Requirement-Based Cooperative Theorem
Proving

Dirk Fuchs*

Fachbereich Informatik, Universitat Kaiserslautern
Postfach 3049, 67653 Kaiserslautern
Germany
E-mail: dfuchs@informatik.uni-k1l.de

Abstract

We examine an approach for demand-driven cooperative theorem proving.
We briefly point out the problems arising from the use of common success-
driven cooperation methods, and we propose the application of our approach
of requirement-based cooperative theorem proving. This approach allows for a
better orientation on current needs of provers in comparison with conventional co-
operation concepts. We introduce an abstract framework for requirement-based
cooperation and describe two instantiations of it: Requirement-based exchange
of facts and sub-problem division and transfer via requests. Finally, we report
on experimental studies conducted in the areas superposition and unfailing com-
pletion.

*The author was supported by the Deutsche Forschungsgemeinschaft (DFG).

2 1 INTRODUCTION

1 Introduction

Automated deduction is—at its lowest level—a search problem that spans huge search
spaces. In the past, many different calculi have hence been developed in order to cope
with problems stemming from the area of automated theorem proving, e.g. the superpo-
sition calculus ([BG94]) or certain kinds of tableau calculi (e.g. [Fit96]). Furthermore,
the general undecidability of problems connected with (automated) deduction entails
an indeterminism in the calculi that has to and can only be tackled with heuristics.
Hence, usually a large number of calculi, each of them controllable via various heuris-
tics, can be employed when tackling certain problems of theorem proving.

When studying results of certain theorem proving competitions (e.g., [SS97]) it is rec-
ognizable that each calculus or heuristic has its specific strengths and weaknesses. As
a matter of fact, for the most domains there is not only one strategy capable of proving
all problems of the domain in an acceptable amount of time. Moreover, it is difficult to
predict which strategy might be the right one for solving a certain problem. Therefore,
a topic that has recently come into the focus of research is the use of different strategies

in parallel (see, e.g., [BS97]).

The easiest way to employ different strategies in parallel is to use a system of competitive
theorem provers (see [Ert92]). Thus, at least the probability is rather high that a well-
suited strategy is among them. A better approach, however, is to employ cooperative
theorem provers. The aim of cooperative theorem proving is to let several provers work
in parallel and to exchange information between them. Thus, efficiency should not only
be gained by the fact that different strategies work in parallel but also by synergetic
effects caused by the exchange of information. Some architectures are proposed for
cooperative theorem proving, e.g. in [Sut92, Den95, BH95, Bon96, FD9T].

If we take a closer look at existing cooperation approaches we can see that they are in
main parts success-driven approaches. They are usually characterized as follows: One
prover detects a certain information, e.g. a derived fact, that has either been useful for
it or that appears—from the prover’s point of view—to be useful for a receiving prover
in a certain way. Then, this information is transferred to the receiver and integrated
into its search state. One main problem regarding this cooperation technique is the
lack of orientation on concrete needs or wishes of receiving provers. This is mainly due
to the fact that on the one hand an information useful for a sender need not necessarily
be useful for a receiver. On the other hand, the sender of an information is surely not
able to estimate the needs of a receiver as well as the receiver can. Hence, it might be
often the case that information is exchanged that is not helpful in order to prove the
goal.

Therefore, the aim of this report is to introduce a cooperation model that orients
itself on concrete needs of theorem provers. Thus, the amount of useless information
that is exchanged can be reduced. The main idea of our approach of requirement-
based theorem proving is not to send information from a sending prover to a receiving
prover because the sender believes it may be useful for the receiver, but only to send
information as a respond to a request of the receiving prover that asks for certain kinds
of information. Thus, we want to focus on some kind of demand-driven cooperation. To

our knowledge, cooperation by exchanging requests and responses has so far only been
employed by the resolution-based prover DARES (see [CMM90]). However, requests are
in this context only needed to preserve completeness although no prover in the DARES
system has all axioms in its set of start clauses: If a prover is not able to perform
inferences and the empty clause has not yet been derived it imports via requests facts
from other provers that allow it to continue its search. Hence, requests do not introduce
a real kind of orientation on concrete needs of provers in the cooperating system. In
our approach, however, we utilize requests so as to concentrate on needs of provers in
two ways: On the one hand we point out a method for a requirement-based exchange
of facts. On the other hand, we will deal with methods to realize problem division
and transfer via requests. As we will see, we introduce with the latter an analytic
component into provers that do not necessarily work analytically by themselves.

The report is organized in the following way: At first, we introduce basics of automated
deduction in section 2 and outline the application domains superposition and unfailing
completion. In section 3, we introduce a framework for requirement-based cooperative
theorem proving and describe the behavior of our cooperative system. Sections 4 and
5 address concrete aspects of requirements, namely sub-problem transfer via require-
ments and requirement-based exchange of facts, respectively. After that, we underline
the strength of our approach by first empirical studies in section 6. Finally, a discussion
and an outlook at possible future work conclude the report.

2 Basics of Automated Deduction

In general, automated theorem proving deals with following problem: Given a set of
facts Az (axioms), is a further fact Ag (goal) a logical consequence of the axioms? A
fact may be a clause, equation, or a general first or higher-order formula. The definition
of “logical consequence” depends heavily on the concrete domain one is interested in.

Commonly, automated theorem provers utilize certain calculi for accomplishing the
task mentioned above. Analytic calculi attempt to recursively break down and trans-
form a goal into sub-goals that can finally be proved immediately with the axioms or
with assumptions made during the proof. Saturation-based calculi go the other way
by continuously producing logic consequences from Az until a fact covering the goal
appears (but also some saturation-based calculi use the goal in inferences). We shall
here concentrate on saturation-based calculi.

Typically a saturation-based calculus contains several inference rules of an inference
system Z which can be applied to a set of facts (which represents a certain search
state). Fxpansion inference rules are able to generate new facts from known ones and
add these facts to the search state. Contraction inference rules allow for the deletion of
facts or replacing facts by other ones, thus contracting the fact base (see, e.g., [Der90]).
For sets of facts M and N, M F N denotes that it is possible to derive A/ from M
by applying one inference rule.

A common principle to solve proof problems algorithmically with a saturation-based
calculus is employed by most systems: Essentially, a theorem prover maintains either
implicitly or explicitly a set F¥ of so-called potential or passive facts from which it

4 3 A FRAMEWORK FOR REQUIREMENT-BASED COOPERATION

selects and removes one fact A at a time. After the application of some contraction
inference rules on)\, it is put into the set F4 of activated facts, or discarded if it
was deleted by a contraction rule (forward subsumption). Activated facts are, unlike
potential facts, allowed to produce new facts via the application of expanding inference
rules. The inferred new facts are put into F¥. We assume the expansion rules to be
exhaustively applied on the elements of F4. Initially, F4 = §) and F¥ = Az. The
indeterministic selection or activation step is realized by heuristic means. To this end,
a heuristic H associates a natural number H(\) € IN with each A € FF. Subsequently,
that A € FF with the smallest weight H()\) is selected. In order to break ties between
facts with the same heuristic weight it is possible to use another heuristic. Due to
efficiency reasons ties are usually broken according to the FIFO-strategy (“first in—first
out”).

In order to demonstrate the strength of our approach of requirement-based theorem
proving we performed experimental studies with the saturation-based calculi superpo-
sition and unfailing completion.

