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Abstract. In this paper we give techniques for recycling random bits 
both in the interactive and in the non-interactive model for perfect 
zero-knowledge proofs. Our first result is a non-interactive perfect zerc- 
knowledge proof system €or proving that at least one out of any given 
polynomial number of statements is true, in which the amount of public 
random bits used is the same as that for proving a single statement. Our 
second result is an interactive perfect zereknowledge proof system for 
proving any given polynomial number of statements, in which the amount 
of private random bits used by the prover is, apart from a constant fac- 
tor, the same as that for proving a single statement. In order to get a 
randomness-efficient proof system, we also reduce the random string of 
the verifier by using a multi-bit commitment scheme. The statements 
considered are of quadratic non residuosity modulo a Blum integer. 

1 Introduction 

Quantitative aspects of randomness in cryptographic protocols are now emerging 
as a new interesting research area in cryptology (see, c.g., [5, 13, 25, 26, 23, 
11). In perfect zero-knowledge proof systems the randomness of the prover is 
crucial to obtain the perfect zero-knowledge property. This paper investigates 
quantitative aspects of randomness in perfect zero-knowledge proof systems both 
in the interactive and in the non-interactive model. 

Zero-knowledge. 
Goldwasser, Micali and Rackoff 1191 introduced the concept of interactive proof 
systems as a method for proving the veridicity of membership of a string to  a 
language. In the same paper, they introduced zero-knowledge proof systems as 
a method for proving such statements without revealing any additional infor- 
mation. The model for zero-knowledge proofs considers an all-powerful prover 
interacting with a poly-bounded verifier; moreover, both parties are allowed to 
flip coins. 

Any language having an interactive proof has a computational zero-knowledge 
proof (see [18, 2, 21]), that  is a proof which does not reveal additional informa- 
tion to  a poly-bounded verifier. On the other hand, only few languages (basically 
relying on random self-reducible [27] properties) have been proved to have a per- 
fect zero knowledge proofs (see [19, 18, 17, 27, 3, 121). Perfect zero-knowledge 
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proots are proofs which do not reveal additional information even to  an infinitely- 
powerful verifier. It is unlikely that they can be given for NP-complete languages, 
as this would imply that the polynomial hierarchy collapses to  its second level 
([16, 71). Thus giving a perfect zero-knowledge proof for a language allows to  give 
evidence that a language is not NP-complete. Moreover, perfect zero-knowledge 
proofs do not rely on any unproven hypothesis and really capture the intrinsic 
properties of the concept of zero-knowledge proof systems. For all these reasons, 
giving new techniques for perfect zero-knowledge proofs is still an interesting 
research area. 
Randomness. 
The soundness of interactive proof systems is strongly based on the unpre- 
dictability of the random questions that the verifier makes to  the prover. On 
the other hand, any language having a proof system with a probabilistic prover 
has one with a deterministic prover: we can choose the prover that maximizes 
the acceptance probability of the verifier. In [l] techniques for recycling the 
randomness of the verifier have been given for Arthur-Merlin proof systems. In 
zero-knowledge proof systems, instead, the prover has to  use randomness in com- 
puting his messages not to reveal information to  the verifer, as he might do in 
an interactive proof. In [20] the necessity of randomness for provers and verifiers 
in zero-knowledge proof systems is shown. 

In the non-interactive model (see [6, 41) for zero-knowledge proofs, the prover 
and the verifier share a random reference string and the proof is a single message 
sent by the prover to  the verifier. One of the main problems of the non-interactive 
model is that  often the size of the public random string bounds the length of the 
theorem that can be proved. Thus i t  is very desirable to give non-interactive zero- 
knowledge proofs for many statements using the same public random string. (see 
also [4, 151 for discussions). This problem was solved in the case of computational 
zero-knowledge in [4, 14, 151. However, in the case of perfect zero-knowledge, a 
solution to  this problem is still unknown. Our first result in this paper is a non- 
interactive perfect zero-knowledge proof system for proving that at least one out 
of any polynomial number of statements is true, in which the length of the public 
random bits is the same as that for proving a single statement. 

In the interactive model for perfect zero-knowledge proofs, no technique has 
been given in order to  recycle the randomness of the prover. Thus, the better 
way for a prover to  prove many statements of a certain language in perfect 
zero-knowledge was using different and independently chosen random strings for 
each new statement. Our second result in this paper is an interactive perfect 
zero-:. nowledge proof system for proving any polynomial number of statements, 
in which, up to  a constant factor, the random string used by the prover is the 
same as for proving a single statement. To make our proof system randomness- 
efficient, we also reduce the random string of the verifier by using a multi-bit 
(weak- to-strong) commitment scheme. 

