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Abstract. Group signatures, introduced by Chaum and van Heijst at 
Eurocrypt’91, allow members of a group to make signatures on behalf of 
the group while remaining anonymous. Furthermore, in case of disputes a 
designated group authority, who is given some auxiliary information, can 
identify the signer. Chaum and van Heijst presented four schemes, one 
of which protects the anonymity of the signer information-theoretically. 
However, this scheme as well as subsequent schemes with this property 
requires that the signer basically needs a new secret key for each signature 
and that the group authority secretly stores a very long string. 
This paper analyses such group signature schemes and obtains lower 
bounds on the length of both the secret keys of the group members and 
the auxiliary information of the authority depending on the number of 
signatures each is allowed to make and the number of group members. 
These bounds are optimal as they are met by the scheme suggested by 
Chaum and van Heijst. 

1 Introduction 

Group signatures, introduced in [CH91], allow members of a group (e.g. a com- 
pany or family) to make signatures on behalf of the group in such a way tha t  

- only members can make signatures, and 
- the actual member who made a given signature remains anonymous except 

- in case of dispute a designated authority (who is given some extra informa- 

Such a signature scheme can, for example, be used in invitations to submit ten- 
ders. All companies submitting a tender then form a group and each company 
signs its tender anonymously using the group signature. Later, when the pre- 
ferred tender has been selected, the winner can be identified, whereas the signers 
of all other tenders will remain anonymous. All submitters are bound to their 
tender by the signature, as the signer can be identified without his cooperation. 

that 

tion) can identify the signer. 
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1.1 Related Work 

Group signatures should not be confused with the related notion of group ori- 
ented signatures first suggested in [Boy89b] and [CH89]. Here certain subsets of 
a group of people are allowed to sign on behalf of the group. Such schemes do 
not provide a method for identifying the (subset of the) members who actually 
made the signature (see [D93] for an overview). Another related concept is that 
of multi-signatures which require a digital signature from many persons (see 
[088] and [0093]). 

Chaum and van Heijst present in [CH91] (see also [HSZ]) four group signature 
schemes: one protects the anonymity of the signer unconditionally, whereas the 
other three only give computational anonymity. The scheme giving information- 
theoretic anonymity is very simple and works as follows given any digital signa- 
ture scheme. Each member chooses a pair of keys for the signature scheme and 
sends the public key secretly to the authority. When the authority has received 
all public keys, it forms the public key of the group as a list of all the individual 
public keys in random order. Each member can now sign a message using the 
secret key. The receiver verifies that the signature is valid with respect to one 
of the keys in the public key of the group. Only the authority, who knows the 
correspondence between public keys and group members, will be able to identify 
the originator of a given signature. 

A serious drawback of this scheme is that if a member wants to sign many 
messages he needs a new key pair for each message (otherwise the signatures can 
be linked). The secret key of each group member, the auxiliary information and 
the public key of the group therefore get longer the more signatures a member 
is allowed to make. Other disadvantages are 

- Each member, P, is only protected against framing (i.e., other persona mak- 
ing a signature for which the authority will identify P as the signer) under a 
cryptographic assumption. This problem can be remedied by replacing the 
digital signature scheme by unconditionally secure signatures (see [CR91]) 
or fail-stop signatures (see [WPgO]). 

- If a new person wants to be a member, all other members must select a new 
key-pair. Otherwise, it is easy to identify the public key of the new member. 
This problem has been solved in [CP94a]. 

A scheme solving both of these problems, while retaining unconditional anony- 
mity is presented in [CP94b]. 

1.2 Results and Contents 

Although, the scheme of Chaum and van Heijst has been improved in some ways, 
it has not been possible to construct a scheme which is more efficient in terms of 
the length of secret keys and auxiliary information. This paper explains that lack 
of efficiency by giving lower bounds on the sizes of these (see Section 3). These 
bounds say that the length of the secret key of each member grows aa Tlog, n, if 
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each member can make T signatures and n is the number of members. Similarly, 
the length of the auxiliary information of the authority grows as Tn loga n. 

