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Abstract. This paper describes in detail a recent smart-card prototype that 
performs a 20-bit zero-knowledge identification In less than one second on a simple 
8-bit microcontroller without any dedmted crypto-engme aboard. 

A curious property of our implementation is its inherent linear complexity : unlike 
all the other protocols brought to our knowledge, the overall performance of our 
prover (computation and transmission) is simply proportional to the size of the 
modulus (and to its square). 

Therefore (as paradoxical as this may seem ...) there will always exist a modulus 
size P above whch our software-coded prover will be faster than any general- 
purpose hardware accelerator. 

The choice of a very unusual number representation technique @articularly 
adapted to Fisher-Micali-Rackoffs protocol) combined with a recent modulo 
delegation scheme, allows to acfueve a complete 20-bit zero-knowledge interaction 
in 964 ms (with a 4 MHz clock). The microcontroller (ST16623, the prover), which 
communicates with a PC via an I S 0  7816-3 (115,200 baud) interface, uses only 
400 EEPROM bytes for storing its 44-byte keys. 

An overhead video-projected demonstration will be done at the end of our talk. 

1 Introduction, Context and Basic Bricks 

Although crypto-dedicated smart-cards are an industrial reality since several years, the 
price of these components is still too high for their massive generalization. As a result, the 
coding of public-key primitives in simple 8-bit microcontrollers is an important commercial 
issue with a wide gamut of practical applications. 

In the past, several software-only implementations were proposed : the first (and 
probably the best known) is the Fiat-Shamir implementation in the pay-TV system 
Videocrypt. In Ewocrypt’94, Naccache, M’raihi, Vaudenay and Raphaeli [7] described a 
DSA variant based on the pre-computation of ready-to-use sigrzuture-coupons. The NIST 
has an implementation of the DSA on an 8-bit microcontroller and other remarkable 
developments in this domain were achieved by Quisquater, Chaum and Fiat’s company 
Algorithmic Research Limited. 

L.C. Guillou and J.-J. Quisquater (Eds.): Advances in Cryptology - EUROCRYPT ’95, LNCS 921, pp. 404-409, 1995. 
0 Springer-Verlag Berlin Heidelberg 1995 
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1.1 Fischer-Micali-Rackoff‘s Protocol 

In Eurocrypt’84, Fischer, Micali and Rackoff [4], presented a factoring-based zero- 
knowledge protocol for proving the knowledge of a secret s (which modular square v is 
published by the prover). 

In itseK this protocol (actually a Fiat-Shamir [3] with k = 1) is very simple : 

2 0 The prover picks a random r, computes and sends to the verifier x = r mod n. 

Q The verifier replies with a random challenge bit b. 

(3 

@ and the verifier makes sure that y2  = x v mod IZ 

If b = 0, the prover replies with y = r 
If 6 = 1, the prover replies with y = r s mod n 

b 

The security of this perfect zero-laiowiedge protocol is formally established under 
the sole assumption that factoring IZ is impossible (we incite the reader to consult [2], [3] 
and [4] for more details about this method and its numerous generalizations). 

1.2 The Brugia-di Porto-Filipponi (BPF) Number Representation System 

C 
Denoting by { p i }  a set of c co-prime integers, any positive integer x < g = np; can be 

uniquely represented by the list {xmodpl,xmodp2, ..., xmodp,}. 
i = l  

This representation [I] has the distinct advantage of allowing to perform a 
multiplication in h e a r  (instead of square) complexity : if x and y are represented by the 
lists {x i ,  x2,. .. , xc } and { y1, y2 , .  . . , yc} then their product z = x y will correspond to : 

{q = xlnmodpl ,z2  = x2y2 modp2, ..., zc = xcyc modpcJ 

Note that addition (or subtraction) is still linear in this notation (replace the 
elementwise multiplication by additions or subtractions modulo p i )  but modulo reduction is 
unfowately far fiom being easy (the simplest method seems to be a Chinese remaindering 
followed by a conventional division). However, a particular property of Fischer-Micali- 
Rackoff s protocol allows the prover to skip the modular reduction as will be seen later. 

Note that if the co-primes are very different from the maximum capacity of the 
machine words (for instance the fist  c primes), a considerable redundancy is introduced in 
each number, a more subtle coding allows to limit this redundancy to it’s strict minimum 
(only 2 bytes are (( lost )) in each 128-byte value represented on 130 bytes). By choosing 
p1= 64811 and pc = 6552 (the biggest possible two-byte prime), most of the most (and 
this is not a typographic error) significant bits of pi are ones1 . 

with this setting, g r 8.1 x is the hexadecimal number : 
bO306dfa1Od2bac63339d5fe274fc9ea61d4938dd4c706ea747307fc4efl465ea492 14e3035247053 If 
de44942461730afeca9lc365bc9d867be7e06a46ceeb01ef910a47167592b6b3c8b837f690ccOaff~b7 
06ac22de64bc8d3f7 8fc90a350Sdl OeaS47~63e86983f9868d78084bS533044dS6Scl d6f40053 396e 
c2f7783f4d61 
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After a BPF list-multiplication (scalar product), the terms of the resulting list are 
reduced modulo pi with Montgomery's algorithm [S] (this operation, which consists in 
reducing each 4-byte coordinate modulo a 2-byte pi requires eight byte-by-byte 
multiplications per co-ordinate and does not affect the overall time linearity). 