The statements considered are of quadratic non residuosity modulo a Blum 
integer. Our results are for specific languages, while the result in [15] is given for 
all languages in NP. On the other hand, non-interactive perfect zero-knowledge 
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proofs have been given so far only for languages that are composition of quadratic 
non residuosity statements. Also, interactive zero-knowledge proofs for quadratic 
residuosity are among the most used for cryptographic applications like identi- 
fication schemes. 

In all our proof system the prover runs in probabilistic polynomial time, when 
given the factorization of the Blum modulus as private input. 

Organization of the paper: 
In Section 2 we describe some number theoretic properties about quadratic 
residuosity and Blum integers that will be useful in our protocols, and review 
the definition of non-interactive perfect zero-knowledge proof systems and the 
non-interactiw perfect zero-knowledge proof system of [4] for the language of 
quadratic non residuosity. In Section 3 we give our result of recycling public 
random bits in the non-interactive model for perfect zero-knowledge proofs. In 
Section 4 we give a multi-bit commitment scheme whose security is based on 
the difficulty of factoring Blum integers. In Section 5 we give our result of recy- 
cling the private random bits of the prover in the interactive model for perfect 
zero-knowledge proofs. 

2 Background and Definitions 

2.1 

Quadratic Residuosity.  For each integer x > 0, the set of integers less than x 
and relatively prime to  x form a group under multiplication modulo x denoted 
by Z:. We say that y E 2: is a quadratic residue modulo x if and only if 
there is a w E 2; such that w2 ymod x. If this is not the case, then y is 
a quadratic n o n  residue modulo x. The quadratic residuosity predicate of an 
integer y E 2: can be defined as Q,(y) = 0 if y is a quadratic residue modulo x 
and 1 otherwise. Define 2:' and ZF1 to  be, respectively, the sets of elements of 
2; with Jacobi symbol +1 and -1 (see [24] for the definition of Jacobi symbol). 
The Jacobi symbol can be computed in deterministic polynomial time. Also, 
define the set QR, = {y E 2: I Q,(y) = 0) of quadratic residues modulo x, and 
the set NQRz = {y E 2:' I Q,(y) = 1)  of quadratic non residues modulo x. 
The quadratic residuosity predicate defines the following equivalence relation in 
2;: y1 -, y2 if and only if QI(y1y2) = 0. Thus, the quadratic residues modulo 
x form a -, equivalence class. If y E Z ; l ,  then y is a quadratic non residue 
modulo x. However, if y E Z:', no efficient algorithm is known to compute 
Q,(y). The fastest way known for computing Q,(y) consists of first factoring 2. 

Blum integers.  In this paper we will consider the special moduli called Blum 
integers. An integer x is a Blum integer, in symbols x E BL, if and only if 
x = p k l q k z ,  where p and q are different primes both E 3mod 4, and k1 and k2 

are odd integers. If x is a Blum integer, Z; is partitioned by N, into 4 equally 
large equivalence classes. Also, lZ:'l = 12~~1 and Z:l is partitioned into 2 
equally large equivalence classes, one made of quadratic residues modulo 2 and 

Quadratic residuosity and Blum integers 
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the other made of quadratic non residues modulo x .  Thus, for this special class 
of integers we have that for any y1, y2 E Z:, Q,(yl) = Qx(y2) * QZ(y~yz) = 0, 
and Q,(yl) # Qz(yz) &,(ylyz) = 1. Then a quadratic residue modulo a 
Blulr, integers 1: has exactly four square roots, one in each wZ equivalence class, 
and exactly one of them will be a quadratic residue modulo z. Moreover, if z is 
a Blum integer, then -1 mod z is a quadratic non residue with Jacobi symbol 
+l. This implies that on input a Blum integer z, it is easy to  generate a random 
quadratic non residue in 2:': randomly select r E 2: and output -r2 mod x .  
Finally, if z is a Blum integer, given its prime factors p,p,  it is possible to  
compute square roots modulo z in deterministic polynomial time. 

We refer the reader to  [24, 41 for a more formal treatment and for proofs. 

2.2 Perfect Zero-Knowledge Proof Systems 

Now we review the definition of perfect zero-knowledge proof systems of [19]. 
Let L be a language and x be an instance to it. Let P a probabilistic Turing 
machine and V a deterministic Turing machine that runs in time polynomial in 
the length of its first input. 

Definitionl. We say that (P, V) is a Perfect Zero-Knowledge Proof System for 
the language L if 

1. Completeness. Vx  E L ,  1x1 = n and for all sufficiently large n, 

Pr(P ++ V ) ( z )  = ACCEPT 2 1 - 2-". 

