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Abstract. We first present two tight lower bounds on the size of the
secret keys of each user in an unconditionally secure one-time use broad-
cast encryption scheme (OTBES). Then we show how to construct a com-
putationally secure multiple-use broadcast encryption scheme (MBES)
from a key predistribution scheme (KPS) by using the ElGamal cryp-
tosystem. We prove that our MBES is secure against chosen (message,
privileged subset of users) attacks if the ElGamal cryptosystem is secure
and if the original KPS is simulatable. This is the first MBES whose
security is proved formally.

1 Introduction

Secure broadcast encryption is one of the central problems in communication
and network security. In this paper we link One-Time use Broadcast Encryption
Schemes (OTBESs) [5,7,6] with Key Predistribution Schemes (KPS)[10]. Both
schemes are closely related but they have a different structure. In a KPS, a
Trusted Authority (TA) distributes secret information to a set of users such
that, each member of a privileged subset P of users can compute a specified key
kP , but no coalition F (forbidden subset) is able to recover any information on
the key kP that it is not supposed to know. In a OTBES, the TA distributes
secret information to a set of users and then broadcasts a ciphertext bP over a
network. The secret information is such that each member of a particular subset
P of users can decrypt bP , but no coalition F (forbidden subset) is able to recover
any information on the plaintext mP of bP that it is not supposed to know.

A natural way to construct an OTBES from a KPS is to use a key kP of the
KPS to encrypt the message mP , that is

bP = kP + mP . (1)
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Stinson et al. [4,6] have shown that there is a tradeoff between |BP | and |Ui| in
OTBESs, where BP is the set of ciphertexts bP and Ui is the set of secrets of
user i. That is, |BP | can be decreased by increasing |Ui| and vice versa.

A (P,F)-KPS is a KPS for which P 4
= {P | P is a privileged subset} and

F 4
= {F | F is a forbidden subset}. In particular,

– A (t, ≤ w)-KPS is a (P,F)-KPS with P = {P | |P | = t}, F = {F | |F | ≤ w},
– A (≤ n, ≤ w)-KPS is a (P,F)-KPS with P = 2U , F = {F | |F | ≤ w}, where

U is the set of users and n
4
= |U|.

We define (P,F)-OTBESs, (t, ≤ w)-OTBESs and (≤ n, ≤ w)-OTBESs in a
similar way. Below we list some of the known KPSs and OTBESs.

Key Predistribution Schemes. Blom obtained a (2,≤ w)-KPS in [1] by
using MDS codes (also see [10]). Blundo et al. obtained a (t, ≤ w)-KPS in [3]
by using symmetric polynomials. Fiat and Naor presented a (≤ n, ≤ w)-KPS
in [5]. Blundo et al. found tight lower bounds on |Ui| for (t, ≤ w)-KPSs [3] and
for (≤ n, ≤ w)-KPSs [2].1 Recently, Ludy and Staddon found some bounds and
constructions for some classes of (n − w,≤ w)-OTBESs [8]. However, there is a
gap between their bounds and the constructions.

One-Time Use Broadcast Encryption Schemes. Stinson et al. gave con-
structions for (t, ≤ w)-OTBESs [4] and (≤ n, ≤ w)-OTBESs [6] which can realize
the tradeoff between |BP | and |Ui|. Blundo, Frota Mattos and Stinson found a
lower bound on |BP | and |Ui| for (t, ≤ w)-OTBESs which reflects the tradeoff
[4]. Recently, Desmedt and Viswanathan presented a (≤ n, ≤ n)-KPS [9]. This
can be considered as a complement of the Fiat and Naor (≤ n, ≤ n)-KPS.

In this paper, we first prove that a (P,F)-KPS is equivalent to a (P,F)-
OTBES when |BP | = |M |, where M denotes the set of messages (Theorems 1, 2).
Then, by using the bounds in [3,2] for KPSs we get directly a lower bound on |Ui|
for (≤ n, ≤ w)-OTBESs and a lower bound for (t, ≤ w)-OTBESs. The former
is the first lower bound for (≤ n, ≤ w)-OTBESs. The latter is more tight than
the bound of Blundo, Frota Mattos and Stinson for |BP | = |M |. Both bounds
are tight because the natural schemes which use equation (1) meet the equalities
of our bounds. We also present a general lower bound on |Ui| for KPSs which
includes all the previous known bounds as special cases (Theorem 3).