In the area of superposition-based theorem proving we conducted experimental studies
with the prover SPASS ([WGR96]). This is an automatic prover for first-order logic
with equality. It is based on the superposition calculus (see [BG94]). The inference rules
of the superposition calculus can be divided into expansion and contraction rules as we
have seen before. The expansion rules contain the common rules of the superposition
calculus, i.e. superposition left and right, factoring, equality resolution, and equality
factoring. The reduction rules contain well-known rules like subsumption and rewriting.
Furthermore, SPASS utilizes additional reduction rules, like the deletion of tautologies
and the condensing rule which allows to replace a clause C by o(C) if o(C) C C.

The unfailing completion procedure (see [BDP89]) offers possibilities to develop high
performance theorem provers (e.g., DISCOUNT [ADF95]) in pure equational logic. In
this context the axioms are always universally quantified equations, the proof goal
is an arbitrarily quantified equation. The inference system underlying the unfailing
completion procedure is in main parts a restricted version of the superposition calculus.
It contains one expansion inference rule—the generation of so-called eritical pairs—that
corresponds to the superposition rule. The contraction rules of unfailing completion
correspond to those of the prover SPASS: It is possible to perform rewriting steps,
subsume one equation by another, and to delete tautologies.

3 A Framework for Requirement-Based Coopera-
tion

In the following, we want to introduce an abstract framework for requirement-based
cooperative theorem proving. We discuss which kinds of requirements may be well-
suited for cooperative theorem proving. After that, we describe how requirement-based
cooperation can be organized. We introduce a simple architecture for cooperative
theorem proving as well as an abstract process model for the cooperative provers.
Furthermore, we define the concepts request and response (to a request) and use them
in order to make our abstract process model more concrete.

3.1 Different kinds of requests 5

3.1 Different kinds of requests

The basic idea of requirement-based theorem proving is to establish cooperation be-
tween several different theorem provers by exchanging requests and responses to re-
quests. Requests describe certain needs of theorem provers, responses to requests
contain information of receivers of requests that may be well-suited in order to fulfill
some needs formulated in the requests.

The first problem we have to deal with is to discuss which kinds of requests are sensible,
i.e. which kind of information other provers can be asked for. We consider two different
types of requests:

Firstly, if it is possible to divide a proof problem into various (sub-) problems, a prover
can require that some of the sub-problems should be solved by other provers. Hence,
requests are used for sub-problem division and transfer. More exactly, we assume that
we are able to divide a proof problem into several and-tasks T4,...,T, that can be
solved independently. Then one can ask other provers to solve some tasks Tj,,...,T},
(k < n) and tackle only the remaining tasks Ui<i<, T \ Ur<:<i 1. .

Secondly, it is possible to demand information of other provers that may be helpful for
solving the actual proof task. This kind of request is always sensible, independent of
the fact whether all provers tackle the same problem (if a division of problems into sub-
problems is not possible or not desirable) or whether provers tackle different problems.
In this context requests are no means for (sub-)problem transfer but they are needed
so as to cope with the solution of the actual problem. The most profitable information
a prover can obtain from others is a set of facts (lemmas) the others have derived.
These lemmas can be employed for proving the goal without verifying them again.
In particular, a prover should request such facts from others that might be useful for
its own proof attempt (regarding certain criteria) but are not already deduced and
appear to be difficult to deduce by it (regarding its heuristic). We distinguish between
expansion-based and contraction-based requests for facts: With the first type of request
a prover asks for facts that it can use in order to produce descendants which are part
of a proof. With the second kind of request a prover asks for facts that are able to
contract large parts of its search state.

3.2 An architecture and abstract process model for require-
ment-based theorem proving

Up to now we have given a rough idea of the kinds of requests we want to deal with.
Now, we want to explain in more detail how cooperative theorem proving by exchanging
requests and responses could look like. We point out static aspects concerning the
architecture of our system of cooperative provers as well as dynamic aspects.

The architecture of our system can be described as follows: On each processor in a
network of cooperating computers a theorem prover conducts a search for a proof goal.
All provers start with a common original proof goal. Since it is possible, however,
that provers divide problems into sub-problems it might be that in later steps of the
proof run different provers have different (sub-)goals. We assume that each prover is

6 3 A FRAMEWORK FOR REQUIREMENT-BASED COOPERATION

assigned a unique number. We either let only different incarnations of the same prover
cooperate—differing from each other only in the search-guiding heuristics they employ
for traversing the search space—and hence have a network of homogeneous provers,
or we employ different provers (heterogeneous network). We assume that our network
of cooperating provers is completely intermeshed, i.e. each prover communicates its
requests and responses individually to other provers.

Since proof problems are usually search problems of tremendous difficulty it is im-
portant that each prover has enough time to perform inferences independently and to
tackle its problem without being permanently interrupted by others. Thus, we decided
to let the provers work independently for a while and only cooperate periodically. Ba-
sically the working scheme of the provers is characterized by certain phases. While the
provers tackle the same problem independently during so-called working phases P,,, co-
operation takes place during cooperation phases P.. Working phases and cooperation
phases alternate with each other. Thus, the sequence of phases is P2, P9, PL P! ...

During the cooperation phases the different theorem provers exchange requests and
responses to requests with other provers. FEssentially, we can divide the activities
during a cooperation phase into four activities of the following process model:

1. Determination and transmission of requests to other provers.
2. Transmission of responses to earlier requests of other provers.
3. Receiving and processing foreign requests.

4. Receiving and processing responses to own earlier requests.

As we can recognize, this process model does not allow for an immediate processing
of incoming requests, i.e. it is not possible to receive a request, to process it, and
to transmit a response in just one cooperation phase. Instead, the response must be
transmitted in a later cooperation phase. Thus, the cooperation scheme is somewhat
inflexible. Nevertheless, this scheme minimizes the amount of communication because
in each cooperation phase a prover must only send/receive one message (containing
requests and responses) to/from another prover. Since communication is usually quite
expensive we decided to employ this model.

3.3 Fact-represented requests and responses

In order to make the process model more concrete we must at first make our notions
of request and response precise. Then we proceed with explaining the four activities
of our model. In the following, F4 and F% denote the sets of active and passive facts
of a prover A.

Definition 3.1 (request)

A request from a prover A to a prover B is a quadruple req = (¢dreq, Areg, Sreqs treg)-
tdyeq € IN is the number of the request, A,., is a fact, S,., is a predicate defined on
Mg, iy FE), and t,., € IN a time index.

3.3 Fact-represented requests and responses 7

The component :d,., of a request should be—{rom the point of view of the sender of the
request—a unique number which is needed in order to identify requests and responses
(see below).

Each request is represented by a certain request fact, the component \,.,. l.e. we do not
utilize a complex language in order to express needs of a prover, but they are described
by the request fact A,., and the predicate S,.,. The fact A,., represents the request,
the predicate S,., is a satisfiability condilion of the request req: If the predicate S,
is true the request is completely processed and can hence be answered by the receiver.
Now, we show for both kinds of requests, sub-problem transfer and requests that ask
for facts, how they can be represented by A,., and S,.,:

Firstly, if we want to transfer a sub-goal g by a request req we set A, = g. The
satisfiability condition S,., is defined by Sreq()\req,Fgl,fg) ifl A, is proved by the
receiver B to be a logic consequence of its initial axiomatization. Secondly, if we ask
for certain facts via a request, A, is a so-called schema fact. This schema fact describes
in a certain way how facts look like that may be useful for the sender of a request. In our
methods (see section 5), schema facts A,., are valid facts, i.e. logic consequences of Ax.
The satisfiability condition S,., holds if the receiver B has at least one fact A € FFUFE
that corresponds to the schema given through A,.,. This is tested via a correspondence
predicate C, i.e. in this case S’Teq()\req,fé,fg) iff 3N € FAUFL C(Aregs 5\) Different
methods for requesting facts can be developed by using different methods for identifying
schema facts and constructing correspondence predicates. We present two different
ways in sections 5.1 and 5.2.