2.  Soundness. Vx @ L ,  1x1 = n and for all sufficiently large n ,  for all probabilistic 
algorithms PI, 

Pr(P' ++ V ) ( x )  = ACCEPT 5 2-". 

3. Perfect Zero Knowledge. for each V' there exists a probabilistic machine SVJ 
running in expected polynomial time such that Vx E L ,  the two probability 
spaces Svi(z) and Viewv i (x )  are equal, where by V i e w v ( z )  we denote the 
probability space (R;  conz)), where R is the random tape of V, and conv is 
the transcript of a conversation between P and V on input 2 given.that R 
is the random tape of V. -. 

Now we review the definition of non-interactive perfect zero-knowledge proof 
systems of [4], referring the reader to the original paper for motivations and 
discussions. Let L be a language arid x be an instance to  i t .  Let P a proba- 
bilistic Turing machine and V a deterministic Turing machine that runs in time 
polycomial in the length of its first input. 

Definition2. We say that (P ,  V) is a Non-Interactive Perfect Zero-Knowledge 
Proof System for the language L if there exists a positive constant c such that:  
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1.  Completeness .  Vz E L ,  1x1 = n and for all sufficiently large n,  

2 .  Soundness .  For all probabilistic algorithms Adversary giving pairs (2, Proof) 
as output, where x $! L,  1x1 = n,  and all sufficiently large n,  

Pr(u + (0, llnc; (2, Proof) + A d v e r s a r y ( a )  : V ( U ,  x, Proof) = 1) 5 2-". 

3 .  Perfect  Zero Knowledge.  There exists an efficient simulator algorithm S such 
that Vx E L ,  the two probability spaces S(z) and V i e w v ( x )  are equal, 
where by V i e w v ( z )  we denote the probability space V i e w v ( x )  = { U  - 
(0, 1)lzle; Proof t ~ ( u ,  x) : (6, Proof)) .  

We call the random string u,  input to  both P and V, the reference string. 

2.3 Quadratic non-residuosity 

In [4] a non-interactive perfect zero-knowledge proof system for the languages of 
quadratic non residuosity modulo a Regular(2) integer was given (a  Regular (2 )  
integer is odd, is not a perfect square and has two prime factors). We briefly 
review it here, as it will be useful to  better understand our protocols. 

On input an n-bit integer x and an integer y E ZZ1, the prover takes 2n 
integers 6 1 ,  . . . , OZ,, from the 202-bit long reference string u such that u; E 2:' , 
for i = 1,. . . , 2 n .  Then, for each ui, the prover does the following. If a; is a 
quadratic residue modulo x, then he uniformly chooses an integer Ti E Zi  such 
that rz = u; mod x .  On the other hand, if u; is a quadratic non residue modulo 
x, then he uniformly chooses an integer ri E 2: such that r: = y . ui mod x. 
Finally, the prover sends T; E 2: to  the verifier. The verifier checks that for 
each i = 1 , .  . . , 2n, r; = yb; . ui mod x, for some bit b;.  If so, then he accepts, 
otherwise he rejects (see [4] for proofs). 

If we consider the language of quadratic non residuosity modulo a Blum 
integer (instead of a Regular (2 )  integer) then we have to  add a phase to  this 
protocol, in which it is proved that x is a Blum integer, as in [lo]. In this case 
the length of the reference string is 50n2. From now on, we will call thiii protocol 
(0). 

3 OR of many statements on a single random string 

In this section we give a non-interactive perfect zero-knowledge proof system for 
proving the OR of any polynomial number (in the size of the input) of statements 
of quadratic non residuosity modulo a Blum integer I in which the length of the 
random reference string used is the same as that of the protocol (C,D) for the 
language of quadratic non residuosity modulo x. 
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For simplicity, we consider the language of triples (2, y1, yz), such that x is a 
Blum integer, and at least one of y1, yz is a quadratic non residue modulo x: 

We give a non-interactive perfect zero-knowledge proof system (A,B) for the lan- 
guag? OR and then briefly explain how our construction can be easily extended 
to any polynomial number (in 1x1 = n )  of integers yi. 