Next, we show how to construct a computationally secure (P,F)-Multiple use
Broadcast Encryption Scheme ((P,F)-MBES) from a (P,F)-KPS by using the
ElGamal cryptosystem. We prove (Theorem 4) that our (P,F)-MBES is secure
against chosen (message, privileged subset of users) attacks (Definition 1) if the
ElGamal cryptosystem is secure and if the original (P,F)-KPS is simulatable
(Definition 3).

We then show that the Blundo et al. scheme, the Fiat-Naor scheme and the
Desmedt-Viswanathan scheme are all simulatable (Theorems 5,6). By combining
1 The model for broadcast encryption in [2,5] corresponds to our model for KPSs. So,

for example, the bounds in [2] hold only for KPSs, and not for OTBESs.
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this result with our earlier construction we get (P,F)-MBESs for (P,F) = (t, ≤
w) and (≤ n, ≤ w) whose security is proven formally.

The proposed construction is the first MBES whose security is proven for-
mally (Corollary 6). Furthermore, our technique can be generalized to many of
the OTBESs in [6], and our argument holds for Multiple use (P,F)-KPSs.

2 Mathematical Models [4,6]

Our model for key distribution and broadcast encryption consists of a Trusted
Authority (TA) and a set of users U = {1, 2, . . . , n}.

2.1 Key Predistribution

In a key pre-distribution scheme, the TA generates and distributes secret infor-
mation to each user. The information given to user i is denoted by ui and must
be distributed “off-band” (i.e., not using the network) in a secure manner. This
secret information will enable various privileged subsets to compute keys.

Let 2U denote the set of all subsets of users. P ⊆ 2U will denote the collection
of all privileged subsets to which the TA distributes keys. F ⊆ 2U will denote
the collection of all possible coalitions (called forbidden subsets) against which
each key is to remain secure.

Once the secret information is distributed, each user i in a privileged set P
should be able to compute the key kP associated with P . On the other hand, no
forbidden set F ∈ F disjoint from P should be able to compute any information
about kP .

Let KP denote the set of possible keys associated with P . We assume that
KP = K for each P ∈ P.

For 1 ≤ i ≤ n, let Ui denote the set of all possible secret values that might be
distributed to user i by the TA. For any subset of users X ⊆ U , let UX denote the
cartesian product Ui1 × · · · × Uij , where X = {i1, . . . , ij} and i1 < · · · < ij . We
assume that there is a probability distribution on UU , and that the TA chooses
uU ∈ UU according to this probability distribution.

We say that the scheme is a (P,F)-Key Predistribution Scheme ((P,F)-KPS)
if the following conditions are satisfied:

1. Each user i in any privileged set P can compute kP :
∀i ∈ P , ∀P ∈ P, ∀ui ∈ Ui, ∃kP ∈ KP s.t.,

Pr[KP = kP | Ui = ui] = 1.

2. No forbidden subset F disjoint from any privileged subset P has any infor-
mation on kP :
∀P ∈ P, ∀kP ∈ KP , ∀F ∈ F s.t. P ∩F = ∅, ∀uF ∈ UF s.t. Pr(UF = uF ) > 0,

Pr[KP = kP | UF = uF ] = Pr[KP = kP ]. (2)

We denote a (P,F)-KPS by (U1, . . . , Un, K).
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2.2 One-Time Broadcast Encryption

We will use the notation from Section 2.1. We assume that the network is a
broadcast channel, i.e., it is insecure, and that any information transmitted by
the TA will be received by every user.

In a set-up stage, the TA generates and distributes secret information ui to
each user i off-band. At a later time, the TA will want to broadcast a message
to a privileged subset P . The particular privileged subset P is, in general, not
known ahead of time.

P ⊆ 2U will denote the collection of all privileged subsets to which the TA
might want to broadcast a message. F ⊆ 2U will denote the collection of all
possible coalitions (forbidden subsets) against which a broadcast is to remain
secure.