In order to send requests to other provers it is necessary to employ a description method
for the satisfiability conditions. An easy method could be, e.g., to describe different
conditions through different key words. At least it is necessary that all cooperating
provers know the key words so as to understand requests of other provers.

The time index t,., is the maximal number of working phases which are allowed to take
place between the receipt of the request and the transmission of its response. The idea
behind the use of such a time index is that the receiver of the request should not work
mainly on the request but on its own proof attempt. Requests of other provers should
be tackled besides the provers own activities. Since we do not want to put too much
load on each prover through requests of others we restrict the processing of requests to
a fixed duration. Note that we also use the time index i,., for defining the predicate
Sreq- We add the condition “time limit ¢,., is exceeded” as a conjunctive condition to
Sreq When dealing with requests for facts. Thus, we achieve that all facts which fulfill
the correspondence predicate S,., after the expiration of the time limit are inserted
into the response set (see below).

Responses are in analogy to requests represented by facts:

Definition 3.2 (response)

A response of a prover A to a prover B is a triple rsp = (id,sp, Brsp, Arsp)-

tdysp € IN is the number of the response, B,,, is a Boolean value, and A,;, a set of
facts.

The component id,, of a response equals the number of the respective request that is
being answered. The Boolean value B,,, indicates whether or not the responder could

8 3 A FRAMEWORK FOR REQUIREMENT-BASED COOPERATION

process the request successfully (regarding the satisfiability condition S,.,) within the
time limit given by t,.,. The response set A,g, is a set of facts which represents
the answer to a request. If we respond to a request that transferred a sub-problem
usually A,;, = 0. In this context it is only interesting whether the sub-problem could
be proved, i.e. we can ignore the response set. If a prover responds to a request
(tdreq, Areqs Sreqs treq) for facts, Sy, is based on the correspondence predicate €', and [
is the set of axioms, A,;, is given by

A — 0 , Brop = false
PV AR, Py, t (Vi (T E FiNC(Meg, F)))} 5 otherwise

Since the response set is a logic consequence of the initial system of facts (which is
common for all provers), the receiver of facts is allowed to integrate them into its own
search state.

By employing these definitions we are able to outline the four different activities of the
process model in more detail:

The determination and transmission of requests is performed as follows: At first it is
necessary to identify on the one hand sub-problems that should be tackled by other
provers, on the other hand schemata of such facts that appear to be useful for proving
the goal but are not in the current system of facts of the prover (see section 5 for
details). After that, a unique id,., as well as a suitable time index t,., is assigned to
each sub-problem or schema fact that should be sent to another prover via a request
req. The satisfiability condition S,., must-—as mentioned above—be described by a
suitable key word. The next step is to insert each request into a queue Req of open
requests of the sender and to transmit the request to other provers which are part of
the network. More exactly, we transmit all requests that ask for facts to every prover
which is part of the network, but transmit each sub-problem only to one other prover.

In order to receive and respond to requests of other provers it is necessary to have
also queues Req' of open requests of other provers 7. In order to respond to such
requests, requests req € Req® must be checked. If req is fulfilled a suitable response
can be transmitted and req can be deleted from the queue Req'. Otherwise, it is
necessary to check whether the time limit has been exceeded. If this is true, the
response (id,.,, false, () must be communicated to the sender of the request and req
must be deleted from the queue. In general, if a request is deleted from a request queue
it 1s necessary to delete all possible offspring of this request. We will deal with this
topic in more detail in sections 4 and 5.

If a prover receives a request req from another prover i, firstly req is inserted into
Req'. Secondly, the processing of the request is initiated. E.g., a request concerning
the solution of a new sub-problem entails that the new sub-goal must be integrated
into the search state of the receiver. Again, we deal with this very issue in more detail
in sections 4 and 5 because the processing depends heavily on the concrete type of the
request.

When receiving a response rsp to a request it is at first necessary to determine the
original request req € Req with the help of the id,,, component of the response. If the

request has been processed successfully one can—if a sub-problem was transmitted by
the request—consider the respective sub-problem to be solved or—if facts have been
asked for—integrate the response set A,;, into the search state. If the request has not
been processed successfully the sender can use this information in future. E.g. it might
be sensible to utilize another division of the problem into sub-problems or to ask for
different facts in future. Finally, req has to be deleted from Reg.

4 Sub-problem Transfer by Requirements

In this section we want to present a method for transferring sub-problems via requests.
We restrict ourselves to the area of first-order theorem proving with the superposition
calculus, i.e. henceforth facts are first-order clauses which may contain equality. We use
the following notation: Literals are usually written in lower case like [, clauses in upper
case like C, D, ... Calligraphic letters like M, N, ... usually denote sets of clauses.
Moreover, for literals we define ~[by ~[= I', if [= =l', and ~l = =, otherwise. For
a clause C' = {ly,...,l,}, ~C is the set of clauses ~C' = {{~l1},...,{~l,}}. f Cisa
clause V(C') denotes the set of different variables in C.

In order to realize requirement-based cooperation by transferring sub-problems we
employ our abstract model from section 3. It is only needed to make some aspects
more precise that we could not describe in the preceding section due to the generality of
the model: Firstly, we have to answer the question how we can identify certain request
clauses, that is, how we can identify certain sub-problems. Secondly, we must introduce
techniques for managing our different sub-problems (so as to interpret responses to
requests correctly, see below). Finally, we have to develop a method well-suited for
processing sub-problems of other provers without neglecting the own proof attempt.

4.1 Identifying sub-problems

We start with the identification of sub-problems: In the following, we assume that our
proof problem is given as a set M of clauses whose inconsistency is to be proved (by
deriving the empty clause). Note that this is not a restriction in comparison with our
original notion of a proof problem because Az = C iff Az U~C is inconsistent. In the
following, we will call such clauses from ~C' goal clauses. Now, consider this situation:

Definition 4.1 (i-AND-partition)
Let M = M'U {C}, M’ be a set of clauses, C' be a clause. We call (P;)1<i<n, an
i-AND-partition of C' regarding M iff

o (Pi)i<i<n is a partition of C, i.e. Ui<i<, i = C, PN P; =0 if i # j, and
e M is inconsistent iff Vi, 1 < <n: M'U{P} is inconsistent.

In the case that the inconsistency of a set M should be proved and we have identified
an i-AND-partition of a clause C' € M, we have also identified a division of our original
proof problem into n sub-problems p; = “M’ U {P,;} is inconsistent”.

10 4 SUB-PROBLEM TRANSFER BY REQUIREMENTS

Such an approach for dividing a problem into sub-problems is viable because there is
an easy method for identifying i-AND-partitions of a clause:

Example 4.1 Let M = M'U{{P(a),Q(y)}}. Then, the literals in C = {P(a),Q(y)}
do not share common variables, i.e. in order to show the inconsistency of M it is
sufficient to prove the inconsistency of both M’ U {{P(a)}} and M'U {{Q(y)}} in-
dependently. Thus, we achieve on the one hand a division of the original task into
two tasks. On the other hand if we have, e.g., shown that M’ U {{P(a)}} is incon-
sistent, we can employ the lemma {=P(a)} when trying to prove the inconsistency of

MU {Qy)}}

The above example motivates a division of an original problem into sub-problems as
follows:

Theorem 4.1 Let M be a set of clauses, M = M' U {C} for a set of clauses M’
and a clause C'. Let (P;)i<i<n be a partition of C and V(P) NV (P;) = 0 for ¢ # j.
Moreover, let the sets of clauses N; (1 < i < n) be defined by N; = M' U {{~1} : 1 €
Pi,j <i,V(P;)=0}. Then it holds:

1. (P)i<i<n is an --AND-partition of C' regarding M.
2. M is inconsistent iff Vi,1 <i <n: N;U{P;} is inconsistent.