In our paiticular implementation, the Montgomery parasite factors ( 2-16 mod p i )  
are not eliminated by the card as this operation can be trivially sub-contracted to the 
verifier. 

1.3 Randomized Modular Multiplication 

In the European patent application EP 91402958.2, Naccache [6] describes how to 
delegate the modular reduction of the product of two integers to a p o w e h l  verifier. In this 
procedure (the exact parameter sizes and a complete security proof can be found in 
Shamir's Eurocrypt'94 paper [XI), the sender simply adds to the product a random multiple 
of the modulus which is eliminated by the receiver. In other words, instead of sending 
z = xymodn, the prover sends z'= xy+rn (where r's role is to mask the non-reduced 
product ~ y ) ~  and the receiver computes z = z'mod n. 

This technique is applied by our prover in the following way : after the scalar 
product, n (pre-recorded in the card's EEPROM in BPF format) is multiplied by a random 
r and added on-the-fly (as there is no cany propagation in BPF format) to the product 
(r20r s r )  which is sent to the verifier3 . 

2 The Protocol 

Given these building bricks, implementation is straightforward 

2 0 The card picks a random Y, computes and sends to the PC x = r + r' II 

Y' is an on-the-fly randomizer and x is represented in BPF format. 

8 The PC 

0 eliminates the Montgomery constants in each coordinate of x 
0 re-codes x in the conventional format (Chinese remaindering) 
0 replies with the bit b. 

(3 If b = 0, the card replies with y = r 
If 6 = , the card replies with y = rs + r"?z (1'' is an on-the-fly randomizer). 

r should normally be bigger than n by about ten bytes. 

The generation of a pseudo-random r, both in BPF and such that : [&I 5 r 5 280 +[&I is 

done, in O(log(rt)), by a proprietary algorithm 
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0 eliminates the Montgomery constants in each coordinate ofy 
0 re-codesy as a conventional number and checks that y = xv modn 2 b  

Note that the verifier can easily check the prover’s answer in linear time when b = 0 
(the prover can then reveal Y‘ which would allow to the verifier to check the responsive in 
BPF). The linear-time verification of the prover’s answer if b = is still an open problem (a 
positive answer will mean that factoring-based zero-knowledge identification and 
verification are both feasible in linear time). 

Although very low, the complexity attained by OUT prover is not a provable 
minimum : it is tempting to imagine that a sub-linear complexity would simply mean that 
some of.th’e modulus bits are not read by the prover but (surprisiingly) such may be the case 
if the modulus is voluntarily chosen to be redundant (for instance, n can be generated to be 
compression-suitable). Also, and as paradoxical as this may seem, there exists a modulus 
size e above which our sohare-coded verifier will be faster than any general-purpose 
hardware accelerator. 

3 Implementation and Performances 

The communication amount requested by our prototype is 285 bytes per round (5700 for 
jumping over <( mystic )) 1/1000,000 security level barrier). When transmitted according to 
the I S 0  7816-3 standard at 115,200 bauds this transmission takes 0.6 seconds). 

An EEPROM option allows to halve the communication by allocating 128 
additional bytes and using 3 different secrets (without multiplying them by each other as 
done in the Fiat-Shamir : after the commitment phase, the vedier simply ((points )) the 
secret key he wants to be used in the round). 

The code size (approximately 900 bytes), breaks down as follows : 

ROM cons t a n  ts : 
compressed prime table 
Montgomery constants 

102 bytes 
256 bytes 

ROM code : 
communication routines 200 bytes 
BPF multiplication 120 bytes 
Montgomery 4-byte reduction 3 0 bytes 
randomized multiplication core 200 bytes 
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3 
7 
1s 

EEPROM d a t a  
n 

card ID 
other  << bookkeeping >> d a t a  

S 

2850 bytes 658 ms 
1420 bytes 432 ms 
710 bytes 314 ms 

130 bytes 
130 bytes 
64 bytes 
64 bytes 

The following table illustrates four of the possible trade-offs of our mask 

number of secrets 1 transmission 1 p rotocol time 
1 I 5700 bytes I 964 ms 

Table 1 : Possible trade-offs for a security level of 2-20 and a 4 MHz clock 

4 Further Extensions : Two-way Authentication 

As explained in [6], the randomized multiplication can be applied to Rabin’s scheme as 
well. 

This can be applied to implement a very quick two-way authentication (not 
implemented in our prototype) where the card authenticates the PC as well : 

0 The card picks a random r, and sends x = Y’ + r h  (in BPF) and y = CRC(r). 

QThePC:  
* remainders x, reduces it modulo IZ and computes its roots inodulo n 
* discards the roots which CRCs do not correspond toy 
* encodes the remaining root w in BPF and sends it to the card 

0 The card compares w and r. 

G- 

before being sent to the card.. . 
Different rzs should be used for sections 2 and 4 and w should not be randomized 

5 Acknowledgments 

The first author would like to acknowledge Jacques Stern’s suggestions and improvements 
regarding the randomized multiplication. 
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6 Note 

This paper does not represent a complete product description, nor does it reflect or 
represent, in any manner, Gemplus’ intention to mass-produce cards using the features 
herein described. Availability of such final products may depend on commercial agreements 
between Gemplus and third parties. Gemplus offers no guarantee that such cards will be 
fiee of licensing rights belonging to third parties or related to Gemplus’ patented 
technologies. 
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