In order to obtain these lower bounds a definition of group signatures with 
information-theoretic anonymity is needed. This is given in Section 2. 

2 Definitions 

This section defines secure group signatures giving information-theoretic anony- 
mity. Throughout this paper M denotes the message space. 

As computational model we use Turing machines and interactive Turning 
machines rn defined in [GMR89]. In protocols (specifically, in gen in Definition 1 
below) it is assumed that each pair of participants can send secret messages to 
each other. 

Definition 1. A group signature scheme for a group of n members PI,. . . , Pn 
and an authority A is a tuple (n, k, gen, sign, tes t ,  iden). Here k is the security 
parameter, gen is a protocol involving n + 1 polynomially bounded participants 
and s ign ,  t e s t ,  iden are all polynomial time (in k) algorithms. 

- On secret inputs (k, n, PO)  from A and pi from Pi, (i = 1,2, .  . . , n), where 
each of pa, p1, . . . , pn is a random bit-string, gen produces a common output, 
pk, secret output auz to A and secret output si to each Pi. Here, pk is the 
public key of the group, s, is the secret key of Pi (i = 1,2, . . . , n) and aux is 
the auxiliary information for A. 

- sign is a probabilistic algorithm which on input si and m E M outputs 
sign(si ,  m). A string u E {0,1}* is called a correct signature on m E M, if 
there exists i E { 1,2, . . . , n} such that u = sign(si, m). 

- test  is used to test signatures. On input p k ,  rn, and a possible signature on 
m, it outputs true or false. A string u is called an acceptable signature on 
m with respect to p k  if test(pk, m, u)  = true. 

- iden is used by A to identify the signer. On input aux, m E M and an 
acceptable signature on rn, it outputs i E {1,2,.. . , n }  U {?} (the output ? 
indicates that iden could not identify the signer). 

For any i E (1,2,. . . , n } ,  and any m E M, the scheme must satisfy 

t es t (pk ,  rn, sign(si , m)) = true (1) 

and 
iden(au2, rn, sign(si, m)) = p * (2) 

Remark. From (2) it immediately follows that different secret keys produce dif- 
ferent signatures: 

V i ,  j E { 1,2,. . . , n} Vrn E M : i # j a sign(si , m) # sign(sj, m). 
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Remark. From (1) it follows that a correct signature is also acceptable (but an 
acceptable signature is not necessarily correct). 

According to the informal description in the introduction a group signature 
scheme must 

- be secure against forgeries; 
- provide anonymity of the signer; and 
- enable the authority to identify the signer. 

Each of these properties will be defined in the following. 

2.1 Security Against Forgeries 

It must be infeasible to forge signatures in adaptively chosen message attacks 
(see [GMR88]). Let F be a polynomial time algorithm, which on input plc and 
possibly auz, works as follows. 

1. Repeat the following: 
(a) Generate a message rn E M and i E { 1,2, .  . . , n};  
(b) Get s ign(s i ,  m). 

2. Output a message mo E M different from all m's generated above and 
@(mo). 

Definition2. Let a group signature scheme (n ,  l c ,  gen, sign, test ,  iden) and T ,  
polynomial in k, be given. The scheme is secure againsi forgeries after signing 
T messages if the following holds: For any polynomial time F as above getting 
at most T signatures from each Pi, for all but a negligible fraction of the keys 
(distributed according to gen), 

vc > 0 , 3 k o , V k  > ko 
Prob[test(pk, mo, c?(mO)) = true] 5 k-', 

where (mo, 6(mo)) is the output of F. The probability is over the random coins 
of signatures and the random coins of F. 

2.2 Anonymity 

Every group member should be able to make signatures on behalf of the group 
without leaking any (Shannon) information about his identity - only the group 
authority must be able to link signatures to members. Thus in the definition of 
anonymity, the authority can be trusted, but some group members may try to 
identify other members. As we are interested in information-theoretic anonymity, 
these curious members may have unlimited computing power. 