Proof:

1. Since (F;)1<i<n is a partition of C' it is sufficient to show: M is inconsistent iff
Vi, 1 <i<n: M U{P} is inconsistent.
If M is inconsistent then there is a derivation with the superposition calculus
M 5, O. It is easy to construct for all 7 a derivation M’ U {F;} F;, O by
omitting superposition steps involving literals from C'\ P;.
If Vi, 1 <o <n: M U{P} is inconsistent, there are n derivations M’ U {F;} -
... F O. Because of the fact that V(P;) N V(P;) = 0 for i # j, we can construct
following derivation: M = M’ U {C} = M' U Ui;en{iP} F ... F M@ U
UpcicniPY F ... F MO U{PYF ... F O:VE2< k<n: M C M®*. Hence,

M is inconsistent.

2. If M is inconsistent we can infer because of part 1 that Vi, 1 < <n: M'U{P}
is inconsistent. Since Vi,1 < ¢ < n: M’ C N it is clear that also Vi,1 < <n:
N; U {P;} is inconsistent.

Now, let Vi,1 <i < n: N;U{P:} be inconsistent. We show inductively: Vi, 1 <
i <n:N;U{P} is inconsistent ~ Vi,1 < i < n : M’'U{P;} is inconsistent.
Then, the inconsistency from M is a consequence of part 1 of the theorem.

n = 1: This is trivial because N7 = M.

n > 1: Since through the induction hypotheses it holds M’'U{P;} is inconsistent
for j <n: M'"E{{~l}:1€ P;,j <n V(P;) =0} =t A. Because of the fact
that N, = M’ UA it is obvious that if V;, U{P,} is inconsistent also M’'U{P,}

is inconsistent. O

Note that the clause {P(a)} is ground.

4.2 Managing and processing sub-problems 11

The theorem points out a method for creating new sub-problems that we can employ
in the following manner: On each processing node—if we have not already divided the
problem into sub-problems—we check for each activated clause C' which is a descendant
of a goal clause whether it can be partitioned into (Pz')15i5n, n>2, V(P)NV(P) =10
for ¢ # j. If m is the number of cooperating provers we limit the value n by 1 < n < m.
Then, each prover that is able to find such a partition of a clause €' distributes n — 1
tasks g,..., p, to other provers via requests (a prover obtains exactly one of these
sub-problems) and tackles the remaining task g;. That is, it replaces the clause C
with its sub-clause P;. The tasks which are sent to other provers are stored in a list
R = (p2,...,9n). Note that the time index t,., of each request should be chosen in such
a way that the receivers have enough time for solving the problem. In our experiments
we have chosen the value t,., = 10. Nevertheless, the prover must possibly tackle
also the remaining sub-problems. This is because there is no guarantee that the other
provers can give positive answers to the requests within their time limits.

This kind of problem transfer has two advantages: On the one hand, a theorem prover
that has divided the problem can work more efficiently. This is due to the fact that
it works with smaller clauses. Hence, inferences can be performed very quickly and
the branching-rate of the search does not increase so much. On the other hand, it is
possible to obtain interesting lemmas from other provers if they are able to give positive
responses to requests. All in all, in a way our kind of problem division and transfer
introduces some kind of analytic component into saturation-based theorem proving.

4.2 Managing and processing sub-problems

The main problem which is caused by this kind of problem division and transfer is that
both sender and receiver of a request have to work with clauses that are in general not
logic consequences of the initial set of clauses. This is because a sub-clause of a clause
need not logically follow from the clause. Thus, we must develop mechanisms so as to
work with such clauses.

We start with the sender of a request and assume that it tackles the sub-problem
o; = “M'U{P;} is inconsistent” on its own by adding P; to its search state and deleting
C'. We examine two aspects: On the one hand, we describe how the inference process
can and should be organized so as to cope with clauses which are not semantically
valid. On the other hand, we describe the necessary actions that have to be conducted
when an empty clause has been derived or a respond to a request has been received
from another prover.

In order to work with a semantically invalid clause P; during the inference process the
sender introduces a tag for P; and all descendants of P;. This tag is simply the number
of the prover. It indicates that these clauses are no logic consequences of the initial
clause set but descendants of semantically invalid clauses. The practical realization is
as follows: We do not work any longer with clauses C' but with clauses with tag (C, 7).
Either 7 = eor 7 = n € IN. 7 = € denotes that the clause C is untagged, i.e. it is a logic
consequence of the initial set of clauses. If 7 = n, n being the number of the sender,
then the clause C' is a descendant of P;. In order to perform inferences we replace the
inference system Z that each prover employs by inference system Z7:

12 4 SUB-PROBLEM TRANSFER BY REQUIREMENTS

Definition 4.2 (Inference system I7)
Let Z be an inference system which works on sets of clauses. Then we construe the
inference system 77 working on sets of tagged clauses as follows:

1. For each expanding inference rule
{C1,...,C.} F{Cy,...,C,, C}; Cond(Cy, ..., Cy)
in Z, 7 contains the rules
{(C1y€),...,(Crye)} F{(Cy,€),...,(Crye),(Cye)}; Cond(Ch,...,C,) and
{(C1,71), .., (Coyr) } FA{(CL 1)y ooy (Cry), (Cy 1)} Cond(Chy .o, Co)A
dkeIN:(Fe:r=kAVi:r €{ke} AT =k)

2. For each contracting inference rule
{Cl, .. .,Cn,C} F {Cl, .. .,Cn,C/}; CO?ld(Cl, .. .,Cn,C)
in Z (C might be deleted by the inference), Z™ contains the rules
{(C1,€), ..., (Crye), (Cor}E{(Chy€), ..., (Crye), (C', 1)}
Cond(Ch,...,C,,C) and
{(C1,711), 0, (Coy 1), (Com) EA{(Cryma)y ooy (Cry), (Cy 1), (CF 71
Cond(Cy,...,C,, CYNFE € IN: (Fi: 1 = kAYi: 7 € {k,e} AT € {k, e} AT/ = k)

Hence, expansion inferences are performed in such a way that a clause C' which is a
result of an expanding inference with premises Cy,..., (), is tagged, if some clauses
C; are tagged. Untagged clauses can contract every other clause and in that case
the tag remains unchanged. If tagged clauses are able to contract an untagged clause
it is necessary to store a copy of the (un-contracted) untagged clause. Otherwise,
completeness may be lost if the processing of the request is finished and its offspring
has been eliminated. Such copies are stored in a list D;, 7 being the number of the
prover.

Now, if a prover j is able to derive the empty clause O the tag of the clause is checked.
If the clause is untagged a proof of the original goal has been found. If it is tagged
with the number of the prover, the current sub-problem has been solved. In the latter
case the following activities take place: All clauses which are tagged with the prover’s
number j are deleted and the clauses D € D; are integrated untagged into the search
state. If the list of open sub-problems R = () all sub-problems have been solved,
i.e. also the original problem. Otherwise, a new sub-problem is chosen from R and
processed as described. Note that we do not require to choose a sub-problem that is
not distributed to other provers because there is no guarantee that these problems can
be solved by others within the time limit.

This modified inference scheme allows us also to process incoming responses easily:
If a sub-problem g; has been solved by another prover it must only be eliminated
from R. Moreover, if the request clause P; was ground the clauses being elements of
{{~I} : 1 € P;} can be utilized as new lemmas in future.

