the problem that on input p prime and A, B ,  C E Z i ,  out- 
puts s such that A = sa, B = sb,  C = sab and a,  b E ZiPl  if such an s 
exists. Otherwise it outputs 1. 

Theorem 5. DH sFEp 3PASS* 

Proof. Let ( A , B , g , p )  = (ga,gb,g,p) be an instnace of DH. For randomly picked 
u,v E Zp-- l ,  an instance of SPASS" is computed by 

If both a + IL and b + II happen to  be in Zs-l,  the oracle 3PASS*(ga+", gb+", g,p) 
returns g("+u)(b+") because 

(Ag",Bg",g,p) = (ga+",gb+",g,p). 

ga+u = (g(a+u)(b+v) (b+v)-l  

gb+u = (g(a+=)(b+") (a+")-' 
) > 

1 7 

(a+u)(b+v)  (a+u)-'(b+v)-' 9 =  (9 1 
Thus gab = g("+u)(b+") /(A"B"g""). 
However, if either a+u or b+v is not in Zi- l ,  the oracle 3PASS*(ga+",gb+",g,p) 
returns some s or 1. We show that if 3PASS*(ga+",gb+",g,p) returns s, then 
s = g("+u)(b+"). If the oracle returns s, it satisfies that for some a,,5 E Zi.-l ,  

9. Sa = ga+- ,P = gb+v, p P  = 
Thus, Over Zord(g) , 

T-Q:=a+u, T p = b + v ,  T Q P = l ,  

where ord(g) designates the order of g, and T is an element in Zord(g) such that 
s = gr mod p .  Then, we have that (a  + u)(b + w) = ~ ~ a p  = T ( T ( . Y ~ )  = T .  Thus, 

Conversely, if no such T ,  a,  p exist, the oracle returns 1. Therefore, another 
u,w E Z,-I should be picked, and this is repeated until the oracle returns a 
string other than 1. 

To summarize, the Algorithm 1 named DHto3PASS solves DH using the oracle 
3PASS*. 

s = gr = g("+")(b+"). 

Now we estimate how many times the 
while-statement is repeated. The probabil- 
ity p that the oracle returns a string other 
than I t o  a query is greater than the prob- 
ability that both a + u and b + v are in 
Zi- l .  Thus, p 2 (cp(p- l)/(p- l))', where 
cp is the Euler's totient function. Since 
p(n) 5 ln(2) . n/ln(2n) for a positive inte- 
ger n [Rib88], the expected number of r e p  
etition of the while-statement is less than 
(ln(20, - l))/ln(2))2, which is bounded by 
a polynomial in Ipl. Thus, DH reduces to  
3PASS* in probabilistic polynomial-time. 
This completes the proof. I 

7, Algorithm 1 
X DHto3PASS 

s :=L 
while ( s  =I) do 

input A, B,  9, P 

pick u, w E Z,-1 at random 

s := 3PASS*(A',B', g,p) 
A' := Ag"; B' := Bg" 

end while 

output c 
C := s/(A"B"g"") 

end 
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Remark. The Algorithm 1 above does not give the answer "1" even when the 
input of DH has no solution. So, we do not know if DH* 3PASS*. However, 
we can obtain a polynomial-time reduction from DH* to  3PASS* with one-sided 
error by terminating the algorithm DHto3PASS within a suitable step, as shown 
in Algorithm 2. 

X Algorithm 2 
% DHto3PASS with one-sided error 
input A, B ,  9 , P  
s :=1; c :=l; i := 1 
T := q(lp1) X some polynomial in Ipl 
while ([s =I] A [i 5 TI) do 

pick u, w E Z,-I at random 

s := 3PASS*(A', B', g,p) 
i : = i + l  

A' := Ag"; B' := Bg" 

end while 
if s #I then C := s/(A"B"g"") 
output c 
end 

We do not know if DH f DH* nor 3PASS = 3PASS* because there axe no 
known efficient algorithms to check the answers of these cracking algorithms DH 
and 3PASS. Nevertheless, we show that DH is reducible to  3PASS over some special 
discrete logarithms. 

3.2 

First we show that if the complete factorization of p - 1 is given and the base is 
a generator of Z;, i.e. if the discrete logarithm problem is a certified one, there 
is a probabilistic polynomial-time algorithm that solves DH using BPASS as an 
oracle. This reduces DH to  3PASS, and the above reductions become equivalent. 

Theorem 6. If the complete fuctor-ization of p - 1 with p prime is given and the 
base g is a generator of Z;, 

DH <FEp 3PASS. 

