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Abstract. A well-known cryptographic scenario is the following: a smart
card wishes to compute an RSA signature with the help of an untrusted
powerful server. Several protocols have been proposed to solve this pro-
blem, and many have been broken. There exist two kinds of attacks
against such protocols: passive attacks (where the server follows the in-
structions) and active attacks (where the server may return false values).
An open question in this field is the existence of efficient protocols (with-
out expensive precomputations) provably secure against both passive
and active attacks. At Crypto ’95, Béguin and Quisquater tried to an-
swer this question by proposing an efficient protocol which was resistant
against all known passive and active attacks. In this paper, we present a
very effective lattice-based passive attack against this protocol. An im-
plementation is able to recover the secret factorization of an RSA-512 or
RSA-768 key in less than 5 minutes once the card has produced about
50 signatures. The core of our attack is the basic notion of an orthogonal
lattice which we introduced at Crypto ’97 as a cryptographic tool.

1 Introduction

Small units like chip cards or smart cards have the possibility of computing,
storing and protecting data. Today, some of these cards include fast and secure
coprocessors allowing to quickly perform the expensive operations needed by
public key cryptosystems. But most of the cards are cheap cards with too limited
computing power for such tasks. To overcome this problem, extensive research
has been conducted under the generic name “server-aided secret computations”
(SASC). In the SASC protocol, the client (the smart card) wants to perform a
secret computation (e.g., RSA signature generation) by borrowing the computing
power of an untrusted powerful server without revealing its secret information.
One distinguishes two kinds of attacks against such protocols: attacks where the
server respects the instructions are called passive attacks, while attacks where
the server may return false computations are called active attacks.

The first SASC protocol was proposed by Matsumoto, Kato and Imai [9] in
the case of RSA signatures [14]. Pfitzmann and Waidner [13] presented several
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passive attacks against all the protocols of [9], and Anderson [1] described an
efficient active attack against one of the protocols of [9]. Several new protocols
such as [8,5,4,2,7] have been proposed since. Among these, the protocol of Béguin
and Quisquater [2] was quite attractive: it was relatively efficient (since it was
based on the fast exponentiation algorithm due to Brickell, Gordon, McCurley
and Wilson [3]), did not require expensive precomputations (contrary to most
of the proposed protocols), and was secure against all known passive and active
attacks, including some lattice-based passive attacks.

We present a very effective lattice-based passive attack against this protocol.
Our implementation shows that a server is able to recover the secret factoriza-
tion of the RSA key (512, 768 or 1024 bits) in less than 5 minutes, once the
card has produced about 50 signatures, for all the choices of parameters sug-
gested by Béguin and Quisquater. To run the attack, the server needs to store
very few information. The core of our attack is the basic notion of an ortho-
gonal lattice which we recently introduced as a cryptographic tool in [10]. As
in [10,12,11], this technique enables us to use the linearity hidden in the pro-
tocol, and results in a simple heuristic attack which is devastating in pratice.
An open question remains: does there exist a server-aided RSA signature pro-
tocol which is both efficient (without requiring expensive precomputations) and
provably secure against passive and active attacks ?

The rest of the paper is organized as follows. In section 2, we make a short
description of the Béguin-Quisquater server-aided RSA signature protocol. We
refer to [2] for more details. In section 3, we recall some facts from [10] about
the notion of an orthogonal lattice. Finally, we present our attack in section 4
and the experiments in section 5.

2 The Béguin-Quisquater Protocol

Let n = pq be a RSA public modulus with a secret exponent s and a public
exponent v. We have sv ≡ 1 (mod φ(n)) with φ(n) = (p − 1)(q − 1). Denote by
`(x) the bit-length of an integer x. Let t = max(`(p), `(q)) − 1. In practice, one
can assume that `(p) = `(q) = t + 1. Using the Extended Euclidean Algorithm,
compute integers wp and wq less than n in absolute value such that wp +wq = 1,
p divides wp and q divides wq. Thus, if yp ≡ y (mod p) and yq ≡ y (mod q) then
y ≡ ypwq + yqwp (mod n). The protocol uses two integer parameters m and h,
and is as follows:

1. The card receives M to sign.
2. The card chooses random integers a0, . . . , am−1 in {0, . . . , h} and x0, . . . , xm−1

such that `(xi) ≤ t − log2(mh) − 2.
3. The card computes s1 =

∑m−1
i=0 aixi.