When working as a receiver of open sub-problems we proceed in a similar way: Each
sub-goal received from another prover is tagged with the number of this prover and
is added to the search state. Inferences between tagged and untagged clauses are
performed as described, i.e. we employ inference system Z7. Thus, we forbid inferences
between clauses having different tags in order to avoid inconsistency.

13

If an empty clause is derived by a prover, the activities are as follows: If the empty
clause is untagged or tagged with the prover’s number the activities are as described
above. If it is tagged with the number of another prover all clauses with this tag
are deleted and the clauses from D; are added to the search state. Furthermore, the
sub-problem is considered to be solved, i.e. a positive response can be sent to the sender
of the request in the next cooperation phase.

In principle, the division of a problem into sub-problems can be conducted recursively,
i.e. it 1s possible to divide sub-problems into new sub-sub-problems and so on. Hence,
we need a more complex tree-style management of sub-problems. Because of the fact
that this kind of recursive sub-problem division follows the principles of the simple
division that we have described (with more complicated tag mechanisms) we are not
going to explain it in more detail. For our experimental studies (see section 6) we
employed a recursive sub-problem division and limited the depth of the resulting sub-
goal tree to the value 3.

5 Requirement-Based Exchange of Facts

In this section, we present two different methods for exchanging facts via requests and
responses. Note that we restrict ourselves again to the area of first-order theorem
proving with equality, i.e. facts correspond in the following to first-order clauses. We
assume that all provers employ the superposition calculus and additional contraction
rules like subsumption and rewriting.

The principle scheme of a requirement-based exchange of clauses is already known
through the abstract model from section 3. However, it is necessary to describe two
remaining aspects: Firstly, we must introduce methods for detecting clauses other
provers should be asked for. I.e. we have to determine request clauses (schema clauses)
R: = {Ci, ..., C;Mmq} in each cooperation phase P!. As already mentioned, these
request clauses are sent to each other prover in the network via maz,., requests. Sec-
ondly, we have to deal with the issue of how such requests can be processed by the
receivers, i.e. we have to make precise how to compute a response set C,, of a response

rsp to a request regq.

The basic idea of requests for clauses is that a theorem prover tries to get those clauses
from other provers that appear to be part of a proof, but are not already derived and
seem to be difficult to derive. The main problem in this context is that—because of
the general undecidability of first-order theorem proving—it is impossible to predict
whether or not a clause is part of a proof. Thus, there is no criterion for identifying
clauses that a prover should ask for. However, a prover is able to estimate whether
some of its own already activated clauses possibly contribute to a proof. E.g.. if we
want to conclude a proof by deriving the empty clause O (which does not contain some
literals) it is more likely that short clauses, i.e. clauses with few literals, contribute
to a proof than clauses with a lot of literals. Then, if we assume that a prover has
identified a set M of “interesting” activated clauses, interesting clauses other provers
can be asked for are such clauses that allow for producing descendants with clauses
from M. Perhaps some of this offspring can contribute to a proof. In conclusion, we

14 5 REQUIREMENT-BASED EXCHANGE OF FACTS

can say that a prover should request such clauses from other provers that enable it to
perform expanding inferences with these and own interesting clauses. Thus, we call
such requests expansion-based requests.

There is also another concept for a requirement-based exchange of clauses: Indeed it
is difficult to predict whether or not a clause contributes to a proof but nevertheless
it 1s possible to recognize whether a clause is useful for the search for the proof. If
a clause is able to contract many other clauses it is definitely useful for the search
process because it helps to save both memory and computation effort. Thus, it is also
interesting to require that other provers should send clauses that allow for a lot of
contracting inferences. We call these requests contraction-based requests.

In the following, we examine for both kinds of requests how they can be determined
by the sender and processed by the receiver.

5.1 Expansion-based requests

Determining request clauses: At first, we deal with the determination of request
clauses. When employing expansion-based requests, in each cooperation phase P! a
prover determines request clauses R; = {C%,. .., C’;arreq} C FA. Each request clause
should be untagged, i.e. a valid clause which could be derived by the sender of the
request when only employing the initial set of clauses. With these request clauses
other provers should be asked for clauses that are able to produce descendants with
some of the clauses from R;. The clauses C} (1 <5 < mawx,.,) should be the clauses
of the prover that appear to be most likely to contribute to a proof. More exactly,
the clauses C?,. .., C;Mmq should be optimal regarding a judgment function ¢. This
function ¢ rates the probability that a clause is part of a proof.

The realization of the judgment function ¢ is the most crucial point with regard to
the performance of a system based on expansion-based requests. Hence, we want to
deal with the realization of ¢ in some more detail: If a clause C' should be judged
that does not contain equations as literals we could e.g. use the following technique:
Since it is the aim of a prover to derive the empty clause a clause is considered to be
the better the less literals it has. Thus, we could use the formula p(C') = |é—| We
adopted and refined the method as follows: In addition to the length of a clause we
take into account that clauses having literals with a rather “flat” syntactic structure
can often be used for expansion inference steps. This means that these literals do not
have deep sub-terms that prevent them from taking part in unification which is the
essential operation for expansion inference rules like resolution. Thus, considering the
number of literals and the syntactic structure of the literals we obtain the following
weighting function:

Definition 5.1 (weighting function ¢ for expansion-based requests)
The weighting function ¢ for expansion-based requests is defined on clauses by

n

3‘9(0) = Z @Lit(li); C= {lh SRR ln}

=1

5.1 Expansion-based requests 15

The function ¢ is defined as follows: ¢ri(l) = —H. (1,0), if [is positive, and
writ(l) = = (I',0), if I = =I'. The function p, can be computed by

14+d ;[is a variable
ol (Ld)=3 2+4+d+ X0, o (L, d4+ 1) 1= f(ty,... ty) or [= P(ty,... 1), [is

a function symbol, P a predicate symbol

@ judges a clause the better the less literals it has, and the less symbols and deep
sub-terms each literal has. Thus, the function complies with our demands formulated
above.

If equality is involved, i.e. we have equations as literals, it is sensible to refine pp;: If
an inequation s # t is given that can be used to derive s’ # s" within few inferences
we have found the empty clause since it can be derived by s’ # s’ and the reflexivity
of the equation symbol. Hence, if we have an inequation with nearly identical left and
right hand sides we can possibly use the equation so as to derive the empty clause.
Therefore, pr;: should rate inequations the better the less different the left and the
right hand sides are. In order to measure such differences we employ a method used in
[Fuc97] in order to measure differences. If an equation s = ¢ is to be judged we employ
again @, from the preceding definition if no goal clause was an equation. Otherwise,
we measure some kind of similarity between s = ¢ and the goal equation(s). E.g. it is
sensible to check whether it is possible to derive the goal by applying superposition to
s =t. We used the similarity measures as described in [DF94] in order to realize ¢r,;.

