
Anonymous NIZK Proofs of Knowledge
with Preprocessing

Stefan0 D'Amiano" and Giovanni Di CrescenzoW

Abstract. In this extended abstract we present an unpublished result in
[6] which extends a result in [4]. We give a non-interactive zero-knowledge
proof system of knowledge with preprocessing, whose main property is
that , after executing two preprocessing phases and given a transcript of
a proof phase, the verifier is not able to relate the transcript to any of
the two preprocessing phases significantly better than random guessing.
The technique used has motivated the cash scheme in [3] . Because of this
result, only mentioned b u t used in [3], the main observation of Pfitzmann
et al. in [8] against the cash scheme in [3] doesn't hold. We also discuss
the other observations of Pfitzmann et al. in [8] against the cash schemes
in [3, 51 and show that all of them don't hold. As a conclusion, the cash
schemes in [3, 51 are not broken a t all.

1 The result

A non-interactive zero-knowledge (nizk) proof system of knowledge with prepro-
cessing is a pair of protocols (preprocessing,proof) between two parties P and
V in which, after an int,era.ctive preprocessing, P can send with a single message
to V a zero-knowledge proof that P knows a witness to the truth of a certain
statement. Such a system can be used in an electronic cash system by a spender
to prove to a shop the knowledge of a signature of a coin released by the bank.
Informally, we will say that a nizk proof system with preprocessing is anonymous
if any verifier V', after running a pair of preprocessing protocols, and given the
transcript of any proof protocol, cannot relate the proof protocol to one of the
two preprocessing protocols with probability significantly greater than 1/2.

Our result says that the nizk proof of knowledge with preprocessing given in
[4] for all N P languages can be made anoriyrrious. Let us briefly recall the system
(A,B) in [4]. Let u be a public random reference string. In the preprocessing
phase the prover A computes a commitment corn to a string s using coins r
and interactively proves the statement H:'I know s and r such that corn is a
commitment to s , using coins r ' . The verifier B verifies this proof. Now, let L
be any NP-complete language, and let (2, w) be a pair (instance,witness) such
that the prover wants to prove that he knows the witness w such that x E L.
In order to prove this, A first computes p = w @ fs(x), where fs is a pseudo-
random function, and @ is the bitwise logical xor operator. Then A gives a nizk
proof proofT (of membership) on the public random reference string u of the

* Computer Science Department, Cornell University, Ithaca, NY, USA
Department of Computer Science and Engineering, University of California, S ~ I I
Diego, La Jolla, CA, 92093

**

L.C. Guillou and J.-J. Quisquater (Eds.): Advances in Cryptology - EUROCRYPT '95, LNCS 921, pp. 413-416, 1995.
0 Springer-Verlag Berlin Heidelberg 1995

41 4

statement T : ‘there exist strings T , s, w such that corn is a commitment to s
using coins T , w is a witness for 2 E L , and p = w @ fs(z)’. In order to verify
this proof, B needs the string corn obtained in the preprocessing phase. The
view of B in the preprocessing is (corn, H , p r o o f ~) and a transcript of the proof
phase will be (p 7 u, T, proof^). Clearly, here the statement T used in the proof
phase contains the commitment corn used in the preprocessing phase. Thus, after
running two Commitment phases, given the two views (cornl, H1 ,p roof~ , and
(corn:!, H2,proof~,) and the transcript (p, u, T , p r o o f ~) of a proof phase, B can
check if the commitment used in T is cornl or corn2 and thus associate the proof
with exactly one of the two preprocessing run.

Our extension is simply stated; our proof system (P,V) is the same as the
above (A,B), with the following two modifications. First, in the preprocessing
phase V also signs the commitment corn and sends the signature sigeom t o P.
Second, in the proof phase, instead of the above statement T , the prover uses
the statement T’: ‘there exist strings r , s, w , corn, sig,,, such that corn is a com-
mitment to s using coins r , 20 is a witness for 2 L , p = 2u@fs(z) and sig,om is
a correct signature of corn’. Then the view of V is: (corn, sigcom , H , p r o o f ~) in
the preprocessing phase, and (,8* u, T’, p r o o f p) in the proof phase. Now the two
views are not related, thus a transcript of a proof phase cannot be matched with
a view in the preprocessing phase. The formal proof is based on the following
idea: assume by contradiction that there is an efficient non-uniform verifier V’,
which, after running two preprocessing phases prep1 and prep2 , and getting a
transcript pf of a proof phase, can compute i E { 1,2} such that pf is the proof
associated to the preprocessing p r e p i . Then, it is possible to use V’ in order
to construct an efficient algorithm A which efficiently opens commitments or
contradicts the zero-knowledgeness of the proof system used, or contradicts the
pseudo-random property of the function used.

Finally, we remark that this technique has been used in the cash scheme in
[3] in the construction of the withdrawing and the spending protocols.

2 The observations by Pfitzmann et al.

In the paper [S], Pfitzmann et al. make some observations against. tbe cash
scheme in [2] ’. Now, we consider ail the observations in [8] and shofv that d l
of them do not hold.
The main untraceability paw: In their first observation, Pfitzmann et al. state,
without proof, that our protocol in [2] doesn’t satisfy the untraceability require-
ment because by receiving a proof of knowledge in a deposit protocol, the bank
can link it to the user who run the preprocessing when opening his account. Also,
they write ‘This is a general problem with NIZKP with preprocessing: At least
as long as preprocessing is a 2-party protocol, any reference to it, i.e., any proof,
identifies the two parties...’. In [3] the protocol presented in previous section is

This version was the result of a few-days two-paper merging; unclearly, the proceed-
ings version [3] has never been asked.