4. The card sends M, n, x0, . . . , xm−1 to the server.
5. The server returns z0, . . . , zm−1 where zi = Mxi mod n.
6. The card computes zp =

∏m−1
i=0 zai

i mod p and zq =
∏m−1

i=0 zai
i mod q using

the algorithm of [3] for fast exponentiation with precomputation.
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7. The card computes s2 = s − s1 and represents s2 under the form:

σp = s2 mod (p − 1) + %p(p − 1)
σq = s2 mod (q − 1) + %q(q − 1)

where %p is a random number in {0, . . . , q − 2} and %q is a random number
in {0, . . . , p − 2}.

8. The card sends σp and σq to the server.
9. The server computes and sends to the card yp = Mσp mod n and yq = Mσq

mod n.
10. The card computes Sp = ypzp mod p and Sq = yqzq mod q.
11. Next, the card computes S = wqSp + wpSq mod n.
12. The card verifies M ≡ Sv mod n.
13. If the verification is correct, then the card transmits S.

In their paper [2], Béguin and Quisquater analyzed several passive and active
attacks, including some lattice-based passive attacks. They concluded that their
protocol was secure against all known passive and active attacks, for 4 different
sets of parameters (valid for both RSA-512 and RSA-768), which are summarized
in the following table:

Case 1 Case 2 Case 3 Case 4
h 10 7 17 11
m 19 22 25 29

The resulting protocol was quite efficient. It only required about 30 modular
multiplications for the card. The needed RAM and the data transfers between
the card and the server were small, and the precomputations were not expensive.

3 The Orthogonal Lattice

We recall a few useful facts about the notion of an orthogonal lattice, which
was introduced as a cryptographic tool in [10]. Let L be a lattice in Z

n where
n is any integer. The orthogonal lattice L⊥ is defined as the set of elements
in Z

n which are orthogonal to all the lattice points of L, with respect to the
usual dot product. We define the lattice L̄ = (L⊥)⊥ which contains L and whose
determinant divides the one of L. The results of [10] which are of interest to us
are the following two theorems:

Theorem 1. If L is a lattice in Z
n, then dim(L) + dim(L⊥) = n and:

det(L⊥) = det(L̄).

Thus, det(L⊥) divides det(L). This implies that if L is a low-dimensional lattice
in Z

n, then a reduced basis of L⊥ will consist of very short vectors compared to
a reduced basis of L. In practice, most of the vectors of any reduced basis of L⊥

are quite short, with norm around det(L̄)1/(n−dim L).
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Theorem 2. There exists an algorithm which, given as input a basis (b1, . . . ,bd)
of a lattice L in Z

n, outputs an LLL-reduced basis of the orthogonal lattice L⊥,
and whose running time is polynomial with respect to n, d and any upper bound
of the bit-length of the ‖bj‖’s.
In practice, one obtains a simple and very effective algorithm (which consists
of a single lattice reduction, described in [10]) to compute a reduced basis of
the orthogonal lattice, thanks to the celebrated LLL algorithm [6]. This means
that, given a low-dimensional L in Z

n, one can easily compute many short and
linearly independent vectors in L⊥.

