
Facility Location on Terrains�

(Extended Abstract)

Boris Aronov1, Marc van Kreveld2, René van Oostrum2, and
Kasturirangan Varadarajan3

1 Department of Computer and Information Science, Polytechnic University
Brooklyn, NY 11201-3840, USA

aronov@ziggy.poly.edu
2 Department of Computer Science, Utrecht University

P.O. Box 80.089, 3508 TB Utrecht, Netherlands
{marc,rene}@cs.uu.nl

3 Department of Computer Science, Duke University
Durham, NC 27708-0129, USA

krv@cs.duke.edu

Abstract. Given a terrain defined as a piecewise-linear function with n
triangles, and m point sites on it, we would like to identify the location
on the terrain that minimizes the maximum distance to the sites. The
distance is measured as the length of the Euclidean shortest path along
the terrain. To simplify the problem somewhat, we extend the terrain to
(the surface of) a polyhedron. To compute the optimum placement, we
compute the furthest-site Voronoi diagram of the sites on the polyhedron.
The diagram has maximum combinatorial complexity Θ(mn2), and the
algorithm runs in O(mn2 log2 m(logm + log n)) time.

1 Introduction

Problem statement. A (polyhedral) terrain is the graph of a piecewise-linear
function defined over a simply-connected subset of the plane. It can be repre-
sented by a planar triangulation where each vertex has an associated elevation.
The elevation of any point in the interior of an edge (triangle) is obtained by
linear interpolation over the two (three) vertices of the edge (resp. triangle). The
polyhedral terrain is commonly used as a model for (mountainous) landscapes.

This paper addresses the facility location problem for a set of sites on a
terrain. More precisely, assume that a set of m point sites on a terrain defined
by n triangles is given. The distance between two points on the terrain is the
minimum length of any path between those points that lies on the terrain. The
facility center of the sites is the point on the terrain that minimizes the maximum
� B.A. has been partially supported by a Sloan Research Fellowship. M.v.K. and R.v.O.
have been partially supported by the ESPRIT IV LTR Project No. 21957 (CGAL).
K.V. has been supported by National Science Foundation Grant CCR-93–01259, by
an Army Research Office MURI grant DAAH04-96-1-0013, by a Sloan fellowship, by
an NYI award, by matching funds from Xerox Corporation, and by a grant from the
U.S.–Israeli Binational Science Foundation. Part of the work was carried out while
B.A. was visiting Utrecht University.

K.-Y. Chwa and O. H. Ibarra (Eds.): ISAAC’98, LNCS 1533, pp. 19–29, 1998.
c© Springer-Verlag Berlin Heidelberg 1998

20 Boris Aronov et al.

distance to a site. We assume throughout that m ≤ n. To avoid complications
involving the boundary of the terrain, we extend the terrain to (the surface
of) a polyhedron. We allow only polyhedra homeomorphic to a ball, so that
their surfaces are homeomorphic to a sphere. We assume that all faces of the
polyhedron have been triangulated. This increases the combinatorial complexity
of the polyhedron by at most a constant factor.
Previous results. In the Euclidean plane, the facility center, or the center
of the smallest enclosing disc of a set of m point sites, can be determined in
O(m) time. Several algorithms attain this bound. Megiddo [4] gave the first
deterministic linear-time algorithm, and a much simpler, linear expected time
algorithm was found by Welzl [10].

In his master’s thesis, van Trigt [9] gave an algorithm that solves the fa-
cility location problem on a polyhedral terrain in O(m4n3 logn) time, using
O(n2(m2 + n)) space.

There is a close connection between the facility center and the furthest-site
Voronoi diagram of the sites. Namely, the facility center must lie at a vertex or
on an edge of this diagram. In the plane, with Euclidean distance, the furthest-
site Voronoi diagram has cells only for the sites on the convex hull of the set of
sites, and all cells are unbounded.

