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Abstract. We introduce a new bias for rule learning systems.  The bias only
allows a rule learner to create a rule that predicts class membership if each test
of the rule in isolation is predictive of that class. Although the primary
motivation for the bias is to improve the understandability of rules, we show
that it also improves the accuracy of learned models on a number of problems.
We also introduce a related preference bias that allows creating rules that
violate this restriction if they are statistically significantly better than alternative
rules without such violations.

1  Introduction

A variety of rule learning systems have been developed that create rules to predict
class membership of examples such as AQ15 [1], CN2 [2], ITRULE [3], C4.5-rules[4],
FOIL [5], FOCL [6], Greedy3 [7], Ripper [8], and decision lists [9]. One commonly
reported advantage of modeling predictive relationships with rules is the
comprehensibility of the learned knowledge. Rule learners produce a set of learned
rules of the form:

Test1 & …  & Testn →  Classi
where each test compares an attribute Ai to a value Vij for that attribute.  For nominal
attributes, the possible tests include determining whether an attribute value of an
example is equal to a particular value, is not equal to a particular value, or is a
member of a set of values.  For numerical values, the tests will determine whether an
attribute value of an example is greater than or less than a particular value.  Typically,
the rules are ordered so that to classify an example, one predicts the class of the first
rule whose antecedent is true.  One common approach for ordering rules is an
estimate of the accuracy of the rule (e.g., Quinlan [4]; Clark & Niblet [2]; Ali &
Pazzani [10]).

Table 1 shows an example of some rules learned to screen infants for mild mental
retardation [11] from a sample of over 4000 examples collected by the National
Collaborative Perinatal Project of the National Institute of Neurological and
Communicative Disorders and Stroke.  The rules are relatively easy for an expert or
novice to understand and could easily be applied by a person or a computer.
However, the rules contain certain tests that are counter-intuitive and puzzling to
experts.  In particular, the third rule predicts that there is low risk of mental



Table 1. Some rules learned to screen infants for mild mental retardation.

IF the child has no emotional problems
AND the mother has normal IQ
THEN the risk is LOW

IF fetal distress is ascertained prior to or during labor
AND the mother's education level is less than 12 years
AND the mother smokes
THEN the risk is HIGH

OTHERWISE IF the child has no emotional problems
AND the mother's education level is at least 12 years
AND there were previous stillbirths
THEN the risk is LOW

retardation and contains a condition “there were previous stillbirths” that is normally
thought of a risk factor for mental retardation. It is possible that this rule is a new
medical finding for a sub-population of patients.  However, before establishing such a
claim, it is worthwhile to see if there are alternative models of the data that are
equally predictive but do not require including such tests.

We present the following definition to facilitate the discussion learning rules.

Definition 1 (Globally Predictive Test)

A test is globally predictive of Class i iff P(Classi|Test) > P(Class i)

Definition 2 (Locally Predictive Test)

A test is locally predictive of Class i in a Context iff P(Classi|Test&Context) >
P(Classi|Context) where Context is some Boolean combination of tests.

In this paper, we explore the implications of biasing rule learners to avoid using tests
that are locally predictive of class memberships but are not globally predictive.   A
single rule that predicts class membership as a conjunction of globally predictive tests
is an example of a simple causal schema: multiple necessary causes [12].  A set of
such rules that enumerate alternative means of predicting class membership represents
another simple causal schema: multiple sufficient causes.  However, a rule that uses a
test that is locally but not globally predictive is evoking a more complex causal
schema in which there is an interaction among the variables.  A predictive
relationship involving such an interaction among variables is more difficult for people
to learn from data [13].  We argue that to match the cognitive bias of human learners,
knowledge discovery systems should avoid creating rules with locally predictive tests
that are not globally predictive unless such tests are truly necessary to increase the
accuracy of this model.



2  Background: Rule Learners

In this work, we will extend a rule learning system to implement the globally
predictive bias. We will use FOCL [6] as a representative of this family of algorithms.
FOCL is derived from Quinlan’s [14] FOIL system.  FOIL is designed to learn a set of
rules that distinguish positive examples of a concept from negative examples.