An informal descriplion. On input (2, yl,yZ), A writes the reference string u 
as the concatenation of two sufficiently long strings u1,u2. Then, A uses 6 1  t o  
give a non-interactive perfect zero-knowledge proof that x is a Blum integer, 
for instance, using the proof system given in [lo]. Now, we make a simplifying 
assumption by considering the reference string u2 written as the concatenation 
of 2n integers u2i E 2:’. The main idea for proving that at least one of y1, yz 
is a quadratic non residue modulo z is the following. The prover P computes in 
a careful way (to be specified later) two strings p1, p2 of the same length as u, 
such that pli . pzi = u2i mod x, for i = 1,  . . . ,2n ,  and sends a ‘proof’ that y1, yz 
are quadratic non residues modulo x,  computed using as reference strings P I ,  pz, 
respectively. V verifies that the ‘proofs’ are correctly constructed on the reference 
strings p1, p2 and that pli .pzi = uzi mod x ,  for i = 1 , .  . . ,2n .  Of course, P has to  
convince V even if, say, y1 is a quadratic residue modulo x. Thus, he computes 
the two strings p1, pz in the following way: the string p1 is made of integers of 
the same quadratic residuosity as y1, and the string p2 is computed from p1 and 
u in order to  satisfy p1; . pz; = uzi mod x ,  for i = 1,. . . ,271. We observe that if 
y1 is ‘+ quadratic residue, then the string p1 is made of all quadratic residues. 
Thus P can compute a faked ‘proof’ of quadratic non residuosity for y1 using 
p1 as a reference string. Then, the string pz is a uniformly distributed string, 
and if yz is a quadratic non residue modulo x ,  then P can give a non-interactive 
proof of quadratic non residuosity for yz using pz as a reference string. If B 
cannot distinguish between integers with the same quadratic residuosity as y1 
and integers with the same quadratic residuosity as yz, then the faked ‘proof’ 
for ~1 and the ‘real’ proof for y;! will appear indistinguishable to  him. That is, 
each of the two will appear as a proof of quadratic non residuosity (as in [4]) for 
yj using pj as a reference string, for j = 1 , 2 .  

Let (E,F) be a non-interactive perfect zero-knowledge proof system for the 
language BL of Blum integers (see, e.g., [lo]). Now we give a formal description 
of (A,B). 

Even if this is not true in general, (for instance, in a uniformly distributed random 
string there may be integers in Z;’) in [4, 101 a technique preserving perfect zero- 
knowledge is given for transforming a uniformly distributed string into a string made 
of integers in Z:’. 
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Input to A and B: (z,yl ,y2) E OR, such that 1x1 = n, and the reference 
string u = (TI 0 621 0 . . . o u2,2,, , where u 2 i  E Z$', for i = 1, . . . ,2n.  
Input to A: x's factorization. 
Instructions for A. 
A . l  Prove that x is a Blum integer by running algorithm E on input x and 

A.2 If y2 E QR, then set z2 = y1 and zl = y2; 

A.3 For i = 1, .  . . , 2n ,  

using u1 as a reference string. Send E's output P f to  B. 

else set z1 = y1 and z2 = yz. 

uniformly choose cl; E (0, l}, rli E 2;; 
set pli = tE" . rTi mod x and pzi = uzi . pzl mod x; 
compute c2i E ( 0 , l )  and a randomly chosen r 2 i  E Z,t: such that 

if z i  = yi  then send (rli, w),  (cl i ,  czi), (pi;, pzi) to B; 
r 2 ,  - c31 

2, - z2 . pzi mod x. 

else send (u, T i i ) ,  ( C z i ,  cli) ,  (Pzi, Pli) to B. 

- 
Input to B: The proof Pf and the set {(~li, U Z ; ) ,  (di;, dzi), (Tli, 72i)}i=1,...,2n 

sent by A. r Instructions for B. 
B. l  Verify that P f  is a proof that x is a Blum integer by running algorithm 

B.2 For i = 1 , .  . . , 2 n ,  
F on input x and using 6 1  as a reference string. 

verify that 
verify that ~ 2 ;  = 71i . ~ 2 ;  mod X ;  

= yfl '  . qi mod x, and u;i = y?' . 72i mod x; 

B.3 If all the verifications are successful then accept else reject. 

Let (C,D) be the non-interactive perfect zero-knowledge proof system for the 
language NQR. Now we prove the following 

Theorem3. ( A ,  B )  i s  a non-interactive perfect zero-knowledge proof sys tem for 
the language OR, such that the length of the random reference string used by 
(A ,  B) i s  the same as that used by (C, D).  