4 A Simple Attack

Throughout the attack, only steps 2, 3, 7 and 8 of the protocol will be of interest.
Assume that the card computes r + 1 signatures. Denote by s

[i]
1 , %

[i]
p , %

[i]
q , σ

[i]
p

and σ
[i]
q the values used by the card to compute the i-th signature. Define the

following vectors in Z
r which consist of successive differences:

∆s1 =
(
s
[2]
1 − s

[1]
1 , s

[3]
1 − s

[2]
1 , . . . , s

[r+1]
1 − s

[r]
1

)
∆σp =

(
σ[2]

p − σ[1]
p , σ[3]

p − σ[2]
p , . . . , σ[r+1]

p − σ[r]
p

)
∆σq =

(
σ[2]

q − σ[1]
q , σ[3]

q − σ[2]
q , . . . , σ[r+1]

q − σ[r]
q

)
By definition of the σ

[i]
p ’s and σ

[i]
q ’s, the following equations hold:

∆σp + ∆s1 ≡ 0 (mod p − 1) (1)
∆σq + ∆s1 ≡ 0 (mod q − 1) (2)

The server knows ∆σp and ∆σq by step 8, but not ∆s1. These vectors were also
considered by Béguin and Quisquater when they analyzed some lattice-based
passive attacks, but this is the only similarity between these attacks and the
attack we present. We will see that short vectors orthogonal to ∆σp (resp. ∆σq)
give information on q (resp. p). If we find enough such independent vectors, then
q (resp. p) is revealed. Fortunately, the previous section shows that it is not hard
to do so, provided that r is sufficiently large.

We start with two simple remarks:

Lemma 3. Let u ∈ Z
r. If u⊥∆σp then u⊥∆s1 or ‖u‖ ≥ (p − 1)/‖∆s1‖.

Proof. By (1), we have u.∆s1 ≡ 0 (mod p−1) and the result follows by Cauchy-
Schwarz. ut

Lemma 4. Let u ∈ Z
r. If u⊥∆s1 then (q − 1) divides u.∆σq.

Proof. Straightforward from (2). ut
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This shows that if u⊥∆σp then (q − 1) divides u.∆σq, or ‖u‖ ≥ (p − 1)/‖∆s1‖.
We notice that the latter case implies that u is relatively long, because the entries
of ∆s1 are smaller than p − 1, as the following lemma shows:

Lemma 5. Each entry of ∆s1 is in absolute value less than 2t−2.

Proof. In Step 2, each s
[i]
1 is a sum of m integers of form ax where 0 ≤ a ≤ h

and `(x) ≤ bt − log2(mh) − 2c. Therefore:

0 ≤ s
[i]
1 ≤ mh2bt−log2(mh)−2c ≤ 2t−2.

The result follows. ut
Actually, the previous upper bound is quite pessimistic. In practice, experiments
show that when the choices of Step 2 are indeed random, the entries of ∆s1 are
in absolute value less than 2t−5, and on the average around 2t−6. This has to
be compared with `(p) = `(q) = t + 1. This phenomenon is explained by the
following technical lemma:

Lemma 6. If the random choices of Step 2 are independent and uniformly dis-
tributed, then the entries of ∆s1 have zero mean and a variance equal to

(2h + 1)(2k − 1)(2k+1 − 1)
18

mh +
22kh2

8
(m2 − m),

where k is the integer bt − log2(mh) − 2c.

Proof. A simple calculation shows that:

E(ai) =
h

2
E(a2

i ) =
h(2h + 1)

6

E(xi) =
2k − 1

2
E(x2

i ) =
(2k − 1)(2k+1 − 1)

6

Therefore E(s1) = (2k−1)
4 mh and by independence,

E(s2
1) = E


(m−1∑

i=0

aixi

)2

 = mE(a2

0)E(x2
0) + (m2 − m)E(a0)2E(x0)2.