Let a non-empty subset J C_ { 1 , 2 , .  . . , n) be given. The members in J are 
assumed to  be honest, but the members outside J may deviate from the pre- 
scribed methods (no assumption about computing power) - these members are 
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denoted by Pi for j $! J. Consider an execution of gen by A,  (Pj)jcJ and (F)jg~, 
and assume that this protocol ends with a public key, p k ,  of the group and se- 
cret keys skj of Pj for j E J (otherwise the group is not set up properly). Let 
viewf denote the view (including p k )  of the faulty participants (see [GMR89]), 
and let SK(v iewf )  denote the set of possible secret keys of ( P j ) j c ~  given this 
view. This set is equipped with a distribution induced from the random coins 
of the authority and (Pj)je.r. In the following let J = { a l ,  a2,. . . , Q~JI}. Then 
SK(view1)  is a set of t U p k  (akal ,  a k a 2 , .  . . , aka,J,) .  

For all positive integers t and L,  0 < L 5 IJlt, define a subset of JL = 
J x J x . . . x J ( L  times) by 

Z J ( t ,  L )  = {(il,. . . , iL) E J L  J V j  E J : \ { I  E (1,. . ., L }  1 ir = j } l  5 t } .  

Thus each j E J appears at most t times in i = (il, . . . , i ~ )  E T J ( ~ ,  L) .  For 
J = { 1 , 2 , .  . ., n}, I J ( ~ ,  L )  will be denoted Z( t ,  L) .  

If a(mi) is a correct signature on mi E M for i = 1,. . . , L ,  then u(m) 
denotes ( a ( n l ) ,  a(rn2), . . . , ~ ( r n ~ ) ) .  For every i E I J ( ~ ,  L ) ,  “a(m) + I” denotes 
the event that there exists (sk,, , sk,,, . . . , S I E , ~ ~ ~ )  E S K ( v i e w z )  such that for all 
j E {1,2,  ..., L}:  

mj) = + j ) .  

Definition3. Let a group signature scheme (n, k, gen, sign, test, iden) and T ,  
polynomial in k, be given. The scheme provides anonymity for signing T messages 
if for any non-empty J C {1,2,. . . , n} and any F ’ ~ J  in the scenario described 
above, and for any L 5 lJlT different messages 

the following holds. Given correct signatures on these messages made by ( P j ) j c ~  

where each Pi has made at most T signatures, then for any i E ZJ(T, L), 

The probability is over the choice of (skal , S I C , , ,  . . . , skalJI) E SK(viewJ-) and 
the random coins used in the signatures. 

This definition can be generalised to allow the same message to be signed several 
times. However, we have chosen this definition aa messages in practice will be 
unique (e.g., contain a time stamp) in order to prevent replay attacks. 
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2.3 Signer Identification 

For any subset J of { 1 , 2 ,  . . . , n}, let FJ be a polynomial time algorithm, which 
works aa follows: 

1. Execute gen - the members not in J may deviate from the prescribed 
protocol. 

2. Repeat the following: 
(a) Generate a message m E M ,  and a number i E J; 
(b) Get sign(si, m). 

signature a(rn0) on mo. 
3. Output a message mo E M different from all m’s in 2 and an acceptable 

Definition4. Let a group signature scheme ( n ,  k ,  gen, sign, tes t ,  iden) and T ,  
polynomial in k, be given. The scheme provides signer identification for signing 
T messages if the following holds: For any subset J of (1,2, . . . , n}, and for any 
polynomial time algorithm FJ as above getting at most T signatures from each 
Pi (i E J ) ,  

Vd > 0,3kO, V k  > ko 
~rob[iden(nuz,  ma, o(rn0)) E {1,2, .  . . ,n} \ J] 2 1 - k-d, 

where (mo, a(mo)) is the output of FJ. The probability is over the random coins 
of 3j, and the random coins used in gen and sign. 

There are two aspects of this definition. Firstly, if IJI = n - 1 the signer must 
be identified by the authority with overwhelming probability. Secondly, it says 
that no subset of (polynomially bounded) group members can frame a member 
outside this subset. 

Remark. If the dishonest members (i.e., those outside J) are allowed unlimited 
computing power, this definition gives unconditional security against framing. 