FOIL operates by trying to find a rule that is true of as many positive examples as
possible and no negative examples. It then removes the positive examples explained
by that rule from consideration and finds another rule to account for other positive
examples.  It repeats this rule learning process until all of the positive examples are
explained by some rule.  Each rule can be viewed as a description of some subgroup
of examples.

To learn an individual rule, FOIL first considers all possible rules consisting of a
single test.  It selects the best of these according to an information-gain heuristic that
favors a test that is true of many positive examples and few negative examples. Next,
FOIL specializes the rule using the same search procedure and information-based
heuristic, considering how conjoining a test to the current rule would improve it by
excluding many negative examples and few positives.  This specialization process
continues until the rule is not true of any negative examples, resulting in a single rule
that is a conjunction of tests.

FOCL follows the same procedure as FOIL to learn a set of rules.  However, it
learns a set of rules for each class (such as low risk and high) enabling it to also deal
with problems that have more than two classes.  The rule learning algorithm is run
once for each class, treating the examples of that class as positive examples and the
examples of all other classes as negative examples.   This results in a set of rules for
each class.  In this paper, we restrict our attention to a simple but effective procedure
for converting a set of rules for each class into a single decision list such as that
shown in Table 1.  The learned rules are ordered by the Laplace estimate of the rules'
accuracy [2] and the most frequent class is used as a default class.

When determining which test to add to the rule, FOCL (as well as other rule
learners) considers tests in the context of the previous rules that were learned.  The
examples used to determine which test is best are those that are not true of any rule
body that was learned previously and those that are true of the previous tests in the
current rule.   As a consequence, for all but the first test of the first rule, this family of
algorithms can select a test that is locally predictive but not globally predictive.  In the
next section, we consider biasing rule learners to consider both the global and local
predictability.

3  The Globally Predictive Test Bias

We experiment with two forms of the globally predictive test bias: a restriction bias
and a preference bias.   For the restriction bias, the procedure for selecting the best
test is modified to exclude a test from consideration when learning a rule for Classi
unless P(Classi|Test) > P(Class i).  The restriction bias therefore selects the globally
predictive test that is best in the local context to add to a clause under consideration.

The preference bias prefers tests that are globally predictive.  It will select a test
that is not globally predictive if it is significantly better than the best locally



predictive test that is globally predictive.  First, the best test in the local context is
found.  If it is globally predictive, it is used in the rule.  If it is not, the best test in the
local context that is globally predictive is found.  The two tests are then compared.  If
the globally predictive test is a significantly worse predictor in the local context than
the test that is not globally predictive, the test that is not globally predictive is used in
the rule.  Otherwise, the test that is globally predictive is used.  A χ2 test is used to
determine if there is a significant difference between the two tests.  By default, if the
probability that the two tests differ is greater than 0.75, then the locally but not
globally predictive test is used.  In our experiments, we determine the value of this
probability parameter using cross-validation.

Whether the globally predictive test bias is useful in some domains is an empirical
question.  Clearly, the ability to have a locally but not globally predictive test will be
useful in some problems such as those in which there are interactions among
variables.  However, this additional degree of freedom may be harmful in other
domains resulting in inaccurate or confusing rules.  In the next session, we investigate
experimentally whether the globally predictive test restriction bias is useful.

3.1 Experiment 1: Restriction Bias

Here we report the results of running experiments on 16 problems selected from
industrial and medical research projects at UCI and the UCI Repository of Machine
Learning Databases [15].  Most of the data sets are available on the Internet at the UCI
archive.  The following additional data sets are used:
• Admissions: This database contains data on 312 high school students that were

admitted to UC Irvine and the class label indicates whether the students enrolled
at UCI.  The attributes are scores on standardized tests and descriptive
information such as age, gender, and residency.

• CERAD: Data collected by the Consortium to Establish a Registry for
Alzheimer’s Disease (CERAD).  The particular problem of interest is to identify
patients with early signs of dementia. The database contains 315 examples with
the dementia status of each patient and the results of two commonly used
cognitive tests for dementia screening, the Blessed Orientation, Memory and
Concentration test and the Mini-Mental Status.