Hence, each entry of ∆s1 has zero mean and a variance equal to 2E(s2
1). ut

Let σ be the standard deviation of the entries of ∆s1. The following table gives
the value of (t + 1) − log2 σ (which indicates the size difference between q − 1
and the entries of ∆s1) for the 4 different choices of parameters. This value is
almost independent of t: there is no difference between RSA-512, RSA-768 and
RSA-1024.
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Case 1 Case 2 Case 3 Case 4
h 10 7 17 11
m 19 22 25 29

(t + 1) − log2 σ 5.4 5.7 5.2 5.7

Thus, an orthogonal vector to ∆σp (resp. ∆σq) is either relatively long, or
such that q − 1 (resp. p − 1) divides its dot product with ∆σq (resp. ∆σp). Note
that, since vectors ∆σp and ∆σq are generated using the random values ρ

[i]
p ’s

and ρ
[i]
q ’s, there is no intrinsic reason why a vector orthogonal to one of them

should also be orthogonal to the other. Thus, if u is orthogonal to ∆σp, the
dot product u.∆σq is a non zero multiple of q − 1. This implies that if we find
several short vectors orthogonal to ∆σp (resp. ∆σq), then q − 1 (resp. p− 1) will
be revealed by simple gcds.

The previous section shows that one can expect to find (in polynomial time)
many independent vectors orthogonal to ∆σp with norm around

‖∆σp‖1/(r−1) ≈ (22t
√

r)1/(r−1).

When r is sufficiently large, the vectors are short enough to reveal q − 1, and
therefore the factorization. Finally, our attack is the following:

1. Compute a reduced basis of (∆σp)⊥.
2. Consider the shortest vectors in this basis (a few are enough) and compute

their dot product with ∆σq.
3. Compute the gcd of all these dot products and check whether it is q − 1.

In practice, only Step 1 takes a little time. Note that the server only needs to
store the σ

[i]
p ’s and the σ

[i]
q ’s (not even the signatures) to run the attack.

5 Experiments

We implemented the attack using the NTL package [15] which includes efficient
lattice-reduction algorithms. We used the LLL floating point version with ex-
tended exponent to compute orthogonal lattices, since the entries of ∆σp were
too large (about the size of n) for the usual floating point version. In practice,
the attack reveals the secret factorization as soon as r (the number of signa-
tures) is large enough, and the total computation time is less than 5 minutes
on a UltraSparc-I clocked at 167 MHz, when r is less than 70. It actually takes
more time to generate the signatures along with the different parameters than
to recover the factorization.

The following table shows the practical number of RSA signatures which are
necessary to make the attack successful, for different key sizes and choices of
parameters.



378 P. Nguyen and J. Stern

Minimal number of signatures
Case 1 Case 2 Case 3 Case 4

h 10 7 17 11
m 19 22 25 29

RSA-512 53 50 56 53
RSA-768 54 52 56 54
RSA-1024 62 60 63 62

When r reaches these values, at least the 10 shortest vectors of the reduced
basis are also orthogonal to ∆s1. Generally, 5 of them are enough to reveal q−1.

When r is larger, most of the vectors of the reduced basis are very short and
have similar norms, and their dot product with ∆σq is a non-zero multiple of
q − 1. As previously, we only need a few of them to discover the factorization.

6 Conclusion

We presented a simple passive attack against the Béguin-Quisquater server-aided
RSA protocol. It is based on the basic notion of an orthogonal lattice. This
notion was introduced as a useful tool in a paper published last year, which
cryptanalyzed a knapsack-like cryptosystem proposed by Qu and Vanstone. We
applied this technique in a different manner, but the success of our attack relies
on the main property of orthogonal lattices as well: given a low-dimensional
lattice, one can easily find many short and linearly independent vectors in the
corresponding orthogonal lattice.

The attack has been implemented, and is devastating in practice, for all the
choices of parameters suggested by Béguin and Quisquater. Once the card has
produced about 50 signatures, the server can quickly recover the secret facto-
rization of the RSA key, without storing much information. This shows that the
Béguin-Quisquater server-aided RSA protocol is not secure, and stresses the im-
portance of provable security as opposed to security against all known attacks.
The existence of a server-aided RSA signature protocol which is both efficient
(without requiring expensive precomputations) and provably secure against pas-
sive and active attacks remains open.
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