It appears that on a polyhedron, some of the standard properties of furthest-
site Voronoi diagrams in the plane no longer hold. For instance, a bisector on the
polyhedron is generically a closed curve consisting of as many as Θ(n2) straight-
line segments and/or hyperbolic arcs, in the worst case. In general, it may also
contain two-dimensional portions of the surface of the polyhedron.

Mount [6] showed that the nearest-neighbor Voronoi diagram of m sites on
(the surface of) a polyhedron with n faces with m ≤ n has complexity Θ(n2)
in the worst case; he also gave an algorithm that computes the diagram in
O(n2 logn) time. We do not know of any previous work on furthest-site Voronoi
diagrams on a polyhedron.

The problem of computing the shortest path between two points along the
surface of a polyhedron has received considerable attention; see the papers by
Sharir and Schorr [8], Mitchell, Mount and Papadimitriou [5], and Chen and
Han [1]. The best known algorithms [1,5] compute the shortest path between
two given points, the source s and destination t, in roughly O(n2) time. In fact,
these algorithms compute a data structure that allows us to compute the shortest
path distance between the source s to any query point p in O(log n) time.
New results and methods. This paper gives an O(mn2 log2m(logm+logn))
time algorithm to compute the furthest-site Voronoi diagram and find the facility
center for a set S of m sites on the surface of a polyhedron with n faces. Given
the linear-time algorithm for finding the facility center in the plane, this bound
may seem disappointing. However, the algorithm for computing the furthest-site
Voronoi diagram is near-optimal, as the maximum combinatorial complexity of
the diagram is Θ(mn2).

2 Geometric Preliminaries

Previous papers on shortest paths on polyhedra [8,5,1,9] use a number of impor-
tant concepts that we’ll need as well. We review them briefly after giving the
relevant definitions.

Facility Location on Terrains 21

In the remainder of the paper P is (the surface of) a polyhedron. As stated
before, we allow only polyhedra homeomorphic to a ball, so that their surfaces
are homeomorphic to a sphere. Let S be a set of m point sites on P . Consider
first a single site s ∈ P . For any point p on P we consider a shortest path
from p to s; note that in general it is not unique. Such a shortest path has a
number of properties. First, if it crosses an edge of P properly, then the principle
of reflection holds. This means that if the two incident triangles were pivoted
about their common edge to become co-planar, then the shortest path would
cross the edge as a straight-line segment. This principle is called unfolding. For
any vertex on the polyhedron, we define its total angle as the sum of the angles
at that vertex in each of the triangles incident to it. The shortest path cannot
contain any vertex for which the total angle is less than 2π, except possibly at
the source p and the target s.

Any shortest path crosses a sequence of triangles, edges, and possibly, ver-
tices. If two shortest paths on the polyhedron cross the same sequence (in the
same order), we say that these paths have the same edge sequence. If a shortest
path from p to s contains a vertex of the polyhedron, the vertex reached first
from p is called the pseudoroot of p. If the path does not contain any vertex,
then site s is called the pseudoroot of p.

The shortest path map (SPM) of s is defined as the subdivision of P into
connected regions where the shortest path to s is unique and has a fixed edge
sequence. For non-degenerate placements of s, the closures of the regions cover P ,
so the portion of P outside any region, where more than one shortest path to s
exists are one-dimensional. It is known that the shortest path map of a site has
complexity O(n2); this bound is tight in the worst case. The SPM restricted to a
triangle is actually the Euclidean Voronoi diagram for a set of sites with additive
weights. The sites are obtained from the pseudoroots of points on the triangle.
The coordinates of the diagram sites are obtained by unfolding the triangles in
the edge sequence to the pseudoroot so that they are all co-planar. The weight
of a pseudoroot is the distance from the pseudoroot to the site s. It follows that
the boundaries of regions in the SPM within a triangle consist of straight-line
segments and/or hyperbolic arcs. For any point on a hyperbolic arc or a segment
there are two shortest paths to s with different pseudoroots.