• FAQ: This is also data on screening for early signs of dementia collected by the
UCI Center for Brain and Aging.  The database contains 347 examples with the
dementia status of each patient and the results of the Functional Activities
Questionnaire.

• Retardation: This contains 4302 examples of newborn infants collected by the
National Collaborative Perinatal Project of the National Institute of Neurological
and Communicative Disorders and Stroke. The task is to determine whether an
infant has mild mental retardation.

• Staging. This problem is to determine the severity of dementia of a patient from
results of cognitive and neuropsychological tests.  It contains 765 patient records.

We conducted an experiment in which we compared FOCL with the global
predictive test restrictive bias to FOCL without this bias.  The goal was to determine
whether this bias is useful in practice.  For each domain, we used paired ten-fold



cross-validation of FOCL with and without this bias and computed the average
accuracy for each of the databases.  Table 2 also lists the average accuracy with and
without the bias.  We performed a paired t-test to determine whether there is a
significant difference in using the bias on each data set.  Figure 1 shows the difference
in accuracy between using FOCL with the bias and using FOCL without the bias.
Those problems in which a significant difference was found at the .05 level or greater
are shown in black.

The results demonstrate that this bias results in a significant increase in accuracy
on three data sets and a significant reduction on one.  This shows that there are
situations in which the extra freedom allowed by selecting a test that is locally
predictive but not globally predictive is harmful. There are also situations in which
the globally predictive test bias is harmful.  The King-Rook-King-Pawn is an example
of where the bias would not be expected to work well.  This is a chess problem where
the goal is to determine whether the white player with a king and rook can defeat a
black player with a king and a pawn.  The attributes in this problem correspond to
features describing the locations of the pieces (e.g., the white king is in the last row).
In this problem, it is the interaction among several features that determines whether
white can win.

The CERAD data set is a particularly interesting illustration of the power of this
bias.  The attributes represent replies to questions designed to assess cognitive
capabilities and those tests that are globally predictive of dementia represent incorrect
answers to the questions.  Those tests that are locally but not globally predictive of
dementia are correct answers to questions.  Although on a subsample of data they
appear to be predictive of dementia, this is not a very reliable pattern when tested on
unseen data.

Table 2: Databases used in the experiments and results of Experiment 1.

Problem Classes Without
Bias

Restriction
Bias

admissions 2 .696 .711
bupa 2 .664 .716  *
CERAD 2 .917 .949  *
colic 2 .827 .830
FAQ 2 .865 .870
glass 7 .674 .683
hepatitis 2 .800 .807
ion 2 .829 .838
krkp 2 .989 .971  *
mushrooms 2 .998 .999
pima 2 .724 .758  *
retardation 2 .701 .691
staging 4 .666 .671
voting 2 .936 .945
wine 3 .944 .950
wisc 2 .681 .705



Furthermore, rules that indicate that getting a question correct is a sign of dementia
are puzzling to the experts in the domain.  Others (e.g., Holte, Acker, & Porter [16],
Pagallo & Haussler [7], Murphy & Pazzani [17], Vilalta, Blix, & Rendell [18]) have
also reported on the problems associated with unreliably estimating descriptive
statistics from small groups of examples and have proposed solutions based upon
preventing examples from being partitioned into small groups.  Here, we explore a
different approach in which we reduce the hypothesis space to mitigate this problem.
While the prior work has focused on improving the accuracy, we are motivated by
improving the understandability of learned rules without reducing the accuracy.

Fig. 1. Difference in accuracy between FOCL with the restriction bias and FOCL without this
bias.  Significant differences are shown in black. Positive values indicate that more accurate
results are obtained when using the bias.