2.4 Secure Group Signatures 

The preceding three definitions give 

Definitionti. A group signature scheme is secure for signing T messages, if it 
is secure against forgery and provides both anonymity and signer identification 
after each member has made at most T signatures. 

Remark. The definition easily generalises to let Pi sign messages, i = 1,2, . . . , n. 

3 Lower Bounds 

Based on the definition given above this section shows that the length of the 
secret keys and auxiliary information grows by the number of signatures and 
group members. In the following it is assumed that all members and the authority 
participates honestly when generating the keys, since we want to give lower 
bounds on correct keys. 
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3.1 Secret Keys 

The main idea in the proof of the lower bound of the secret keys is to partition 
the set of possible secret keys of each member into nonempty, disjoint subsets. 
Then the number of possible secret keys is bounded by the number of subsets. 

A public key pk, produced by gen, corresponds to a set of possible secret 
keys defined as 

W P k )  = t(skl,sk2,...,8kn) I3au2,POrPl,..*,Pn : 
gen(n, k, PO, pi1 - . , , Pn) = (phi (ski, sk2, . . . , a h ) ,  auz)}. 

We will omit pk in the following. The set SK(') is defined as all possible se- 
cret keys of Pi, i = l l  2,. . ., n, i.e. SK(')  is the projection of SK on the i'th 
coordinate. If 8i  E SK(') denotes the actual secret key of Pi, then 

For a t-tuple j = (il, i z , .  . . , i t )  E {1,2, .  . ., n} t  and t different messages m = 
(ml, m2,. . . , mt) define for every r,  1 5 r 5 n 

where si  is the secret key of Pi (i = 1,2, , . . ,n).  SKjr)(rn) is the set of possible 
keys of Pr which will give Pij's signature on m, for3 = 1,2,. . . , t .  

Lemma6. If a group signature scheme (n, k, gen, sign, test, iden) provides ano- 
nymity for signing T messages, then for any t 5 T, the following holds: For all 
i = (ill i z ,  . . . , i t ) ,  and any t d i e r e n t  messages 114 = ( m l ,  m2,. . . , mt), 

SK~(')(=) # 0 for r = 1,2,. . ., n. 

Proof. Assume there exist t 5 T different messages 111 = (ml ,  . . . , mt), and 
i = ( i l ,  iz, . . . , i t ) ,  such that 

SKi('")(m) = 0, 

for some ro. Let a(mj) = sign(si,, mj), j = 1,2,. . . , t  and &, = (To ,  P o , .  . . , P o ) .  
Then 

Prob[u(m) + = 0, 

which contradicts the definition of anonymity. 0 

Theorem 7. Let a group signature scheme (n, k, gen, sign, test, iden) be given. 
If it provides anonymity for signing T messages, then for  any r E {1,2, . . . n}, 



46 

Proof. First, for any t 5 T different messages m = ( m l ,  ma,. . . , mt), if 

4 = (il, iz, *.,,it) # (ii, i;, . . . , i:) = i', 

S K : ' ) ( ~ )  - n S K , ( ? ( ~ )  - = 0. 

SL E S K , ( " ( ~ )  - n SK~;)(=),  - 

then 

Otherwise there exists 

such that for some j E {1,2,. . . , n } ,  ij # is, 

s ign(sk ,  rnj ) = sign(sij ,  mj) and sign(&, mj) = sign(sif,, mj) ,  

which contradicts Definition 1 (see the remark following that definition). 
Second, by Lemma 6 ,  for any t different messages 

any t-tuple = (il, iz, . . . , i t )  E { 1 , 2 , .  . . , YI}~, 
= (ml , . . . , mt), and 

p K j r ) ( 3 ) 1  - 1 1 .  

JSK(')) 2 c lsKp(m)l - 2 n*, 

Finally, for any t different messages m = (ml , m2, . . . , mt) 

ie{l ,2r. . . ,n}t 

for any t <_ T. 0 

Thus each member must have a secret key chosen from a set of at least nT 
possible secret keys. In other words, at least Tlogn bits are needed to represent 
some of the secret keys of each group member. Thus, the length of secret keys 
grows linearly in the number of signatures. 