The Case of Certified Discrete Logarithms 

Proof. In the proof of Theorem 5, we have shown that DH" reduces to  3PASS*, 
where 3PASS* is an algorithm which returns a special symbol "I" if and only 
if there is no solution. Now we consider a weaker algorithm which returns any 
polynomially bounded string instead of 1. However, this happens if either a + u 
or b + o is not in Z;-!. Thus, if we restrict ourselves to the query such that both 
a + u and b + w are in Z;-l, and if the instance of DH is appropriate, then the 
answer from the oracle is always correct. Therefore, we modify the algorithm 
DHto3PASS as shown in Algorithm 3. 
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Here, d = true if and only if both X 
and Y are generators of Z;, which 
implies that both a + u and b + 71 

are in Z;-l. The expected number 
of repetition of the while-statement 
is bounded by (ln(2(p - 1))/1n(2))2, 
which is also bounded by a polyno- 
mial in Ipl. I 

X Algorithm 3 
X DHto3PASS for Certified DLP 
input A, B,  g , p  = pTp;' . . . p z k  + 1 
d := false 
whilc ( d  = false) do 

pick u, v E ZP-1 at random 
X := Ag"; Y := Bg" 

d := [/\ X ( p - ' ) / P Z  # 1]A 
k 

,=O 
k [A y ( P - - l ) / P *  # 11 

t=O 
end while 
s := 3PASS(X,Y,g,p) 
C := s/(A"B"g"") 
output c 
end 

den Boer [dB881 showed that the Diffie-Hellman problem is as strong as the 
discrete logarithms for certain primes. It is remarkable that Maurer [Ma941 made 
this result stronger to  cover generic cyclic groups. Let p(N) be the order of the 
group Zh. 

Theorem7 [dB88], see also [Ma94]. If cp(p-1) is smooth, i.e., it consists of 
small prime factors with respect to  a fixed polynomial in q(lpI), then DLP <FEp DH. 

We should note that our reductions keep the modulus, then the following is 
induced. 

Corollary 8. Suppose that cp(p - 1) as smooth, i.e., i t  consists of small prime 
factors with respect to  a jixed polynomial in q((p1). If the complete factorization 
of p - 1 with p prime is given and the base g is a generator of Z;, then 

3PASS =FEP CONF =gEp EG =FEP T BM =FEP T DH =FEP -T DLP. 

3.3 

Next we consider these cryptosystems based on the elliptic-curve discrete loga- 
rithm problem [Kob87a, Mi1851, denoted by EDLP. 

Here we briefly review the EDLP. Let C(a, b), be an elliptic curve defined over 
Z,, where p prime # 2,3, with parameters a, b E Z,, that is 

The Case of Elliptic Discrete Logarithms 

C(a,  b), = { (2, y) E Z, x 2, 1 [y = x3 + uz + b] A [a, b E Z,] A 

[4a3 + 27b2 $ 0 (mod p)]} U {O} ,  

where 0 is the point at infinity. The Jacobian of C(a, b ) p ,  which happens to be 
the same as C(a,b),, forms an abelian group. The EDLP is the problem that on 
input a point Q E C(a, b), and the base point P E C(a,  b),, outputs m such that 
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Q = mP if such an m exists. Here, we denote by mP the m-time addition of the 
point P. The order of C(a,  b ) p ,  denoted by #C,  is computed in time polynomial 
in Ipl [Sch85]. The order is bounded as - 2 4 7  5 #C(a, b ) ,  - (p + 1) 5 247. 

The elliptic curve C(a ,  b ) ,  defined over Z, is said to be supersingular if and 
only if #C(a, b )  = p + 1. Nonsupersingular elliptic curves are called ordinary. 
Thus an elliptic curve group with prime order is ordinary and simple, where by a 
simple group we mean that there is no non-trivial normal subgroup in C(a,  b),. 
If C(a, b) ,  is supersingular, the EDLP reduces in probabilistic polynomial-time to  
a discrete logarithm problem over the multiplicative group of a certain extension 
field of Z, [MOWl].  However, no such reduction algorithm is known to exist for 
elliptic-curve groups with prime order [MiySl] . 

It is not hard to see all the cryptosystems considered in this paper can 
actually be constructed over C(a, b), as analogues of those over Z;, and the 
reductions shown in Theorem 4 also hold for the EDLP-based systems. Let DHE 
(resp. BME, EGE, CONFE,  PASSE) designate the EDLP-based DH (resp. BM, EG, CONF, 
3PASS) problem. We have the following theorem. 

Theorem 9. If the cryptosystems are based on  the discrete logarithm problem 
whose underlying group is the Jacobian of an elliptic curve defined over Z, with 
prime order, then 

 PASSE =",' CONFE =",' EGE EL' BME =",' DHE. 