The above discussion suggests that the globally predictive bias may aid in
preventing overfitting.  By requiring that tests be both globally and locally predictive,
some unreliable tests may be eliminated from consideration.  The previous
experiment did not use any pruning method to reduce the effects of overfitting.  In the
next section, we report on an experiment designed to determine whether the globally
predictive bias provides additional benefits when pruning.

kr
kp

re
ta

rd
at

io
n

m
us

hr
oo

m
s co
lic FA

Q

st
ag

in
g

w
is

c

w
in

e

he
pa

tit
is

gl
as

s

io
n

vo
tin

g

ad
m

is
si

on
s

C
ER

A
D

pi
m

a

bu
pa

-0.02

-0.01

0.00

0.01

0.02

0.03

0.04

0.05

0.06

D
iff

er
en

ce
 in

 A
cc

ur
ac

y



3.2 Experiment 2: Restriction Bias with Pruning

The methodology used in this experiment is identical to the methodology used in
Experiment 1.  The only change is that reduced error pruning is used with FOCL both
with and without the global predictive test restriction bias.  Brunk & Pazzani [19]
showed that reduced error pruning was more effective than the minimum description
length heuristic used by FOIL on a variety of problems.  Reduced error pruning
operates by dividing the training data into two partitions.  One partition (70% of the
training data) is used to learn rules.  The remaining training data is used in pruning.
Two operators are used in pruning: deleting a rule and deleting the last test of a rule.
These operators are applied to each rule learned and if a change improves the
accuracy of the rules (as estimated on the pruning set), the change that results in the
largest increase in accuracy is made permanent. Pruning is repeated until no change
increases the accuracy of the learned rules.  Figure 2 shows the difference in accuracy
when reduced error pruning is used between FOCL with the global predictive test bias
and FOCL without this bias.  The black bars show significant differences in accuracy
and positive values indicate that the bias was beneficial on that domain.

The results of these experiments indicate that the global predictive test bias
provides an additional benefit over pruning.  In 4 of the 16 problems, there is a
significant increase in accuracy, while on two problems, there is a significant
decrease.  Furthermore, many of the increases in accuracy are greater than the largest
decrease in accuracy.  One possible reason that the bias provides benefits even when
pruning is that pruning deletes tests that are unreliable but doesn’t allow for the
replacement of these tests with more reliable tests.   In contrast, if the bias eliminates
a test that is locally but not globally predictive, it finds a new test that is both globally
and locally predictive to explain the data.  Of course, this test is then also subject to
the same pruning algorithm and is only retained if it is needed to increase accuracy on
the pruning set.

Although the bias is useful on many problems, there are still some problems in
which the bias is harmful.  We would expect such a result with any bias for theoretical
reasons (cf. Schaffer [20]) and with this particular bias we’d expect it to have
problems when there are interactions among variables that make some variables
locally but not globally predictive of class membership.  In the next experiment, we
relax the bias by preferring tests that are globally predictive.



Fig. 2. Difference in accuracy between FOCL with the restriction bias and FOCL without this
bias when using reduced error pruning.

3.3. Experiment 3: The globally predictive test preference bias

The globally predictive test bias is too restrictive for some domains.  In this section,
we explore a related preference bias.  The preference will select a test that is not
globally predictive if it is significantly better than the best locally predictive test that
is globally predictive.  In the experiments, a χ2 test will be used to determine if there
is a difference between the two tests.  We use 5-fold cross validation to determine the
best setting for the probability that there is a difference selecting from 0.05, 0.25, 0.5,
0.75 and 0.95.  The experiment below is run using the same methodology as the
previous two experiments.  On each trial, the threshold for the χ2 test is found by
cross-validation on the training data before the global predictive test bias is compared
to the accuracy of FOCL with this preference bias.  The average difference in
accuracy is plotted in Figure 3 for the 16 domains.

The results graphed in Figure 3 show that there are 6 domains in which the
preference bias provides a significant increase in accuracy.  Although there are
decreases in accuracy, these are all less than one percent and none of these are
significant.  This suggests that the cross-validation test is generally effective at
determining how large a difference is needed between the best locally but not globally
predictive test and the best locally predictive test that is globally predictive to ignore
the influence of the global predictiveness of a test.
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Fig. 3. Difference in accuracy between FOCL with the preference bias and FOCL without this
bias.