Proof. Randomness.  As for (C,D), the random reference string is divided into 
two parts. The first is 30n2-bits long and it is used to prove that x is a Blum 
integer, as in (C,D). The second is used to prove that at least one of yl,y2 is 
a quadratic non residue modulo x, and is 20n2-bits long, that is, exactly as the 
remaining part of the reference string in (C,D) used to prove the quadratic non 
residuosity of only one integer. 
Completeness.  If at least one of yl ,  y2 is a quadratic non residue modulo x, then 
A, which is given x's factorization as private input, can set tl equal to this 
integer. Also, he can run algorithm E to  prove that z is a Blum integer, and 
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finally compute a random square root of z;” + p2i mod x ,  for some bit czi and 
any i = 1, . . . ,2n. Then completeness follows from these observations and the 
completeness of (E,F). 
Soundness. We distinguish two cases. First, assume that z is not a Blum inte- 
ger. Then from the soundness of (E,F), we have that B accepts with negligible 
probability. Then, assume that y1, y2 are quadratic residues modulo x and that 
B accepts. Then the two strings p1, pz can be written as the concatenation of 
integers that are the product of a quadratic residue and YJ””, for some bit dji. 
Thus each string pj is made of 2n quadratic residues modulo x, and so is also 
uz, as B verifies that u2i = pli . pz, mod x, for every i = 1,. . . ,2n. The event 
that u2 is made of all quadratic residues happens with probability 1/2’”. Then 
the probability that there exists a modulus 2 such that B accepts is at most 
2”/2’” =1/2” ,  which is negligible. 
Perfect Zero-Knowledge. We give a simulator M such that,  for each (2, y1, y2) E 
OR, the output of M on input (2, y1, yz) and the view of B in the protocol (A,B) 
are identically distributed. Let N be the simulator for the non-interactive perfect 
zero-knowledge proof system (E,F) for the language of Blum integers. 

Input to M: (2, y1, y ~ )  E OR, where 1x1 = n. 
Instructions for M: 
1. Run the algorithm N on input x obtaining as output (a1, Pf); 

set Proof = P f ;  
2. For i = 1,.  . . , 2n ,  

uniformly choose uli, ~ 2 i  E Z:, and dl;, d2i E ( 0 , l ) ;  
set ~ 1 i  = yCd” . u$ mod 2 and rzi = yTdzi . 
set 6 2 ;  = q i  . T Z ~  mod x ;  
set Proof = Proof o (uli, uzi )  o ( d l i ,  d2i) o (qi, ~ 2 i ) .  

mod z; 

3. Set a = a1 0 uzl o . . . o a ~ , 2 , ,  and output (a, Proof ) .  

It is easy to see that the simulator runs in probabilistic polynomial time. NOW 
we prove that the output of M and the view of B in the protocol are equally 
distributed. First of all let us prove that for each i = 1,. . . ,2n, it holds that 
dl;, dzi are uniformly distributed bits both in the output of M and in the view of 
B. This happens as in the output of M both dli and dzi are uniformly chosen over 
(0 , l ) ;  and in the view of B one of them, say dl,, is uniformly chosen over (0, l}, 
and the other, dz;, satisfies u;j = z?’ u2i . pli mod x, where z2 is a quadratic 
non residue modulo x. We see from the above equation that the value of dzi 
depends from the quadratic residuosity of azi, and so it is uniformly distributed 
over ( 0 , l ) .  Then we see that for each i = 1, .  . . , 2 n ,  it holds that uli, uzi, Tli, 72i 

are randomly distributed integer in 2; such that u:j = ytl* a q i  mod x and 
uij = y;” . ~ 2 i m o d  z both in the output of M and in the view of B. Finally, 
also u1 is equally distributed in both spaces, from the perfect zero-knowledge of 

-1 

(E,F). 
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Now, let us briefly explain how this protocol easily extends to  proving an 
OR of any poiynomial number m = 1 ~ 1 ~  of quadratic non residuosity modulo 2 
statements. The input is then (2, y1, . . . , ym). Assume that y,,, is a quadratic non 
residue modulo 2. Then the prover computes a string r, for each yj in a way much 
similar as in the algorithm A. More precisely, strings rj, for j = 1 , .  . . , rn - 1 
are computed as p 1 ,  and the last string T,,, is computed similarly to  p2: by 
multiplying all elements in previous strings rj and the relative element of 6. The 
remaining parts of the protocol are constructed exactly as in (A,B). 
Let (A,B)m be the above protocol, and let OR, be the language of (mt-1)-tuples 
(2, y1,. . . , ymj such that 2 is a Blum integer and at least one of y l , . .  . , ym is a 
quadratic non residue modulo 2. Also, let (C,D) be the non-interactive perfect 
zero-knowledge proof system for the language NQR. Then we have the following 

Theorem 4. (A, Bjm i s  a non-interactive perfect tero-knowledge proof system 
for  the language ORml such that the length of the random reference string used 
b y  (A,B),  is the same as that used b y  (CID). 

This result improves the protocol to prove an OR of m quadratic non residuosity 
statements given in [lo], which needs a reference string of length O(m) times 
that of the random string used by (C,D). 