Now, suppose that the TA wants to broadcast a message to a given privileged
set P ∈ P at a later time. (The particular privileged set P is not known when
the scheme is set up, except for the restriction that P ∈ P.) Let MP denote the
set of possible messages that might be broadcast to P . We assume that MP = M
for each P ∈ P. Furthermore, we assume that there is a probability distribution
on M , and that the TA chooses a message (i.e., a plaintext) mP ∈ M according
to this probability distribution. Then the broadcast bP (which is an element of a
specified set BP ) is computed as a function of mP and uP .

Once bP is broadcast, each user i ∈ P should be able to decrypt bP and
obtain mP . On the other hand, no forbidden set F ∈ F disjoint from P should
be able to compute any information about mP .

The security of the scheme is in terms of a single broadcast, so we call the
scheme one-time. We say that the scheme is a (P,F)-One-Time Broadcast En-
cryption Scheme ((P,F)-OTBES) if the following conditions are satisfied:

1. Without knowing the broadcast bP , no subset of users has any information
about the message mP , even if given all the secret information UU :
∀P ∈ P, ∀mP ∈ MP , ∀uU ∈ UU s.t. Pr[UU = uU ] > 0,

Pr[MP = mP | UU = uU ] = Pr[MP = mP ]. (3)

2. The message for a privileged user is uniquely determined by the broadcast
message and the user’s secret information:
∀i ∈ P , ∀P ∈ P, ∀ui ∈ Ui, ∀bP ∈ BP , ∃mP ∈ MP s.t.,

Pr[MP = mP | Ui = ui, BP = bP ] = 1. (4)

3. After receiving the broadcast message, no forbidden subset F disjoint from
P has any information on mP :
∀P ∈ P, ∀F ∈ F s.t. P ∩ F = ∅, ∀mP ∈ MP , ∀uF ∈ UF , ∀bP ∈ BP ,

Pr[MP = mP | UF = uF , BP = bP ] = Pr[MP = mP ]. (5)

We denote a (P,F)-OTBES by (U1, . . . , Un, M, {BP }).
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2.3 Conventional Notation

We first consider key predistribution schemes. If P consists of all t-subsets of U ,
then we will write (t, F)-KPS. Similarly, if P consists of all subsets of U of size
at most t, we write (≤ t, F)-KPS. An analogous notation will be used for F .
Thus, for example, a (≤ n, 1)-KPS is a KPS for which there is a key associated
with any subset of users (i.e., P = 2U ) and no key kP can be computed by any
individual user i 6∈ P . Note that in any (P,F)-KPS, if F ∈ F and F ′ ⊆ F , then
F ′ ∈ F . Hence, a (P, w)-KPS is a (P,≤ w)-KPS.

The same notation is used for one-time use broadcast encryption schemes.

3 Known Results

For a random variable X, H(X) denotes the entropy of X. Generally,

0 ≤ H(X) ≤ log2 |X|, where X
4
= {x | Pr(X = x) > 0}.

In particular, H(X) = log2 |X| iff X is uniformly distributed.

3.1 A (t, ≤ w)-KPS (The Blundo et al. Scheme)

Blom presented a (2,≤ w)-KPS in [1]. This was generalized to a (t, ≤ w)-KPS
by Blundo et al. as follows [3]. Let q be a prime such that q ≥ n (the number
of users). The TA chooses a random symmetric polynomial in t variables over
GF (q) in which the degree of any variable is at most w, that is, a polynomial

f(x1, . . . , xt) =
w∑

i1=0

· · ·
w∑

it=0

ai1···it
xi1

1 · · ·xit
t ,

where, ai1···it
= aπ(i1···it) for any permutation π on (i1, . . . , it). The TA computes

ui as ui = f(i, x2, . . . , xt) and gives ui to user i secretly for 1 ≤ i ≤ n. The key
associated with the t-subset P = {i1, . . . , it} is kP = f(i1, . . . , it). Each user
j ∈ P can compute kP from uj easily. In this scheme, |KP | = q = |K| and

log |Ui| =
(

t + w − 1
t − 1

)
log |K|.

This scheme is optimum because Blundo et al. have shown that the following
lower bound on |Ui| applies.

Proposition 1. [3] In a (t, ≤ w)-KPS,

log |Ui| ≥
(

t + w − 1
t − 1

)
H(K).