Given two sites s and t on the polyhedron, the bisector β(s, t) is the set of
all points on the polyhedron whose shortest path to s has length equal to the
shortest path to t. The bisector consists of straight-line segments, hyperbolic
arcs, and may even contain two-dimensional regions. Such regions occur only
when two sites have exactly the same distance to some vertex of P . For simplicity,
we assume that these degeneracies don’t occur.

Fix an integer k, 1 ≤ k ≤ m − 1. For a point p ∈ P , let S(p, k) ⊂ S be
any set of k sites in S for which the shortest path to p is not longer than the
path from p to any site in S \ S(p, k). The order-k Voronoi diagram of a set S
of m sites on P is a planar graph embedded in P that subdivides P into open
regions such that for any point p in a region, S(p, k) is unique, and such that
for any two points p and q in the same region, S(p, k) = S(q, k). The interior
of the boundary between two adjacent regions is an edge of the order-k Voronoi
diagram; it is easy to see that each edge lies on a bisector of two sites in S. The
non-empty intersections of the closures of three or more regions of the order-k

22 Boris Aronov et al.

Voronoi diagram are its vertices. We assume that all vertices have degree three;
otherwise, a degeneracy is present.

The order-1 Voronoi diagram is known as the (standard) Voronoi diagram
or closest-site Voronoi diagram, and the order-(m− 1) Voronoi diagram is also
called the furthest-site Voronoi diagram. In this paper, we only deal with the
closest and furthest site Voronoi diagrams, and we give a new algorithm for
computing the furthest-site Voronoi diagram of a set S of sites on a polyhedron.
We denote it by FVD(S), and refer to it more loosely as the diagram. For the
closest- (furthest-) site diagrams of S, the region R(s) of a site s ∈ S is the locus
of all points that are closer to (further from) s than to (from) all other points
in S.

The following facts are crucial for the algorithm below to work and for the
analysis to hold. Lemmas 1, 2, and 3 are similar to the lemmas in Leven and
Sharir [3]; they are general statements about a large class of metrics and hold
under very general conditions.

Lemma 1. In the closest-site Voronoi diagram of a set S of sites on P , the
region R(s) of a site s ∈ S is path-connected.

Lemma 2. Bisector β(s, t) is connected, and is homeomorphic to a circle.

Lemma 3. For any three distinct sites s, t, u, bisectors β(s, t), β(s, u) intersect
at most twice.

Any family of simple closed curves (in this case, on a topological sphere) every
pair of which crosses at most twice is called a family of pseudocircles. Thus for
every fixed s ∈ S, bisectors {β(s, t) : t �= s} form a family of pseudocircles.

Lemma 4. Bisector β(s, t) consists of O(n2) straight-line segments and hyper-
bolic arcs.

Proof. The Voronoi diagram of {s, t} can be constructed by techniques similar to
those used by Mitchell et al. [5] for the computation of the shortest path map of
a single site. By adapting their analysis to the case with two sites, one can show
that on each triangle of the polyhedron, β(s, t) consists of O(n) elementary arcs
(straight-line segments and hyperbolic arcs). Summing this over all the triangles
gives O(n2). See the paper by Mount [6].

Since the edges of the closest- and furthest-site Voronoi diagram lie on the
bisectors of two sites in S, each edge also consists of O(n2) straight-line segments
and hyperbolic arcs. To simplify our exposition, the intersections between two
adjacent segments or arcs on the edges are referred to as breakpoints, as opposed
to the vertices of the diagram that we defined before. Note that we consider the
point where a bisector crosses an edge of P to be a breakpoint.

Lemma 5. The furthest-site Voronoi diagram FVD(S) of a set S of m sites on
a polyhedron has O(m) cells, vertices, and edges.

Proof. Let Rs>t be the region of points that are further from s than from t, for
s, t ∈ S. In this notation R(s) =

⋂
t∈S,t�=s Rs>t. From Lemma 3 it follows that

this intersection is the intersection of a set of pseudo-disks. It follows that for

Facility Location on Terrains 23

each s ∈ S, the region R(s) in FVD(S) is connected. So we have at most one
cell (region) for each site in S, and, by Euler’s relation for planar graphs, the
number of vertices and edges of FVD(S) is also O(m).