An advantage of the preference bias over the restriction bias is that the preference
bias does learn rules with tests that are locally predictive but not globally predictive.
Such tests may represent important insights to convey to domain experts.  However,
unlike a system without any bias for globally predictive tests, the preference bias first
ensures that there is not another alternative that is globally predictive.  As a
consequence, it includes fewer such tests in the rule, making it easier for an expert to
verify that a useful interaction among variables has been found.

4  Discussion

In previous work (Pazzani, Mani & Shankle [21]), we addressed the problem of
learning algorithms including counterintuitive tests in rules by having an expert
provide “monotonicity constraints”.  For nominal variables, a monotonicity constraint
is expert knowledge that indicates that a particular value makes class membership
more likely.  For numeric variables, a monotonicity constraint indicates whether
increasing or decreasing the value of the variable makes class membership more
likely.  Lee, Buchanan, & Aronis [22] introduce similar expert constraints to the RL
rule learner to make carcinogenicity more understandable and more accurate.  Here,
we show that much of the same effect could be achieved without consulting an expert
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by considering the global predictiveness of the training data.  One advantage of the
current approach is that it doesn’t require an expert and may be applied more easily to
many databases.

The expert monotonicity constraint bias was applied to the CERAD database.
Pazzani, Mani & Shankle [21] report an accuracy of 90.7% using this constraint and
90.6% without.  In contrast, C4.5 was 86.7% accurate, C4.5 rules was 82.6% accurate
and a naïve Bayesian classifier was 91.2%.  The globally predictive test restriction
bias obtained an accuracy of 94.4% on this database, substantially higher than the
monotonicity constraint bias.  There are two reasons for this difference in accuracy.
First, one monotonicity constraint for a nominal value did not turn out to be globally
predictive.  This test was ignored when using monotonicity constraints but is
frequently used with the global predictive test bias.  Second, monotonicity constraints
are not as specific as the global predictive test bias for numeric variables.  In
particular, a test includes both a comparison (such as greater than) and a specific
numeric threshold.  The global predictive test bias determines whether a test is
globally predictive while the monotonicity constraint represents more general
information about whether increasing values tend to make the class more likely.  As a
consequence, when using monotonicity constraints it is possible to have tests on
numeric values that are locally but not globally predictive.

The globally predictive test bias represents a form of simplicity bias.  However, in
this case simplicity is not a syntactic property of the representation.  Rather, it is a
preference for a simple causal mechanism in which the influence of a variable on an
outcome is not inverted in the context of other variables.  That this bias is effective in
increasing the accuracy of learned models is evidence that the databases commonly
collected have such simple causal models.  Similarly, the success of the bias may help
to explain why replacing greedy searches for rules with more exhaustive searches
(e.g., Rymon [23]; Webb [24]) has not been beneficial on most databases.  Additional
search would be useful to detect complex interactions among variables to find sets of
locally but not globally predictive tests.  However, if such situations are uncommon,
the additional search is likely to overfit the data [25].

The globally predictive test bias, especially the restriction, could be viewed as a
form of feature selection.  For example, some approaches order variables by
informativeness, a global criterion and select only the most informative prediction
[26].  There are several differences however.  First, we are selecting tests, not just
variables.  Second, we make this decision separately for each class. The most
significant difference comes in the preference bias when we are favoring tests that
meet these criteria but do not eliminate any test from consideration.

The original motivation of this work has been to improve expert acceptance of the
results of knowledge discovery in databases.  Experiments are in progress in which
experts and novices judge the plausibility of rules learned with and without these
global predictive constraints.  Earlier experiments showed that experts preferred rules
that obeyed monotonicity constraints and given the close relationship between
monotonicity constraints and the global predictive test bias we are hopeful that the
bias will prove useful in making the results of KDD more acceptable to experts.



5 Conclusions

We have explored the implications of biasing rule learners to create tests that are both
globally and locally predictive of class membership.  The results show that this bias
improves the accuracy of learned models on a variety of domains. The knowledge
discovery process is often viewed as an iterative process of modeling data with
learning algorithms and changing the representation of the data or the parameters of
the algorithm in an attempt to gain insight from the data.  The global predictive test
bias represents another tool in the toolkit that is intended to avoid overly complex
models when simpler explanations of the data are possible.
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