Beimel and Chor gave a combinatorial proof of Proposition 1 [7]. Blundo and
Cresti obtained the following more general lower bound.
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Proposition 2. [2] In a (P,F)-KPS with {1, 2, · · · , n} \ P ∈ F for all P ∈ P,

log |Ui| ≥ τiH(K),

where τi = |{P ∈ P | i ∈ P}|
Note that Proposition 1 is obtained from Proposition 2 by letting n = t + w.

3.2 A (≤ n, ≤ w)-KPS (The Fiat-Naor Scheme)

Fiat and Naor presented the following (≤ n, ≤ w)-KPS [5]. Let q be any positive
integer. For every subset F ⊆ U of cardinality at most w, the TA chooses a
random value sF ∈ Zq and gives sF to every member of U \ F as the secret
information. Then the key associated with a privileged set P is defined to be

kP =
∑

F :F∈F,F∩P=∅
sF (modq),

Here is a small example for illustration. Take n = 3, q = 17 and w = 1, and
suppose that the TA chooses the values,

s∅ = 11, s{1} = 8, s{2} = 3, s{3} = 8.

The secret information of the users is,

u1 = {s∅, s{2}, s{3}}, u2 = {s∅, s{1}, s{3}}, u3 = {s∅, s{1}, s{2}}.

The keys determined by this information are,

k{1,2} = s∅ + s{3} = 2 mod 17, . . . , k{1,2,3} = s∅ = 11 mod 17.

In this scheme, |KP | = q = |K| and

log |Ui| =
w∑

j=0

(
n − 1

j

)
log |K|.

This scheme is optimum because Blundo and Cresti have shown the following
Proposition and Corollary.

Proposition 3. [2] In a (≤ n, F)-KPS,

log |Ui| ≥ viH(K)

where vi = |{F ∈ F | i /∈ F}|.

Corollary 1. [2] In a (≤ n, ≤ w)-KPS,

log |Ui| ≥
w∑

j=0

(
n − 1

j

)
H(K).
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3.3 The (≤ n, ≤ n)-KPS (The Desmedt-Viswanathan Scheme)

Desmedt and Viswanathan presented a (≤ n, ≤ n)-KPS [9]. This scheme can
viewed as a complement of the Fiat-Naor (≤ n, ≤ n)-KPS. The TA initially
generates 2n − n − 1 independent keys, i.e., one for each P ⊆ {1, 2, . . . , n} such
that |P | ≥ 2. Each user i receives from the TA the keys of those subsets for which
i ∈ P . Hence, each user gets 2n−1 − 1 keys. This scheme is optimum because of
the following lower bound which follows from Corollary 1.

Corollary 2. In a (≤ n, ≤ n)-KPS,

log |Ui| ≥ (2n−1 − 1)H(K).

(Desmedt and Viswanathan gave another direct proof [9].)

3.4 Lower Bounds for (t, ≤ w)-OTBESs

Blundo, Frota Mattos and Stinson obtained the following lower bound for (t, ≤ w)-
OTBESs [4],

Proposition 4. In any (t, ≤ w)-OTBES with t ≥ w + 1,

H(BP ) +
w∑

j=1

H(Uij
) ≥ (2w + 1)H(M),

for any P ∈ P.

4 New Lower Bounds on |Ui|
In this section we first prove that a (P,F)-KPS is equivalent to a (P,F)-OTBES
when |BP | = |M |. Then, by using the bounds in [3,2] for KPSs, we get directly
a lower bound on |Ui| for (≤ n, ≤ w)-OTBESs and a lower bound for (t, ≤ w)-
OTBESs. The former is the first lower bound presented for (≤ n, ≤ w)-OTBESs.
The latter is more tight than the bound of Blundo, Mattos and Stinson for
|BP | = |M |. Our bounds are both tight. We also present a general lower bound
on |Ui| for KPSs which includes all the previous bounds as special cases.

4.1 Equivalence between KPS and OTBES

Theorem 1. If there exists a (P,F)-KPS (U1, . . . , Un, K), then there exists a
(P,F)-OTBES (U1, . . . , Un, M, {BP }) with |BP | = |M | = |K| for all P ∈ P.