4 A multi-bit commitment scheme 

In this section we describe a scheme (S,R) in which a sender S can commit to  
many bits and reveal one of them at each round to  a receiver R. The main 
property of this scheme is that it can be implemented with a small amount of 
randomness. The scheme will be used to reduce the randomness of the veri- 
fier in the construction of a randomness-efficient perfect zero-knowledge proof 
system for proving any polynomial number of quadratic non residuosity state- 
ments. Similar techniques have already been used in literature, e.g. in [9] where 
efficient weak-to-strong bit commitment schemes are presented, using univer- 
sal hash functions. Also, in [22] general techniques for efficient weak-tc-strong 
bit commitment schemes have been given. First of all, let us define a multi-bit 
(weak-to-strong) commitment scheme. 

Definition 5.  A (weak-to-strongr multi-bit commitment scheme is a two-phase 
protocol with two participants: a (weak) sender with probabilistic polynomial- 
time computing power and a (strong) receiver with unlimited computing power. 
In the first phase (the commitment phase), the sender has m bits b l ,  . . . , b ,  and 
commits to  them by computing an (m+l)-tuple of “keys” (Com, Decl,  . . . , Dec,) 
and sends Corn (the commitment key) to the receiver. The second phase (decom- 
mitment phase) can be divided in m subphases. In each of these m subphases 

Such commitment schemes have been referred in the literature also as 6106 schemes, 
see, e.g., [8 ] ,  and statistically hiding bi t  commitment schemes, see, e.g. [9]. 
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the sender reveals the bit bi along with Deci (the i-th decommitment key) to  
the receiver. A (weak-to-strong) multi-bit commitment scheme has the following 
two main properties: security and correctness. The security property states the 
following: for each i = 0, .  . . , m - 1, from Com and Decl, . . . , Deci, the receiver 
cannot guess bi+l with probability significantly better than 1/2. The correctness 
property states the following: for each i = 1, .  , . , m, the receiver obtains a valid 
decommitment key for a bit c i ,  and he is sure that the sender is revealing the 
same bit bi to which he committed before. 

We observe that given a (weak-to-strong) 1-bit commitment scheme, it is possible 
to obtain a (weak-to-strong) multi-bit commitment scheme by just using the 1- 
bit scheme for each of the many bits. In this case, however, the amount of 
randomness used in an m-bit commitment scheme is m times that used in a 1- 
bit scheme. Our m-bit commitment scheme is also derived from a 1-bit scheme, 
but uses an amount of randomness equal to only twice the same amount of the 
1-bit commitment scheme. The 1-bit scheme that we use is the following folklore 
scheme: on input a Blum integer X, and in order to commit to a bit b ,  the sender 
uniformly chooses an integer P E 2:' if b = 0 and T E 2;l if b = 1 and outputs 
w = r2 mod X. In order to reveal bit b ,  the sender sends r and the receiver sets 
b = 0 if r E Z:', and b = 1 if P E Zcl. It is easy to see that the receiver obtains 
a uniformly distributed quadratic residue modulo x for both values of b .  Also, if 
the sender can reveal the commitment in two different ways, then he knows two 
different square roots modulo x of w and thus he can factor X. Now we extend 
this commitment scheme to a multi-bit commitment scheme (S,R), using only 
twice the same amount of randomness. The correctness property is still based 
on the intractability of factoring Blum integers. 

Input to S and R: A Blum integer z and m bits bl , . . . , b,. 
Commitment Phase 

S: Uniformly choose wo E 2:' and s E 2;'; 
for i = 1,. . . , m, 

set Com = ( s ,  w,) and send Com to R. 
set ri = W i - 1  . sbi mod 2, wi = r: mod x and Deci = P i ;  

R: Verify that s E Z;I. 
Decommitment Phase 

For i = rn, . . . , 1, 
S: Send (b i ,Deci )  to  R. 
R: Let Z j  = Reci;  verify that z; = .zi+l * sbi mod x; 

verify that ( ~ i  E 2;' AND bi = 0) OR (zi E Z;' AND bi = 1). 

The security property of the above scheme follows from the following obser- 
vation: for any m-tuple of bits b l ,  . . . , b ,  input to  (S,R), the integers w, and 
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Decg, . . . , Dec, sent by S are uniformly distributed quadratic residues mod- 
ulo +. The correctness property of the above scheme follows from the following 
observation: If any sender can correctly reveal two different bits in the i-th de- 
commitment subphase, then he sends two different square root modulo z of a 
same integer z t ,  and thus he can factor z. The above discussion informally proves 
the following 

Theorem 6 .  If factoring Blum integers is hard, then (S, R) i s  a (weak-to-strong) 
multi-bat commitment scheme such that the number of random bits used in (S,R) 
does not depend on the number of  bits committed. 

A formal proof will appear in the final paper. 