Computing response sets: The second main aspect—besides the determination of
request clauses—is the processing of requests by their receivers. Essentially, we have to
deal with the problem of computing a response set C,, regarding a request req. In the
following, we employ the sets Inf (M,C) = {C": C" is derivable with one expanding
inference step involving C' and some clauses from M} and Inf*(M,C) = {C': C' is
derivable via some inferences from C and clauses from M} in order to describe the
processing of request clauses. Furthermore, let F be the set of active and passive clauses
of the receiver of a request req containing the request clause C.,. As already informally
described, the easiest method for determining a response set C,, is to insert such clauses
into C,,, that allow for expanding inferences with C.,. If we employ our notion from
section 3, i.e. Crsp € {C : C € FAC(Chey, C)}, the correspondence predicate is defined
by C(Creq, C) iff Inf ({C}, Creq) # O A (C is a logic consequence of the initial clauses).
A disadvantage of this approach is that certain inferences must be performed twice:
On the one hand it is necessary to perform expanding inferences with €., at the
receiver site in order to determine clauses C' € F which can be involved in expanding
inferences together with C,.,. On the other hand, the receiver of the response set C,s,
must perform exactly the same inferences with (., when it integrates clauses which
are elements of C,4, into its search state. Thus, our refinement of this simple method is
as follows: The main idea is to already perform inferences with C,., at the responder
site and to transmit only such clauses to the sender of the request that are already
descendants of C,., and some of the clauses of the responder. Thus, the response set
is given by C,sp = B({C : C € FAC(Creq, O)}), C(Creg, C) it C € Inf*(F,Creq) N

(C'is a logic consequence of the initial set of clauses). The function 3 is responsible

16 5 REQUIREMENT-BASED EXCHANGE OF FACTS

for selecting some of the descendants, i.e. B(Inf *(F,C.ey)) C Inf *(F,C,ey). We realize
B in such a way that we choose maz,,, clauses that have maximal weights regarding
®.

Inf*(F,C,e) can be computed either independently from the “normal” inferences
after the receipt of a request, or simultaneously to the inferences necessary to tackle
the proof problem. We chose the latter approach by integrating €., as an active clause
into the search state of the receiver and tagging it with both the number of the sender
of the request and the ¢d,., of the request req. Hence, we can distinguish C,., and
its descendants from offspring of other requests. Expansion and contraction inferences
involving tagged and untagged clauses are performed as already described in the area
of sub-goal transfer via requests, i.e. we employ inference system Z7 extended with the
possibility to have pairs of natural numbers as tags. But in contrast to before, we
forbid contracting inferences if the contracting clause is offspring of a request clause.
Hence, we need not introduce a separate list D¢, for each request clause C,,. This is
sensible because we are almost interested in descendants of €., produced by expansion
inferences. Note that if we are able to derive an empty clause which is tagged with
the number of an expansion-based request the whole proof problem is solved because
all clauses with this tag are logical consequences of the initial clause set. If we are not
yet able to derive O and the time limit ,., for the response expires we select in the
cooperation phase a set C,5, via 3 as described, send a response message, and delete
the offspring of the request. Note that the time limit ¢,., should not be too small so
as to allow the prover to derive some descendants of a request clause C,.,.

5.2 Contraction-based requests

By contraction-based requests a theorem prover asks other provers for clauses that are
possibly well-suited for contracting, i.e. in our context rewriting and subsuming, many
clauses of its clause set F. We deal in the following with the topic of how request
clauses can be identified and we point out a method for computing a response set C,,
regarding a request req with request clause C,.,.

Determining request clauses: Especially well-suited for reducing the amount of
data and computation are clauses that subsume or rewrite clauses that tend to produce
much offspring. Hence, other provers should be asked for such clauses. Thus, the set
of clauses M = {C : C is an active positive unit; C' is among the mazx,., largest
generators of clauses} is determined as a set of request clauses in each cooperation
phase. This set offers each receiver of the request clauses the possibility to determine
clauses which are able to subsume or rewrite them. These clauses are then especially
useful for the search for the proof because they can contract clauses from M which
cause much overhead. Note that we restrict ourselves to positive units mainly due to
efficiency reasons. The number of clauses which are generated by using a certain clause
can simply be counted during the inference process. Hence, we can determine the set
M effectively.

Computing response sets: In order to determine a response set C,,, regarding a
request with request clause (., we insert on the one hand clauses into C,,, which are

17

able to subsume C'.,, on the other hand clauses which are able to rewrite C,.,. Hence,
we have C,5p = Cropsub U Crsprew-

If F4¥ contains all active clauses of the responder that are logic consequences of the
initial set of clauses, the set C,,p sup regarding a request clause (., is simply given by

Crsp,sub = {C’ : (O € .’/‘EAW,ElO' : G'(C’) = Creq)}

We set C1(Chey, C)iff C € FAYATo : 0(C) = C,o,. Determining a set C,.qp ren 0f clauses
which are able to rewrite C,, is more complicated as before because we must consider
the ordering > each prover uses for performing inferences. We restrict ourselves in the
following to response sets containing only positive equations because only rewriting
with such clauses contracts a clause without simultaneously introducing new literals.
Since we cannot rewrite with the minimal side of an equation (regarding >), we must
at first identify the sides relevant for rewriting and transform clauses C' € F4* with

following function 6 to sets 8(C'): If the sender of the request and the responder have
an identical ordering >, we utilize

5 {s} C=s=t,5s~1
9(0):{ {s,t} ;C=s=1

Hence, we consider only the left hand side of a rewrite rule but both sides of an equation.
Otherwise, if sender and receiver employ different orderings, we employ

0(C) = {s,t};C=s=1
Then, it is necessary to check whether terms from #(C') match to a sub-term of C..,.
Such clauses can be inserted into C,p rey and send via respond messages.

In the following, O(C,.,) denotes the set of positions in the request clause C,., and
Chreq|p the sub-term of C,., at position p. Then, we obtain:

Craprew = {C: (C € FA,3(0,C" € 0(C),p € O(Crey)) : 0(C") = Creglp)}

We set Co(Chey, C) iff (C € FA,3(0,C" € 0(C),p € O(Chrey)) : 0(C") = Creqlp). The
correspondence predicate is then given by C(C,q, C) iff C1(Creq, C)V Co(Chrey, C). The
time limit ¢,., of a contraction-based request req should be chosen quite small because
the responder need not perform inferences in order to determine a response set C,, but
only has to check its active clauses F4. We employed hence the minimal time limit
Lreg = 1.

6 Experimental Results

In order to examine the potential of our cooperation concepts we conducted our ex-
perimental studies in the light of different domains of the problem library TPTP
(see [SSY94]). As we have already mentioned, we restrict ourselves to the area of

18 6 EXPERIMENTAL RESULTS

superposition-based theorem proving and couple the provers SPASS—which employs
the superposition calculus and additional reduction rules like rewriting—and Dis-
COUNT. DISCOUNT is a prover for pure equational logic which utilizes the unfailing
completion procedure which can be seen as a restricted version of the superposition
calculus with additional rewrite rules. Note that we coupled provers that are already
quite powerful. Hence speed-ups w.r.t. the sequential provers are not due to their in-
efficiency. Our test set consisted of pure unit equality problems as well as problems
specified in full first-order logic with equality. Thus, we can reveal that our cooperation
concept achieves cooperation among different provers in an area where both provers
are complete as well as in an area where one prover is only able to support the other
but not to solve the original problem. Hence, we show that our concept is well-suited
for provers having equal rights as well as for provers being in a master-slave relation.
At first, we describe our experimental settings for both areas. After that, we present
an excerpt of the experimental results.

6.1 Test setting

Since both calculi—superposition and unfailing completion—are complete for pure
equational logic (EQ), SPASS and DISCOUNT can work as partners having equal rights
for problems of EQ. Thus, we let each prover send requests and responses to requests
to its counterpart. However, not all kinds of requests can be employed when dealing
with problems specified in equational logic. Because of the fact that |C'| = 1 for all
clauses (' it is not possible to divide a problem into sub-problems as described in sec-
tion 4. Thus, we must omit requests dealing with sub-problem transfer. Nevertheless,
expansion- and contraction-based requests for exchanging clauses can be utilized. We
exchanged expansion-based requests and responses in the following manner: In each co-
operation phase each prover determines maz,., = 10 request clauses to be distributed
to the other prover. In order to respond to an expansion-based request we inserted
maz,s, = 3 clauses into the respective response set C,,,. As we have already mentioned,
it is sensible to give the responder enough time for processing the request. Therefore,
we set the time limit 4., = 3. In order to exchange contraction-based requests we
restricted the size of the set M of largest generators of clauses to maz,., = 10. As
already stated, the time limit ,., was given by ¢,., = 1.