Proof. As 
BME =gp 
elliptic cu 

-FP Theorem 4, it is easily seen that T PASSE 2;' CONFE. 5:' E G s  =711 

DHE. Thus, it suffices to  show that DHE I!,,  PASSE.. Let E be an 
.rve defined over Z, with p prime # 2,3,  and let #E = q with q 

prime. For an instance (A, B, P, E,p) = (UP, bP, P, E,p) of DHE, if A # 0 and 
B # 0, then both a and b are units in Z,. This is because E is simple. Thus, 
the oracle   PASSE always returns the correct answer to  a query (A, B, P , E , p ) .  
Hence, DHE <&   PASSE.. I 

There are few known research on the distribution of the prime-order elliptic 
curves over all elliptic curves. A construction of the primeorder elliptic curves 
is studied also in [Miygl], and finding more efficient algorithms to construct 
such ordinary elliptic curves is an interesting future topic. Thus, the previously 
known merit of ordinary elliptic curves over Z, is just that it. is immune from the 
attack by [MOV91]. Our theorem above is based on another interesting property 
of ordinary prime-order elliptic curves over Z, that any non-zero element has 
the inverse. 

3.4 

We return to  the cryptosystems based on DLP defined over Z;. 

Languages Associated with the Cryptosystems 

Associated with the problems 4, we define the language LQ by 
Lq = { ( G Y ) l  9(2) = Y}, 

where 9 is one of DLP, DH, BM, EG, CONF, or 3PASS. The problem to  decide mem- 
bership in Lq is to recognize that y is an answer to  the instance 2 of Q. Clearly, 



352 

these languages are in NP n co-NP. Indeed, LDLP is in P. However, it is not 
known that one of LDH, LBM, LEG, LCONF, or L3pASS is in P or BPP. The same 
observation on LDH can also be found in [B93]. Thus, there may be a reduction 
sequence among these languages which is different from the reductions given in 
Theorem 4, though, at the moment, no reductions among LDH, LBM, LEG, LCONF, 
and L3pASS are known. 

One connection to  the reductions among the cracking problems is shown in 
the following. 

Theorem 10. L3pASS i s  not in P unless DH <!.E' 3PASS. 

Proof. We show the contraposi- 
tion. That is, if L3pASS is in P, 
DH <FEp 3PASS. The algorithm 
DHto3PASS in the proof of T h e e  
rem 5 can be modified, if L3pASS 

This completes the proof. I 

X Algorithm 4 
input A, B,  g , p  
d := false 
while (d = false) do 

pick u,v E Z,-1 at random 

s := 3PASS(A', B',g,p) 
d := [((A', B'I gyp) ,  S) E L3PASSI 

is in P ,  a8 shown in Algorithm 4. A' := Ag"; B' := Bg" 

end while 
C := s/(A"B"g") 

end 
output c 

The theorem above gives a characterization of the complexity of L~PASS.  
Also we obtain 

Corollary 11. If L3pASS is in P,  then 3PASS =FEp CONF =FEp EG =sp BM =Lp 
DH . 

Theorem 12. The language LDH is random self-reducible in the sense of [TWS'?]. 

Proof. For an instance ( ( A , B , g , p ) , C ) ,  let A' = Ag', B' = Bg", and C' = 
CA"B'g'" to  make another instance ((A', B', g , p ) ,  C'), where T and s are ran- 
domly picked from Z,-I. Note that if A = g",  B = g b  and C = g a b ,  then 
A' = g"+', B' = gb+s,  and C' = g(a+')(b+s).  Hence, the distribution of A' 
(resp. B', C') is exactly the same as that of A (resp. B ,  C). It is clear that if 
((A',B'g,p),C') is in LDH, so is ( (A ,  B , g , p ) , C ) .  This implies LDH is random 
self-reducible. I 

The theorem above implies that LDH has a perfect zero-knowledge interactive 
proof. 
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3.5 

Consider the situation that we use the Shamir's 3-pass scheme for transferring 
the same message s polynomially many times. In such a case, an adversary can 
get much information than single use. We discuss the relative security between 
single-use and multiple-use in the cryptosystem. So, we formulate the following 
k-3PASS problem. 

k-BPASS is the problem that on input p prime and Al,  B I ,  C1,. . . , Ak, Bk, Ck, E 
Z;, s such that Aj = sOji Bj = g b 3 ,  Cj = sa3bj and a j , b j  E ZJ-l 
( j  = 1, . . . , k) if such an s exists. 

Single-Use versus Multiple-Use in Cryptosystems 

We show that multiple-use is as secure as single use. 