5 Many statements on a single random string 

In this section we give an interactive perfect zerc-knowledge proof system (P,V) 
for proving any polynomial number (in the size of the input) of statements of 
quadratic non residuosity modulo a Blum integer z, in which the length of the 
private random string used by the prover is, apart for a small constant factor, the 
same as that used in [19] for proving a single quadratic residuosity statement. 

We consider the language of (rn + 1)-tuples (2, y1,. . . , ym), such that x is a 
Blum integer, and y1, . . . , ym are quadratic non residues modulo z; formally: 

AND, = { (z YI, . . . , ym ) I x E BL, yi E 2;' , yi E N&&, for i = 1,  . . . , m}, 

An informal description. The main ideas of this protocol are: 1) a four round 
interactive perfect zero-knowledge proof by combining a coin-tossing protocol 
between P and V with a non-interactive proof by P (a similar technique has 
been used in [ll]), and 2) P uses the non-interactive proof of quadratic non 
residuosity of an integer yk and V's challenges in order to compute the next 
non-interactive proof for the integer Yk+l ,  without using any random bits. More 
precisely, in the first three rounds P and V run a coin-tossing protocol, in which 
V commits to his random bits using the scheme (S,R) of previous section. After 
the coin-tossing protocol both parties can compute a random reference string u. 
P writes the string CT as p o T; then, T will be used only once to prove that x is 
a Blum integer using, e.g., the proof system in [ll], and p will be used to prove 
that all the yi's are quadratic non residues modulo z. Now, P proves that the 
first integer y1 is a quadratic non residue modulo the Blum integer 2, by using a 
modification of the non-interactive proof system (C,D) of [4] and p as a reference 
string. More precisely, he takes 2n integers pi E Z$l from the string p; then he 
randomly chooses a square root si,l  E 2;' of pi . yf'" mod z, for some bit di,l, 
and sends si,: to V. Now, observe that the proof for yl constituted by the s;,l's 
looks very similar to the random integers p i .  In fact, both the s i , l ' s  and the pi's 
are integers in Z$'. Now, V will reveal other 2n bits b;,2 to which he committed 
in the first round, and P will give a non-interactive proof for y2 as for y1, but 
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using as a random reference string the 2n integers ui,2 = ( - 1 ) ' ~ ~ 1  . si,l mod 2. 
We observe that as -1 is a quadratic non residue modulo 2, then the quadratic 
residuosity of the ui,z's is thus uniformly chosen by V. The proof system (P,V) 
continues analogously for the other integers yj. For a better exposition, we avoid 
to be very formal in our step-by-step description of (P,V). 

Input to P and V: (z,y1,. . . , ym) such that 1 1 1  = n,  and m = nC. 
Input to P: 2's factorization. 

(Proving the first statement ' y 1  E NQR: . )  
v.1. Uniformly choose 2nm bits b i , k  and 10n2 bits e, ;  

P.l Uniformly choose 50n2 bits c i  and send them to V. 
V.2 Use algorithm S to reveal all bits d ,  to P. 
P.2 Use algorithm R to  check that V had committed to bits e,; 

use algorithm S to commit to them and send Com to P. 

compute u as the bitwise xor of the c i ' s  and the e i ' s ;  let LT = p o r; 
prove that z E BL, using the algorithm E and r as a reference string; 
for each of the first 2n integers p i  E 22' from p, 

if pi E QR, uniformly choose s i , ~  E Zz' such that. ~ 1 , ~  = p; mod z; 
if pi E NQRo uniformly choose s , , ~  E Zzl such that 
set ui,l = pi and send s i , l  to V. 

V.3.1 Use algorithm F to verify the proof that 2 is a Blum integer; 
verify that s ? , ~  = y;'*' . u ; , ~  mod z for some bit d i ~ ,  and i = 1,. . . ,2n; 
use algorithm S to  reveal other 2n bits b i , 2  to P. 

= yl . p i  mod 2; 

I (Proving the k- th  statement ' v k  E NQRL, for k = 2 , .  . . , m . )  

P.3.k For i = 1 ,..., 2n, 
use algorithm R to check that V had committed to bit b i , k ;  

Set U ; , k  = 
if U i , k  E QR, uniformly choose s i , k  E z2' such that s ? , k  = U i , k  mod Z 

if U i , k  E N Q R ,  uniformly choose S , , k  E Z:' such that 

send S , , k  to V. 

. S i , k - 1  mod 2 ;  

S?,k = Y k  . U i , k  mod Z; 

V.3.k Verify that s f , k  = yitSk . U i , k  mod x for some bit d i , k ,  and for i = 1 , .  . . ,2n  
use algorithm S to reveal other 2n bits b i , k  and send their D e c ;  to  P. 

V.4 If all the verifications are successful then accept else reject. 