We define the total complexity of FVD(S) to be the sum of the number of
vertices and breakpoints in FVD(S).

Lemma 6. The maximum total complexity of FVD(S) is Θ(mn2).

Proof. Each edge of FVD(S) is part of some bisector β(s, t) for two sites s, t ∈ S.
Consequently, the upper bound follows from Lemmas 5 and 4.

As for the lower bound, we describe a construction that shows that FVD(S)
for a set S of m point sites on a non-convex polyhedron P with n edges can have
complexity Ω(mn2). The construction will focus on proving an Ω(mn)-bound
for a single edge of P . It is described for point sites in the plane with obstacles.
This can then be “lifted” to a non-convex polyhedron.

First we will describe the location of the sites, then the obstacles. Assume
that |S| is even; we split S into S1 and S2 with k = m/2 points each. Figure 1
shows the configuration of the sites S1 = {s1, . . . , sk} (in the figure, k = 5). For
ease of description, we also specify two additional points s0 and sk+1; these are
not sites. The sites s1, . . . , sk ∈ S1 and the points s0 and sk+1 are placed equally
spaced on the lower semi-circle of a circle C1. For 1 ≤ i ≤ k + 1, let bi−1 be the
point where the bisector β(si−1, si) meets the upper semi-circle of C1. Note that
any point on the arc of the upper semi-circle C1 between bi−1 and bi is further
away from si than from any other site in S1. Let γi denote the cone originating
at site si that is bounded by the rays ray(si, bi−1) and ray(si, bi). The portion
of the cone γi that lies outside C1 is further away from si than from any other
site in S1. Figure 1 shows just the cones γ2, γ3 and γ4.

Let � be a horizontal line lying some distance above the circle C1. The second
set of sites S2 = {s′1, . . . , s′k} is obtained by reflecting the set S1 through �.
That is, s′i is the image of si from reflecting in �. The points in S2 lie on a
circle C′

1 which is the reflection of C1. The cone γ′i is defined analogously and is
the reflection of γi. Let �i be the intersection of cone γi and �. Note that �i is
also the intersection of γ′i and �.

We have specified the point sites. Now we will specify the location of the
obstacles. The important fact is that the cones γi, . . . , γk have a common inter-
section around the center of circle C1. Let C2 be a small circle lying within this
common intersection, and let the segment ab be the horizontal diameter of C2.
Figure 1 (detail) shows the circle C2 and the segment ab. Let a′b′ be the reflec-
tion of ab through �. Our obstacle set will be the segments ab and a′b′ minus a
few point holes (through which a path can pass). The segment ab has an evenly
spaced set h1, . . . , hn of point holes. The segment a′b′ also has an evenly spaced
set h′1, . . . , h′n of point holes; the only difference is that these holes are slightly
shifted to the left.

We specified all the points and obstacles. Now, we will argue that the line �
is intersected by k = m/2 edges of FVD(S), each of which crosses � Ω(n)
times. Let us focus on the portion �i of the line �. Since any point in �i is
further away from si (resp. s′i) then from any other site in S1 (resp. S2), si
and s′i are the only interesting sites for �i. We will now argue that β(si, s′i)

24 Boris Aronov et al.

s1
s2 s3 s4

s5

b0

b1

b2b3
b4

b5

γ2γ3γ4

C1 C2

�4 �3 �2�

C2

h5

h4h2

h1 h3

s0 s6

a b

Fig. 1. The configuration of S1 and the obstacles in C2 (detail).

crosses � Ω(n) times. For 1 ≤ j ≤ n, let pi,j (resp. p′i,j) be the point of intersec-
tion of the line through si (resp. s′i) and hj (resp. h′j) and the line �. Because of
the horizontal shift of the holes in a′b′, the points occur interleaved on �i as the
sequence p′i,1, pi,1, p

′
i,2, pi,2, . . . , p

′
i,n, pi,n. This is illustrated in Figure 2 for �2.