In the area of full first-order logic with equality (PL1EQ) DISCOUNT is not able to
prove every valid goal because it can only deal with equations. Nevertheless, SPASS
and DISCOUNT can work in some kind of master-slave relation because DISCOUNT is
at least able to infer many clauses from the part of the search state it can traverse
that may be useful for SPASS. We decided to utilize following decomposition of a
proof problem for DISCOUNT, represented by a set of clauses C whose inconsistency
should be shown: Each positive equation P(t1,...,t,) = true or s = t of C is chosen
as an axiom for DISCOUNT, each negative equation acts as a proof goal. We only
considered examples where we could isolate enough positive equations such that the
completion of DISCOUNT did not stop. In the case that no negative equation was
an element of C DISCOUNT worked without a proof goal, i.e. in a completion mode.
Because of the fact that DISCOUNT cannot prove every valid goal we decided to let only

6.2 Results 19

SPASS send expansion-based requests for clauses. We extended DISCOUNT so as to
allow it to perform superposition with its equations and clauses received from SPASS.
Contraction-based requests were exchanged by both provers since clauses that allow
to save memory and computation time are useful for both provers. We have chosen
the same parameter setting as in the area of unit equality. Because of the fact that in
first-order logic with equality a clause can have a length greater than 1 we can transfer
sub-problems from SPASS to DISCOUNT. It is only possible, however, to transfer a
sub-problem to DISCOUNT which is represented by a negative unit.

In general, we let SPASS work with its standard heuristic that simply considers the
number of symbols of a clause. DISCOUNT activated clauses with a goal-oriented

heuristic as described in [DF94].

6.2 Results

In order to measure the strength of our cooperation concepts we experimented in
the light of various problems taken from TPTP. In all of our test domains we only
considered problems that none of the provers could solve within 10 seconds (medium
and hard problems). As already said, we omitted also problems where the completion
of DISCOUNT stopped before the first cooperation phase started. For all examined
problems we could observe that at least one variant of our cooperative system (see
below) was either better than each of the coupled provers—the runtime was less or
the cooperative provers could solve a problem none of the coupled provers could solve
when working alone—or we achieved the same result, that is, neither the cooperative
system nor one of the coupled provers could cope with the problem. For illustration
purposes we present a small excerpt of these experiments in table 1. In order to allow
for a better comparison of our different concepts for sending requests for clauses, we
performed experiments for both concepts separately. l.e. we either exchanged only
expansion-based requests and responses to the requests or contraction-based requests
and responses. Requests that transferred sub-problems were—considering the above
restrictions—always exchanged. Results are presented in table 1. Problem names can
be found in column 1, the results of SPASS when working alone in column 2. Column
3 displays the run times when using DISCOUNT. In general, the entry “—” denotes
that the problem could not be solved within 1000 seconds (all runtimes were achieved
on one or two SPARCstations 20). Column 4 shows whether the problem is specified
in pure equational logic (EQ) or in first-order logic with equality (PL1EQ). Column 5
displays the run time when employing requests for sub-problem transfer and expansion-
based requests for clauses (with the mentioned restrictions), column 6 the respective
time when exchanging requests for sub-problem transfer and contraction-based requests
for clauses. The last column 7 presents which prover could solve the problem in the
cooperating runs.

For all problems we can find at most one cooperation method that allows for a gain
of efficiency. This gain of efficiency is sometimes low (LDA0O11-2, HENO10-5) but in
the prevailing number of cases we achieve high speed-ups (e.g., B0OO007-4, ROB022-1,
ROB023-1). Furthermore, sometimes it is even possible to solve problems through coop-
eration that are out of reach for both of the coupled provers (GRP177-2, GRP179-1). If

20 6 EXPERIMENTAL RESULTS

‘ problem ‘ SPASS ‘ DiscounT ‘ EQ/PL1EQ ‘ expans. ‘ contr. ‘ proved by ‘

BO0007-4 403.4 - EQ 330.7 | 144.4 | DISCOUNT
GRP177-2 - - EQ — | 123.8 | DISCOUNT
GRP179-1 - - EQ 447.0 63.5 | DISCOUNT
LCL163-1 10.0 12.0 EQ 8.2 6.2 | DISCOUNT
ROB005-1 - 109.6 EQ 36.6 | 60.6 | SPASS
ROB008-1 - 98.8 EQ 13.5 | 85.9 | SPASS
ROB022-1 15.1 - EQ 2.3 3.9 SPASS
ROB023-1 204.6 - EQ 473 | 44.6 | SPASS
CIV001-1 24.9 - PL1EQ 13.0 | 25.3 | SPASS
LDAO11-2 35.1 - PL1EQ 40.2 | 304 | SPASS
ROBO11-1 105.3 - PL1EQ 110.7 | 54.9 | SPASS
ROBO16-1 9.8 - PL1IEQ 4.3 5.8 SPASS
HEN009-5 309.9 - PL1EQ 370.8 | 233.9 | SPASS
HEN010-5 68.7 - PL1EQ 62.9 | 70.3 | SPASS
HENO11-5 41.2 - PL1EQ 29.3 | 20.1 | SPASS
LCL143-1 16.1 - PL1EQ 124 | 11.3 | SPASS

Table 1: Coupling SPASS and DISCOUNT by exchanging requests and responses

we compare the results achieved by expansion-based requests with those of contraction-
based requests we can see that contraction-based requests are mostly the better alter-
native.

We examine the gains of efficiency in more detail and study at first expansion-based
requests: On the one hand, it was sometimes the case that the receiver of an expansion-
based request could use the clauses to prove the goal by itself (ROB022-1, ROB023-1).
Note that clauses sent via expansion-based requests are chosen in such a way that
they appear to be contributing to a proof. Hence, it is not surprising that the receiver
could sometimes utilize these clauses for proving the goal. This phenomenon occurred
especially in the area of unit equality. On the other hand, in many cases offspring of
requests that was sent via response messages could be used by the sender of a request
for proving the goal. Especially in the area of full first-order logic with equality Dis-
COUNT could often generate interesting descendants of clauses stemming from SPASS.
Nevertheless, the results are—as already mentioned—worse in comparison with the re-
sults obtained with contraction-based requests. A main reason for this is surely the
vagueness of our criterion for estimating whether or not a clause is possibly needed in
a proof. Thus, an interesting topic for further research would be to examine whether
more complex criteria entails better results.

Contraction-based requests were often well-suited for exchanging clauses which are
able to contract the search state. We underline this with two examples: When tackling
the problem ROBO11-1 the term negate(add(z,y)) occurred often as a sub-term of
active clauses of DISCOUNT which generated many descendants. Then, SPASS was

21

able to response with the clause negate(add(z,y)) = negate(add(y,z)) which could
be used for contracting 65 rules of DISCOUNT, i.e. nearly the whole set of rules could
be simplified. Another example is ROB016-1. In the first cooperation phase SPASS
detected that many clauses being involved in expanding inferences had sub-terms being
instances of the term negate(add(negate(add(z, negate(y))), negate(add(y,z)))). The
response negate(add(negate(add(xz,negate(y))), negate(add(y, z)))) = of DISCOUNT
could again be often used for rewriting. Hence, SPASS generated less unnecessary
clauses and could find the proof faster.