We see that our protocol is very randomness-efficient. In fact, the only random 
bits used by the prover are those chosen in step P.l. Then, the length of the 
random string used by the prover in order to prove m quadratic non residuosity 
statements is the same, apart from a constant factor, as in [19] for proving a 
single quadratic residuosity statement. Also, the length of the random string 
used by V during a proof of m quadratic non residuosity statements is equal to 
a 10na-bit initial random string (needed in the proof that t is a Blum integer), 
and then only 2n random bits for each new statement (needed for the soundness 
in the proof of each new statement). In [19] the verifier uses n random bits for 
a single quadratic residuosity statement. 
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For the completeness requirement, observe that if x is a Blum integer and 
all integers y 1 ,  . . . , ym are quadratic non residues modulo 2, then P, using 2’s 
factorization, can run algorithm E, compute the quadratic residuosity of the ui’s 
and compute the square roots belonging to 2;’ of the integers U i , k  mod I ,  

for some bits d i ,k .  Thus V accepts with overwhelming probability. 
For the soundness requirement, first of all assume x is not a Blum inte- 

ger. Then V accepts with negligible probability from the soundness of (E,F). 
Now, suppose that y 1 ,  . . . , Y k - 1  are quadratic non residues modulo x and Y k  is 
a quadratic residue, for some k (1,. . . , m}. We observe that the proof for 
y k - 1  sent by P’ is made of integers S i , k - 1  E Z$’, whose quadratic residuosity 
is chosen by P’ (we recall that both S i , k - l  and - S i , k - l m o d  x are integers in 
2;’ and square roots of a same number). On the other hand, the quadratic 
residuosiiy of the u i , k ’ s  forming the random string on which P’ has to prove y k  

is given by the quadratic residuosity of the S i , k - l ’ s  sent by P’ xored with the 
new random bits b i , k  revealed by V. Then if V accepts the u i , k ’ s  associated to y k  

are all quadratic residues modulo z, and thus P’ has given his s i , k - l ’ s  such that 
the quadratic residuosity of each S;,k-l’S is exactly equal to  b i , k .  This implies 
that P’ has guessed 2n bits b i , k  to which V committed in the first round, but 
this happens with probability at most 1/22n, for the security property of the 
multi-bit commitment scheme (S,R). Thus, the probability that there exists an 
n-bit modulus x such that V accepts the proof of any possible y k  E QRs is at 
most rn 2”/22n = rn/2”, which is negligible. 

For the perfect zero-knowledge requirement, we sketch a description of the 
simulator M on input (I, y1, . . . , ym) E AND,. The simulation of the proof of 
the first statement can be easily derived from that in [ll]. Now we describe the 
simulation oc lhe proof of the k-th statement. Assume that M has successfully 
simulated the first k - 1 proofs. This implies that he has learned all the questions 
b i , j  of V‘ relative to them, and that he has just sent to V’ the proof for Y k - 1  

consisting in 2n integers 6 i , k - 1  E 2:’. Then M receives from V’ other 2n bits b i , k  

to which V’ had committed in the first round. After learning bits b ; , k ,  M simulates 
again all P’s messages of the proofs of the j-th statements, for j = 1 , .  . ., k - 1, 
in such a way that he can simulate also the proof of the k-th statement. He 
does this in the following way: let d i , k  be the bits sent by V‘ relative to the 
j-th proof. Then M uniformly chooses 2n integers s j , k  E 22’ and computes 
u i , k  = y k  . s : , ~  mod x, and S ; , k - l  = u i , k  . ( - l ) b a s k  mod 2. M computes the S i , j  
and u i , j  for j < k analogously to  the above S i , k - l  and U i , k .  Also, he computes 
the bits Ci analogously as in the simulation of the proof for y1. Now M rewinds 
V’ to the state just after his first step and sends the messages just computed to  
V’ in the proper succession in order to  simulate P’s messages. We observe that if 
V‘ does not change any of his decommitted bits, then M succeeds in simulating 
all proofs of the first k statements. On the other hand, if V’ reveals some bits 
in different way, then by the security property of the multi-bit commitment 
scheme (S,R), V’ sends to  M two different square roots of a same quadratic 
residue modulo I. Thus M can factor z and simulate perfectly the protocol by 
just running the algorithm of P. 

dt,k 
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T h e  above discussion informally proves the following 

Theorem 7 .  (P,  V )  is a perfect zero-knowledge proof system for the language 
AND, such that the length of the random string used b y  P is, up to  a small 
constant factor,  the same as in the proof system in [i9] for the language QR. 
Moreover, the number of the random bits used by V is 2lxlrn+ O(1~1~).  

A formal proof will appear in the final paper. 
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