41 5

used, with only a sketch of description, as the same technique extending [4] is
used in the construction of the protocols for withdrawing a coin and for spending
a coin in the electronic cash scheme. As the above proof system is anonymous,
the observation by Pfitzmann et al. is wrong. In particular we stress that it is
not true that nizk proofs with preprocessing cannot be used in cash schemes.
Weakness of t he definition of untraceability: Here Pfitzmann et al. criticize our
definition of untraceability, as it does not require untraceability against pay-
ees. We answer by noticing that in our paper, after giving the protocols for
withdrawing a coin and spending a coin, we discuss in Section 6 that, by sim-
ply applying one of the many secret-sharing based techniques for avoiding the
double-spending of a coin, we easily obtain a cash system. This scheme clearly
satisfies also untraceability against payees (but it doesn’t give transferability!).
However, we don’t prove such an easy statement, and thus we don’t need a def-
inition for it. Thus we investigate transferability of coins and we obtain the first
cash scheme in which coins can be transferred without increase in size. This
result was not known. Untraceability against payees is not required in it: on the
other hand, if it was, then such result would not be possible, as proved in [l].
An untraceability f law in double-spending detection: Here Pfitzmann et al. write
‘Until the double-spender is detected, the bank cannot prove that a coin was
double spent, i.e., the users have to believe this. Thus, a dishonest bank could
always claim that the coin was deposited twice in order to get the payees to
disclose the payers’. This is not true, as in our protocol, the bank discovers that
a double-spending has occurred froin the fact that she receives two signatures
of a same coin; in fact, in Section 6 we write ‘the bank broadcasts a message
stating that a double-spending of c has occurred ... to prove this, she writes on
the public file the two different signatures of c’.
Finding the wrong double-spender: A first observation by Pfitzmann et al. here
is: a user ‘may have received the coin twice, e.g., from an attacker a t different
times. In this case, the honest user is likely to be found before the attacker and
punished as the double-spender.’ This is not true; in fact, when we discuss the
single spending requirement, we never say that the first user found to have spent
twice the coin is punished. We say that ‘the bank uses the signatures received
to reconstruct the two paths ... that have been taken . . . by the coin c’; this
clearly means that the bank will first receive all signatures and then she will
reconstruct the whole paths taken by the coin, where the double-spender is the
source of these paths. A second observation here is a situation in which a honest
user HI spends twice the same coin as he received it twice. They say ‘HI has
two completely identical signatures from A l , so she cannot prove she got the
coin twice and is punished’. Here Pfitzmann et al. assume that for signature
schemes constructed under general cryptographic tools, two signatures on the
same messages are equal. This is clearly not true (see [7] and references therein),

Also, when presenting the system in [2], they observe that ‘The protocol in [AmCr]
is ambiguous about whether the coin must be passed’. In [2] actually it is written
‘send c, Proof to U2 ’ instead of ‘send c, Pro0 f to U2 ’; however no other occurrences
are in the paper for C (except for Chaum).

416

and actually if it was true, then the results in [7] would prove that nizk proofs of
membership are equivalent to general cryptographic tools, i.e. , one-way functions
(an open problem about nizk proofs).
NO divisibility logether with transferability: Here it is observed that complexity
parameters are not reduced in our divisibility scheme. This is not true, in fact
in Section 5 we write ‘...to spend a part of c, say, of value 2 k - h , a user Uj gives
only the random string used for the commitment at a node at level h’. We stress
that the most expensive complexity parameter used in our construction is just
the number of random bits used in commitments, (it is usually one order bigger
than the others).
Achieving weak untraceability more easily: Here an alternative solution to obtain
untraceability with respect, to the bank is suggested by Pfitzmann et al. Unfor-
tunately, the suggested solution doesn’t work: a coalition of the user who is
depositing the coin and the bank is enough t,o make the coin traceable.
The system presented a t CIAC 94: We also discuss the three observations about
the cash scheme in [5]. The first is that the bank cannot announce if it rejects
the withdrawal. We have always thought t8hat there are many easy techniques for
doing this, all depending from implementation; for instance, the bank can erase
the coin published by the withdrawer. The second observation is that there is no
untraceability. Of course our protocol does not satisfy a more general definition of
untraceability than that given in the paper! This definition is weaker than usual
just in order to obtain the non-interactivity of the protocol (which otherwise
seems very hard to get). However, we observe that such a definition is not very
weak; for instance, real-life cash satisfies it. The third observation seems the only
correct so far: the deposit scheme can be attacked by a chosen-message attack.
However, it is not clear which utility this attack could give, and also the scheme
is easy to repair: the user that deposits the coin just proves to know a signature,
instead of giving it (there exist such proofs in literature).

References

1.
2.

3.

4.

5.
6.

7.

8.

D. Chaurn and T. Pedersen, Transferred Cash Grows an Size, Eurocrypt 92.
S. D’Amiano and G. Di Crescenzo, Methodology for Digital Money based on General
Cryptographic Tools, Preproceedings of Eurocrypt 94.
S. D’Amiano and G. Di Csescenzo, Methodology for Digital Money based on General
Cryptographic Tools, to appear on Proceedings of Eurocrypt 94.
A. De Santis and G. Persiano, Communication Eficient Zero-Knowledge Proof of
knowledge (with Application to Electronic Cash), STACS 92.
G. Di Crescenzo, A Non-Interactive Electronic Cash System, CIAC 94.
G. Di Crescenzo, Anonymous NIZK Proofs of Knowledge with Preprocessing,
manuscript, December 1993.
S. Goldwasser and R. Ostrovsky, Invariant Signatures and Non-Interactive Zero-
Knowledge Proofs are Equivalent, Crypto 92.
B. Pfitzmann, M. Schunter, and M. Waidner, How to break another provably secure
payment system, Eurocrypt 95.

	The result
	The observations by Pfitzmann et al.
	References