For 1 ≤ j ≤ n, since si can “see” pi,j whereas s′i cannot, there is a neighborhood
around pi,j that is closer to si than to s′i. By symmetric reasoning, there is a
neighborhood around p′i,j that is closer to s

′
i than to si. It follows that the bisec-

tor β(si, s′i) must cross �i between p′i,j and pi,j , and also between pi,j and p′i,j+1.
Thus, β(si, s′i) crosses �i Ω(n) times, as illustrated in Figure 2.

p2,2p2,1 p2,3 p2,4 p2,5

p′2,2p′2,1 p′2,3
p′2,4 p′2,5

�2

β(s2, s′2)

Fig. 2. Detail of β(s2, s′2).

One gets Ω(kn) = Ω(mn) crossings for line �, Ω(n) for each �i. The pattern
can be repeated on n lines parallel to � and sufficiently close to �. This gives
Ω(mn) crossings for each of the n lines. The sites and the obstacles can be
perturbed to a general position without affecting the lower bound complexity.
By treating the lines as edges on a polyhedron, and ‘raising vertical cylinders’
with the obstacles as bases, we can get the Ω(mn2) bound for a polyhedron.

Facility Location on Terrains 25

Using standard arguments, and the fact that FVD(S) has maximum total
complexity O(mn2), we obtain the following.

Corollary 1. Given FVD(S), the facility center of S can be computed in
O(mn2) time.

3 Computing the Furthest-Site Voronoi Diagram

In this section, we describe our algorithm for computing the furthest-site Voronoi
diagram of the given set S of sites on the polyhedron P . Our algorithm uses ideas
from the algorithm of Ramos [7] for computing the intersection of unit spheres
in three dimensions. We first give an outline of the algorithm, and get into the
details in the subsequent subsections.

The algorithm for computing FVD(S) works as follows:

– As a preprocessing step, compute the shortest path map for every site in S.
– Subdivide S into two subsets R (the “red” sites) and B (the “blue” sites) of

about equal size.
– Recursively compute FVD(R) and FVD(B).
– Merge FVD(R) and FVD(B) into FVD(R ∪B) = FVD(S) as follows:

• Determine the set of sites R0 ⊂ R that have a non-empty region in
FVD(R), i.e., FVD(R) = FVD(R0). Observe that the remaining sites in
R \R0 don’t influence the final diagram. Similarly, compute B0 ⊂ B.

• Determine an low-degree independent set M ⊂ R0, which is a subset with
the property that the region of a site s ∈ M has at most 10 neighbors
in FVD(R0), and no two sites s, s′ ∈ M are neighbors in FVD(R0).
(Two sites are said to be neighbours if their regions share an edge of the
diagram.) Compute R1 = R0 \M and FVD(R1), and repeat this step
to generate a Dobkin-Kirkpatrick hierarchy [2] R0 ⊃ R1 ⊃ . . . ⊃ Rk and
their furthest-site Voronoi diagrams, such that Rk has only a constant
number of sites. Do the same for the blue sites to achieve B0 ⊃ B1 ⊃
. . . ⊃ Bl and their furthest-site Voronoi diagrams.

• Compute FVD(Ri ∪ Bl) for 0 ≤ i ≤ k, exploiting the fact that Bl has
only a constant number of sites. Similarly, compute FVD(Rk ∪ Bj) for
0 ≤ j ≤ l. This is the basic merge step.

• Compute FVD(Ri∪Bj) from FVD(Ri∪Bj+1) and FVD(Ri+1∪Bj). This
is the generic merge step, which when repeated gives FVD(R0 ∪ B0) =
FVD(S).

3.1 Constructing the Hierarchy for R0 and B0.

We describe how to compute the hierarchy R0 ⊃ R1 ⊃ . . . ⊃ Rk and their
furthest-site Voronoi diagrams; forB0, this is done analogously. The computation
is similar to the Dobkin-Kirkpatrick hierarchy [2]. Using the fact that furthest-
site Voronoi diagrams and their dual graphs are planar graphs, we can show that
there is a low-degree independent set M ⊂ R0 such that M contains a constant
fraction of the sites of R0. In fact, such an independent set can be found in
O(|R0|) time using a greedy algorithm [2].