3.2 Auxiliary Information 

In this section, we consider the length of the auxiliary information held by the au- 
thority. Let ( n ,  k ,  gen, sign, test, iden) ,  T and an integer L, 0 < L 5 nT be given. 
Consider the following experiment given L different messages rnl , m2,. . . , m ~ :  

1. Generate ( p k ,  (s1,. . ., s,,), a m )  correctly using gen. 
2 .  Choose (il, iz, . . . , i ~ )  E I (T ,  L )  uniformly at random. 
3. Let an ( L ,  T)-history h i s t ~ ( m )  = ( p k ,  ( m l ,  1 ~ 1 ) ,  . . . , ( m ~ ,  r ~ ) )  be defined by 

aj = sign(sij, mj) for j = 1 , .  . . , L .  

Let AUX be the random variable of the authority's auxiliary information (de- 
fined on the probability space induced by gen). Let ID be the uniformly dis- 
tributed random variable taking the value ( i ~ ,  i2, . . . , i ~ )  E Z(T, L ) .  

The following lemma follows immediately from the definition of unconditional 
anonymity. 
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Lemma8. If the group signature scheme (n,  k, gen, sign,test, iden) provides 
anonymity for signing T messages, then for any (L,T)-haslory histr;(m), I D  
is uniformly distributed on Z(T, L ) .  Especially, the conditional entropy of I D  
given histr,(m) i s  

Theoremg. If the group signature scheme (n,  k, gen, sign, test, iden) provides 
anonymity f o r  sagning T messages and signer identification, then 

H ( A U X )  2 Tn(1ogn - 1). 

Proof. Let L = Tn,  and consider an (L, T)-history, h = histr;(m). The entropy 
of A U X  can be written 

H ( A U X )  2 H ( A U X  I h)  
= H ( A U X ,  I D  I h)  - H ( I D  I A U X ,  h )  
= H ( A U X [ I D ,  h )  + H ( I D  I h )  - H(ID(AUX,  h ) .  

Requirement (2) of Definition 1 implies that H ( I D ( A U X ,  h )  = 0 and thus 

H ( A U X )  2 H ( I D  I h )  + H ( A U X ( I D ,  h )  3 H ( I D  I h ) .  

From the lemma above, 

(Tn)! 
H ( I D  I h)  = log-. 

(T!)" 

Stirlings Formula 

n! NN e-%"& 

gives 

(Tn)! 
log - M T n  log n + log d%% - n log 2 Tn(1og n - 1). (T!)" 

This completes the proof. 0 

This bound can be interpreted as follows. The authority needs some information 
corresponding to  each signature that each member is allowed to make - in total 
n T  pieces. Each of these must be unique for the member - this requkes logn 
bits. 



3.3 Comparison with Upper Bound 

In the construction of Chaum and van Heijst the length of the auxiliary infor- 
mation is 

This is exactly the bound which waa obtained above. 
Furthermore, if a secret key of the digital signature scheme used in this 

construction requires K bits then the length of the secret key of each member is 
K T  bits. This should be compared with the bound Tlog, n. Since all secret keys 
must be different, K 2 log, n. Thus, except for the length of the secret keys of 
the given digital signature scheme (which we have only bounded by log, n) the 
upper and lower bounds meet. 

4 Conclusion 

A detailed definition of group signatures with information-theoretic anonymity 
has been given, and it haa been shown that in such schemes the length of the 
secret keys and the auxiliary information grows linearly in the number of signa- 
tures. These bounds only require anonymity and that the authority can identify 
signers of correct signatures, but the definitions of security against forgery and 
signer identification are not used. 

On the one hand these bounds say that the scheme of Chaum and van Heijst 
is optimal, on the other they imply that such group signature schemes have some 
limits which might make them less attractive in some applications. 

Some group signature schemes offering only computational anonymity have 
been suggested (e.g., see [CH91] and [CP94a]), but it is still an open problem to 
construct efficient such schemes, which can be proved secure under a “common 
cryptographic assumption”. 
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