Theorem 13. 1-SPASS (= SPASS) 5%' k-3PASS 

Proof. Let (A,  B ,  C,p) be an instance of 1-3PASS. Pick (211, WI), . . . , (uk, w k )  E 
Z6-1 x Z:-l at random. Put  

Ai = A"', Bi = B"' , C; = C"'"' (1 5 i 5 k). 

Then, ( ( A , ,  &, c1 , p ) ,  ..., (Ah, B k ,  c k , p ) )  is an instance of k-3PASS. I 

The theorem above suggests a role of the randomness of each party in the 
scheme. The same property holds in some other cryptosystems, namely k-EG and 
k-CONF defined as follows. 

k-EG is the problem that on input p prime and C11, G I , .  . . ,Clk,C2h,y,g E 
Z;, outputs m E Z; such that C2j = mg2+, y = g", Clj = 9'1 ( j  = 
1,. . . , k) if such an rn exists. 

BCONF is the problem that on input p prime and A l ,  . . . , Ah, B,g  E Z;, outputs 
C E Z; such that A = gal where aj E Z6-l, B = AS where b E Z,-1 

( j  = 1,. . . , k) and C = gb  if such an C exists. 

Theorem 14. I-EG(= EG) 5:' k-EG 

Proof. Let (C1,C2,y ,g ,p)  be an instance of 1-EG. We show that for any k 5 
( ~ ( l p l )  with (I polynomial, this can be transformed into an instance of k-EG in 
polynomial-time. First, pick u l , .  . . , uk E Z,-1 at random. Then, put 

C1; = C1gui, C;Li = Czyut (1 5 i 5 k). 

Since C1; = gTt-ui and C;t; = mgx(T+u*), we now have an instance of k-EG as 
( (cl 1 , CZl , Y ,  9,  p )  , . . . i (cl k C2k , Y ,  9, p )  1- I 

Okamoto [OkaSS] observed such a property in his scheme. 

Theorem 15 [OkaSS]. I-CONF(= CONF) 5:' k-CONF 
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4 Concluding Remarks 

We have given the reductions among the problems to  break some cryptosystems 
based on the discrete logarithms over Z: (Theorem 4). Specifically, we have 
shown that these problems are equivalent under the stronger function model 
(Theorem 5), although none of them is known to be equivalent to  the discrete 
logarithm problem itself. 

We have also shown that the equivalence occurs if the discrete logarithm 
problem is a certified one over ZT, (Theorem S ) ,  or if it is the elliptic-curve dis- 
crete logarithm problem associated with an ordinary elliptic curve defined over 
Z, (Theorem 9). Therefore, if one cryptosystem is breakable, so are the others. 
This means that if one wants to  crack one of the cryptosystems, there are several 
possible Approaches to  the algorithm for breaking the target cryptosystem. HOW- 
ever, this also implies that  one cryptosystem is as secure as the others, namely, 
the provable security of the cryptosystems. Although those theorems can be in- 
terpreted in two ways as above, it is true that they give an interesting aspect 
of the cryptosystems based on the certified discrete logarithm or the ordinary 
elliptic-curve discrete logarithm. 

Further, we have defined some languages associated with those problems. 
We have pointed out that  each language to  recognize the correct answer of the 
problem is not known to  be in P, whereas the language corresponding to  the 
discrete logarithm problem is in P. Some questions remain open: 

b Does L3pASS reduce to LDH with respect to $ -reducibility? 
Does LDH reduce to  L3PASS with respect to  55 -reducibility? 

0 Does L3pASS have a perfect zereknowledge interactive proof? 

Acknowledgments 
We would like to thank,the following people. Toshiya Itoh pointed out a flaw of a 
mathematical formula in an earlier version of this paper. Kojiro Kobayashi gave 
us invaluable comments on the (non-)transitivity of randomized reducibilities. 
Tatsuaki Okamoto informed us of his conference-key sharing scheme discussed 
in his Ph.D thesis. 

References 

[B93] Brands, S., “An efficient off-line electronic cash system based on the repre- 
sentation problem,” CWI Technical Report CS-R9323 (Apr. 1993). 

[BeMiSS] Bellare, M. and S. Micah, “Non-interactive oblivious transfer and applica- 
tions,” in Advances in Cryptology - Crypto’89, Lecture Notcs in Computer 
Science 435, pp.547-557, Sprznger- Verlag, Berlin (1990). 

[Co85] Coppersmith, D. “Cheating at mental poker,” Advances in Cryptology - 
Crypto’85, Lecture Notes in Computer Science 218, Springer- Verlag, Berlin, 
pp.104-107 (1986). 