26 Boris Aronov et al.

As for the computation of FVD(R1) = FVD(R0 \M), we remove the sites
in M one at a time from R0 and update the diagram after the removal of each
site. Let s be such a site in M , and let p be a point that lies in the region in
FVD(R0) of s. After updating the diagram, p must lie in the region of a site s′
that is a neighbour of s in FVD(R0). So the region of s is divided among its
neighbors, of which there are only a constant number, and all diagram edges
in that region lie on the bisectors of those neighbors. Computing the bisector
for two sites takes O(n2 logn) using the techniques from Mitchell, Mount and
Papadimitriou[5], and computing the bisector for every pair of neighbors of s
takes asymptotically the same time. Given these bisectors, we can easily trace
the edges of the diagram in the region of s in O(n2 logn) time, using the vertices
of that region as starting points.

After all the sites in M have been removed from R0 and FVD(R1) has been
constructed, we repeat this procedure to create FVD(R2), . . . ,FVD(Rk). The
total number of diagrams we construct this way is O(logm).

By lemma 6, the size of FVD(Ri) = O(|Ri|n2).
Since

∑k
i=0 |Ri| is a geometric series, the total time for computing all inde-

pendent sets is O(m). The computation of the bisectors of neighbors and the
reconstruction of the diagram after the removal of a single site from a diagram
takes O(n2 logn) time, and the total number of sites removed is less than m. It
follows that the construction of the the hierarchy R0 ⊃ R1 ⊃ . . . ⊃ Rk and their
furthest-site Voronoi diagrams takes O(mn2 logn) time in total. The total size
of all diagrams constructed is O(mn2).

3.2 The Generic Merge Step

The generic merge step is the computation of FVD(Ri∪Bj) from FVD(Ri∪Bj+1)
and FVD(Ri+1 ∪Bj), which when repeated gives the required FVD(R0 ∪B0) =
FVD(S). First some terminology: we call the sites in Ri+1 the old red sites,
and the sites in Ri \Ri+1 the new red sites. Similarly, the sites in Bj+1 are the
old blue sites, and the sites in Bj \ Bj+1 are the new blue sites. Now consider
any vertex v of FVD(Ri ∪Bj). The important fact is that not all three Voronoi
regions incident to that vertex correspond to new sites; there must be at least
one old red or blue site whose face is incident to v, because new red (blue) regions
form an independent set in FVD(Ri) (resp. FVD(Bj)). So to determine all the
vertices of FVD(Ri ∪Bj), it suffices to compute the regions in FVD(Ri ∪Bj) of
all old red and blue sites.

Consider an old red site r. The region of r in FVD(Ri ∪ Bj+1) contains all
points that are further from r than from any other site in Ri ∪ Bj+1, and the
region of r in FVD(Ri+1 ∪Bj) contains all points that are further from r than
from any other site in Ri+1 ∪Bj . The region of r in FVD(Ri ∪Bj) is therefore
the intersection of its regions in FVD(Ri ∪ Bj+1) and FVD(Ri+1 ∪ Bj). We
can compute this intersection for each face of the polyhedron separately by a
line-sweep of the regions of r in FVD(Ri ∪ Bj+1) and FVD(Ri+1 ∪ Bj). The
time needed for computing the vertices of FVD(Ri ∪ Bj) is therefore bounded
by O(C logC), where C = max(n2|Ri ∪Bj+1|, n2|Ri+1∪Bj |, n2|Ri∪Bj |), which
in turn equals n2(|Ri|+ |Bj |). Hence, computing the vertices of FVD(Ri ∪ Bj)
takes O(n2(|Ri|+ |Bj |) log(n2(|Ri|+ |Bj |))) = O(n2(log n+ logm)(|Ri|+ |Bj |)).