All in all we can say that requirement-based cooperation indeed enables coopera-
tive provers to outperform sequential provers. The orientation on demands of certain
provers introduced by requests and responses does not only allow to decrease the run-
times for certain problems but is is also possible to solve problems none of the coupled
provers can cope with.

7 Discussion and Future Work

State-of-the-art theorem provers have reached a considerable level of performance. Nev-
ertheless, they suffer from the fact that usually no single strategy is able to deal with a
large number of problems. This poses severe problems especially for an unexperienced
user of a prover. Hence, cooperation of theorem proving strategies appear to be a
promising approach in order to overcome this problem.

Our approach of realizing cooperative provers is requirement-based cooperative theo-
rem proving. This method realizes some kind of demand-driven cooperation which is
opposite to the commonly used success-driven approaches. Thus, it is possible to in-
corporate an orientation on the concrete needs of theorem provers into the cooperation
scheme.

We described an abstract framework for requirements and particularly two certain as-
pects of requirement-based cooperation: On the one hand requirement-based exchange
of facts, on the other hand sub-problem division and transfer via requests. Our ex-
perimental studies revealed that our concept indeed enabled the cooperative system to
find proofs considerably faster than each prover when working alone.

There are some related approaches for transferring sub-problems as well as for exchang-
ing facts among several provers.

A well-known approach for distributing sub-problems among various agents is the
contract-net protocol [Smi80] from the area of multi-agent systems. Thus, we want
to discuss the differences between the contract-net protocol and our approach of sub-
problem transfer via requests.

The first difference is that we employ a very simple method to decide which prover
should tackle a certain sub-problem: We distribute each sub-problem to an arbitrary
prover in the network. In contrast, in the contract-net protocol sub-problems are sent
to idle agents. Then, each agent computes the possible effort for solving it and sends
this information to the distributor of the sub-problems. After that, each sub-problem
is transferred to the agent that appears to be best-suited for solving it. As one can see,

22 7 DISCUSSION AND FUTURE WORK

our approach is less complex and requires also less communication. Since in theorem
proving only very vague criteria could be used in order to estimate whether one prover
is probably especially suited for solving a given problem our concept seems to be
sufficient.

The second main difference is that in our approach there are never idle provers in the
network that can be employed in order to tackle certain sub-problems. In contrast,
the idea of our approach is that at any time each prover tackles mainly the original
problem or a sub-problem that it has identified by itself. Sub-problems of other provers
are tackled additionally by each prover, i.e. they have no higher priority.

Finally, we employ a time limit for the solution of sub-problems of other provers. This
corresponds again to the idea of working mainly on own problems and only partly on
sub-problems of other provers.

Related approaches for an exchange of facts between theorem provers are mainly—as
already discussed—success oriented (e.g., [Sut92], [Den95], [BH95], [Bon96], [FDI7]).
In these approaches information is sent to other provers without considering specific
needs of the receivers. A similar scheme of requests and responses for exchanging
facts is—to our knowledge—only realized in the DARES system ([CMM90]). However,
requests are in this context only needed to preserve completeness since no prover in
the DARES system has all axioms in its set of start clauses: If a prover is not able
to perform inferences and the empty clause has not yet been derived it imports, via
requests, facts from other provers that allow it to continue its search. Hence, requests do
not introduce a real kind of orientation on concrete needs of provers in the cooperating
system.

Finally, interesting topics for future research are the following: Surely, our experimen-
tal studies should be further extended so as to obtain more reliable data. Furthermore,
it would be interesting to integrate also analytic provers, e.g. tableau-style provers, into
our cooperative system. Since these provers are based on a division of the original prob-
lem into sub-problems especially sub-problem transfer via requests might be promis-
ing. Then, analytic provers can be used for identifying and transferring sub-problems,
saturation-based provers for solving or simplifying them. Thus, requirement-based the-
orem proving offers the possibility to integrate both top-down and bottom-up theorem
proving approaches.

REFERENCES 23

References

[ADF95]

[BDP8Y]

[BGO4]

[BHO5]

[Bon96]

[BS97]

[CMMO0]

[Den95]

[Der90]

[DF94]

[Ert92]

[FDI7]

[Fit96]

[Fuc97]

J. Avenhaus, J. Denzinger, and M. Fuchs. DISCOUNT: A System For Dis-
tributed Equational Deduction. In Proc. 6th RTA, pages 397-402, Kaisers-
lautern, 1995. LNCS 914.

L. Bachmair, N. Dershowitz, and D.A. Plaisted. Completion without Failure.
In Coll. on the Resolution of Equations in Algebraic Structures. Academic

Press, Austin, 1989.

L. Bachmair and H. Ganzinger. Rewrite-based equational theorem prov-
ing with selection and simplification. Journal of Logic and Computation,

4(3):217-247, 1994,

M.P. Bonacina and J. Hsiang. The Clause-Diffusion methodology for dis-
tributed deduction. Fundamenta Informaticae, 24:177-207, 1995.

M.P. Bonacina. On the reconstruction of proofs in distributed theorem prov-
ing: a modified Clause-Diffusion method. Journal of Symbolic Computation,
21(4):507-522, 1996.

F. Baader and K.U. Schulz(Eds.). Applied Logic Series 3: Frontiers of Com-
bining Systems. Kluwer Academic Publishers, 1997.

S. E. Conry, D. J. Maclntosh, and R. A. Meyer. Dares: A distributed
automated reasoning system. In Proceedings of AAAI-90, pages 78-85, 1990.

J. Denzinger. Knowledge-based distributed search using teamwork. In Proc.

ICMAS-95, pages 81-88, San Francisco, 1995. AAAI-Press.

N. Dershowitz. A maximal-literal unit strategy for horn clauses. In Proc.

2nd CTRS, pages 14-25, Montreal, 1990. LNCS 516.

J. Denzinger and M. Fuchs. Goal oriented equational theorem proving. In

Proc. 18th KI-94, pages 343-354, Saarbriicken, 1994. LNAT 861.

W. Ertel. OR-Parallel Theorem Proving with Random Competition. In Pro-
ceedings of LPAR’92, pages 226237, St. Petersburg, Russia, 1992. Springer
LNAT 624.

D. Fuchs and J. Denzinger. Cooperation in theorem proving by loosely
coupled heuristics. Technical Report SR-97-03, University of Kaiserslautern,
Kaiserslautern, 1997.

M. Fitting. First-Order Logic and Automated Theorem Proving. Springer,
1996.

M. Fuchs. Evolving combinators. In Proc. CADE-14, pages 416-430,
Townsville, Australia, 1997. LNAT 1249.

24

[Smi80]

$597]

[SSY94]

[Sut92]

[Wei93]

[WGRY6]

REFERENCES

R.G. Smith. The Contract-Net Protocol: High Level Communication and
Control in a Distributed Problem Solver. IEEE Trans. Comp., (-29, pages
1104-1113, 1980.

G. Sutcliffe and C.B. Suttner. The results of the cade-13 ATP system com-
petition. Journal of Automated Reasoning, 18(2):271-286, 1997.

G. Sutcliffe, C.B. Suttner, and T. Yemenis. The TPTP Problem Library.
In CADE-12, pages 252-266, Nancy, 1994. LNAT 814.

G. Sutcliffe. A heterogeneous parallel deduction system. In Proc. FGCS’92
Workshop W3, 1992.

C. Weidenbach. Extending the resolution method with sorts. In Proc. 1J-
CAT 93, pages 60-65, Chambery, 1993.

C. Weidenbach, B. Gaede, and G. Rock. Spass & Flotter Version 0.42. In
Proc. CADE-13, pages 141-145, New Brunswick, 1996. LNAI 1104.