[COS86] Coppersmith, D., A. M. Odlyzko, and R. Schroeppel, “Discrete logarithms in 
GFCp),” Algorithmica 1, pp.1-15 (1986). 



355 

[dB881 den Boer, B., “Diffie-Hellman is as strong as discrete log for certain primes,” 
Advances in Cryptology - Eurocrypt’88, Lecture Notes in Computer Science 
403, Springer- Verlag, Berlin, pp.530-539 (1990). 

[DH76] Diffie, W. and M. E. Hellman, “New directions in cryptography,” IEEE 
Trans. Inform. Theory, IT-22, No.6, pp.644-654, (Nov. 1976). 

[ElG85] ElGamal, T., “A public key cryptosystem and a signature scheme based on 
discrete logarithms,” IEEE Trans. Inform. Theory, IT-31, No.4, pp.469-472, 
(July 1985). 

[IR89] Impagliazzo, R. and Rudich, S., “Limits on the provable consequences of one- 
way permutations,” PTOC. of 21 s t  STOC, pp.44-61 (1989). 

[Kob87a] Koblitz, N., “Elliptic curve cryptosystems,” Math. Comp., 48, pp.203-209 
(1987). 

[Kob87b] Koblitz, N., “A Course in Number Theory and Cryptography,” GTM 114, 

[Ma941 Maurer, U. M., “Towards the equivalence of breaking the Diffie-Hellman 
protocol and compuing discrete logarithms,” Advances in Cryptology - 
Crypto’94, Lecture Notes in Computer Science 839, Springer- Verlag, Berlin, 

[Mi1851 Miller, V., “Uses of elliptic curves in cryptography,” Advances in Cryptology 
- Crypto’85, Lecture Notes in Computer Science 218, Springer- Verlag, Berlin, 

[MiySl] Miyaji, A., “On ordinary elliptic curve cryptosystems,” in Advances in Cryp- 
tology - Asiacrypt’91, Lecture Notes in Computer Science 739, Springer- 
Verlag. 

[MOV91] Menezes, A., T. Okamoto, and S. A. Vanstone, “Reducing elliptic logarithms 
to logarithms in a finite field,” Proc. of 23rd STOC , pp.80-89 (1991). 

[Od184] Odlyzko, A. M., “Discrete logarithms in finite fields and their cryptographic 
significance,” Advances in Cryptology - Eurocrypt’84, Lecture Notes in Com- 
puter Science 209, Springer- Verlag, Berlin, pp.224-314 (1985). 

[OkaSS] Okamoto, T., “Encryption and authentication schemes based on public-key 
systems” Ph.D. Thesis, The University of Tokyo (1988). 

[Oh941 Okamoto, T., Personal communication via email (1994). 

I Springer- Verlag (1987). 

pp.271-281 (1994). 

pp.417-426 (1986). 

[Ra81] Rabin, M., “How to exchange secrets by oblivious transfer,” Tech. Memo 
TR-81, Aiken Computation Laboratory, Harvard University, (1981). 

[Rib881 Rbenboim, P., “The Book of Prime Number Records,” Springer-Verlag 
(1988). 

(Riv9O] Rivest, R. L., “Cryptography,” Chapter 13 of Handbook of Theoretical Com- 
puter Science, Vol.A, Algorithms and Complexity, edited by Jan van Leeuwen, 
The MIT ,  pp.717-755 (1990). 

[Rud91] Rudich, S., L‘The use of interaction in public cryptosystems,” Advances in 
Cryptology - Crypto’91, Lecture Notes in Computer Science 576, Springer- 
Verlag, Berlin, pp.242-251 (1992). 

[SRA79] Shamir, A., R. L. Rivest, and L. Adleman, ‘$Mental Poker,” MIT/LCS, TM- 
125, (Feb. 1979). 

[Sch85] Schoof, R., “Elliptic curves over finite field and the computation of square 
roots mod p,” Math. Comp., 44, pp.483-494 (1985). 

[TW87] Tompa, M. and H. Woll, “Random Self-Reducibility and Zero-Knowledge In- 
teractive Proofs of Possession of Information,” Proc. of 28th FOCS, pp.472- 
482 (1987). 


	Introduction
	Motivation
	Summary of Results
	Computational Complexity, Communication Complexity, and Cryptographic Mechanisms

	Preliminaries
	Cryptosystems based on DLP
	Definitions of Problems
	Reducibilit

	Main Results
	Relationships among the Cryptosysterns
	The Case of Certified Discrete Logarithms
	The Case of Elliptic Discrete Logarithms
	Languages Associated with the Cryptosystems
	Single-Use versus Multiple-Use in Cryptosystems

	Concluding Remarks
	Acknowledgments
	References