Facility Location on Terrains 27

The edges of FVD(Ri ∪Bj) are either edges incident to the faces of old red
or blue sites (which we already computed), or edges between the faces of two
new sites of the same color (these edges are sub-edges of edges in FVD(Ri) or
FVD(Bj), and can easily be found), or they are edges between the faces of a
new red and a new blue site. For the latter category of edges we already have
the incident vertices computed, and we can trace the edges after computing the
bisector of the new red and new blue site. The total number of bisectors we have
to compute and trace is bounded by |Ri∪Bj |, so this takesO(n2 logn(|Ri|+|Bj|))
time. We conclude that computing FVD(Ri ∪ Bj) from FVD(Ri ∪ Bj+1) and
FVD(Ri+1 ∪Bj) takes O(n2(logn+ logm)(|Ri|+ |Bj |)) time.

Summing this over all 0 ≤ i ≤ k, 0 ≤ j ≤ l gives

O(n2(logn+ logm)
k∑

i=0

l∑

j=0

(|Ri|+ |Bj |)) (1)

We have

k∑

i=0

l∑

j=0

|Bj | = O(
k∑

i=0

|B0|) = O(k|B0|) = O(m logm), (2)

and similarly
∑k

i=0

∑l
j=0(|Ri|) is O(m logm). It follows that the total time spent

in all the iterations of the generic merge step is O(mn2 logm(logm+ logn)).

3.3 The Basic Merge Step

In the basic merge step, we compute FVD(Ri ∪ Bl) for 0 ≤ i ≤ k, and
FVD(Rk ∪ Bj) for 0 ≤ j ≤ l. We will exploit the fact that Bl and Rk con-
tain only a constant number of sites. We will only describe the computation of
FVD(Ri ∪Bl) for a fixed i; all other diagrams are computed similarly.

1. For each site r ∈ Ri and b ∈ Bl, we compute the region of r in FVD({r, b}).
To do this, we compute the closest-site Voronoi diagram for sites r and b
using the O(n2 logn) algorithm of Mount [6]. The region of r in FVD({r, b})
is clearly the region of b in the closest-site diagram. The total time for all
pairs r and b is O(|Ri|n2 logn), since there are only O(|Ri|) pairs.

2. Next, we compute the region of each site r ∈ Ri in FVD(r ∪ Bl); to do
this, we intersect the regions of r in FVD({r, b}) over all b ∈ Bl. Since Bl

has only a constant number of sites, the intersection can be accomplished
in O(n2 logn) time for a single red site r ∈ Ri by iterating the intersection
procedure in the generic merge step. The time taken for all the sites in Ri

is O(|Ri|n2 logn).
3. Next, we compute the region of each site r ∈ Ri in FVD(Ri ∪ Bl) by inter-

secting its regions in FVD(r∪Bl) and FVD(Ri). The intersection procedure
is similar to the one in the generic merge step, and it can be shown that its
running time for all sites in Ri is O(|Ri|n2 logn).

4. To complete the computation of FVD(Ri ∪ Bl), it remains to compute the
regions of the blue sites. Note that all the vertices of FVD(Ri∪Bl) are known
at this stage; these are either vertices on the boundary of the red regions, or

28 Boris Aronov et al.

they are the vertices of FVD(Bl) that have ‘survived’ after the computation
of the red sites. The edges of FVD(Ri ∪ Bl) are now traced out just as in
the generic merge step; in fact, the situation is much simpler here. The time
taken in this step is O(|Ri|n2 logn).

Putting everything together, the time complexity of computing FVD(Ri∪Bl)
is O(|Ri|n2 logn). Hence, the time needed for computing all the diagrams in the
basic merge step is O(mn2 logn).

3.4 Total Running Time and Memory Requirements

The time for merging FVD(R) and FVD(B) into FVD(R ∪B) is dominated by
the generic merge step, which requires O(mn2 logm(logm + logn)) time; the
total running time satisfies the recurrence

T (m) = T (�m/2�) + T (�m/2�) +O(mn2 logm(logm+ logn)) (3)

which solves to T (m) = O(mn2 log2m(logm+ logn)).
The memory requirements of the algorithm are linear in the size of all dia-

grams that are constructed in the process, which is O(mn2 logm).

4 Discussion and Conclusions

We have shown that the furthest-site Voronoi diagram of a set S of m sites on
the surface of a polyhedron P has complexity Θ(mn2), and we have given an
algorithm for computing the diagram in O(mn2 log2m(logm+logn)) time. Once
the diagram has been computed, the facility center, which is the point on P that
minimizes the maximum distance to a site in S, can be found in O(mn2) time
by traversing the edges of the diagram.

The merge step in our divide-and-conquer approach for the computation of
FVD(S) is quite complicated, and it would be pleasant to find a simpler method.
Merging the recursively computed diagrams by sweeping seems natural, but the
number of intersections of edges of both diagrams can be superlinear (in m),
while only a linear number of them can end up as a vertex of the resulting
diagram.

It would be a challenge to find an output-sensitive algorithm, i.e., an algo-
rithm that takes time proportional to the number edges/vertices in the diagram
plus the number of their intersections with the edges of P . Even more ambi-
tious would be the computation of the diagram without explicitly representing
all intersections of Voronoi edges and edges of the polyhedron.

Another interesting issue is approximation: find (in o(mn2) time) a point
with the property that the distance to the furthest site is at most (1 + ε) times
the radius of the smallest enclosing circle.

Finally, it is worth investigating if the facility location problem can be solved
without constructing the furthest-site Voronoi diagram. Recall that the facility
location problem in the plane can be solved using techniques related to fixed-
dimensional linear programming [4,10].

Facility Location on Terrains 29

References

1. J. Chen and Y. Han. Shortest paths on a polyhedron. Internat. J. Comput. Geom.
Appl., 6:127–144, 1996. 20

2. D. P. Dobkin and D. G. Kirkpatrick. A linear algorithm for determining the
separation of convex polyhedra. J. Algorithms, 6:381–392, 1985. 25

3. D. Leven and Micha Sharir. Intersection and proximity problems and Voronoi
diagrams. In J. T. Schwartz and C.-K. Yap, editors, Advances in Robotics 1:
Algorithmic and Geometric Aspects of Robotics, pages 187–228. Lawrence Erlbaum
Associates, Hillsdale, NJ, 1987. 22

4. N. Megiddo. Linear-time algorithms for linear programming in R3 and related
problems. SIAM J. Comput., 12:759–776, 1983. 20, 28

5. Joseph S. B. Mitchell, D. M. Mount, and C. H. Papadimitriou. The discrete
geodesic problem. SIAM J. Comput., 16:647–668, 1987. 20, 22, 26

6. D. M. Mount. Voronoi diagrams on the surface of a polyhedron. Technical Report
1496, Department of Computer Science, University of Maryland, 1985. 20, 22, 27

7. E. Ramos. Intersection of unit-balls and diameter of a point set in R3. Computat.
Geom. Theory Appl., 6:in press, 1996. 25

8. Micha Sharir and A. Schorr. On shortest paths in polyhedral spaces. SIAM J.
Comput., 15:193–215, 1986. 20

9. M.J. van Trigt. Proximity problems on polyhedral terrains. MSc. thesis, Dept.
Comput. Sci., Utrecht University, 1995. INF/SCR-95-18. 20

10. Emo Welzl. Smallest enclosing disks (balls and ellipsoids). In H. Maurer, editor,
New Results and New Trends in Computer Science, volume 555 of Lecture Notes
Comput. Sci., pages 359–370. Springer-Verlag, 1991. 20, 28

	Introduction
	Geometric Preliminaries
	Computing the Furthest-Site Voronoi Diagram
	Constructing the Hierarchy for R0 and B0.
	The Generic Merge Step
	The Basic Merge Step
	Total Running Time and Memory Requirements

	Discussion and Conclusions
	References