Proof. Use a key kP of the (P,F)-KPS to encrypt a message mP , that is

bP = kP + mP ,

and broadcast bP . We then get a (P,F)-OTBES. ut
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Theorem 2. If there exists a (P,F)-OTBES (U1, . . . , Un, M, {BP }) such that
|BP | = |M | for all P ∈ P, then there exists a (P,F)-KPS (U1, . . . , Un, K) such
that |K| = |M | and H(K) = H(M).

Proof. From a (P,F)-OTBES construct a KPS as follows. Fix bP ∈ BP arbitra-
rily for all P ∈ P. Since |BP | = |M |, there is a bijection from BP to M for any
(u1, . . . , un). Then there is an m̂P ∈ M such that each member of P decrypts
the bP as m̂P for any (u1, . . . , un). Now take kP = m̂P in our KPS. It is easy to
see that we get a (P,F)-KPS with |K| = |M | and H(K) = H(M). ut

4.2 Lower bounds for OTBESs

From Theorem 2, Proposition 1, and Corollary 1, we obtain immediately the
following lower bounds on |Ui| for OTBESs.

Corollary 3. In a (t, ≤ w)-OTBES, if |BP | = |M | for all P ∈ P, then

log |Ui| ≥
(

t + w − 1
t − 1

)
H(M).

Corollary 4. In a (≤ n, ≤ w)-OTBES, if |BP | = |M | for all P ∈ P, then

log |Ui| ≥
w∑

j=0

(
n − 1

j

)
H(M).

These bounds are tight because the construction in the proof of Theorem 1 meets
the equalities if we use the KPSs of Section 3.1 and Section 3.2.

4.3 A General Lower Bound on |Ui|
We generalize Proposition 1 as follows.

Theorem 3. In a (P,F)-KPS,

log |Ui| ≥ δi log |K|,
where

δi = |{P | i ∈ P ∈ P , {1, 2, . . . , n}\P ∈ F}|.
The proof is given in Appendix.

Note that Proposition 3 is also obtained as a corollary from Theorem 3. In-
deed, all the previous bounds for KPSs are obtained as corollaries to Theorem 3.

From Theorem 2 and Theorem 3, we get the following corollary.

Corollary 5. In a (P,F)-OTBES, if |BP | = |M | for all P ∈ P, then

log |Ui| ≥ δi log |M |,
where δi = |{P | i ∈ P ∈ P , {1, 2, . . . , n}\P ∈ F}|.
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5 Multiple Use Broadcast Encryption

In this section we first show how to construct a computationally secure (P,F)-
Multiple use Broadcast Encryption Scheme ((P,F)-MBES) from a (P,F)-KPS
by using the ElGamal cryptosystem. We then prove that our (P,F)-MBES is
secure against chosen (message, privileged subset of users) attacks if the ElGamal
cryptosystem is secure and if the original (P,F)-KPS is simulatable. We also
show that all the KPSs considered in Section 3 are simulatable. This construction
is the first (P,F)-MBES whose security is proved formally. Furthermore, our
technique can be generalized to many of the OTBES presented in [6].

5.1 A Proposed Construction for (P, F)-MBES

Let (U1, . . . , Un, K) be a (P,F)-KPS. The TA distributes secret information
u1, . . . , un to the users in the same way as for the (P,F)-KPS. Let Q be a prime
power such that |K| | Q − 1. Let g be a primitive |K|-th root of unity over
GF (Q). All the participants agree on Q and g. Let

M
4
= 〈g〉 = {m | m = gx for some x}

If the TA wishes to send a message mp ∈ M to a privileged set P ∈ P, then the
TA broadcasts

bP = (gr, mP grkP ),

where kP is the key of the (P,F)-KPS for P and r is a random number. Each
member of P can decrypt bP by using kP with the ElGamal cryptosystem.

5.2 Security

Let uF be a uF ∈ UF with Pr(UF = uF ) > 0. We will show that the proposed
construction is secure against chosen message attacks, in which the adversary
can target privileged subsets of users adaptively. Informally these attacks are
defined as follows. Fix a forbidden subset F (under the control of the adversary)
arbitrarily. Suppose that F has obtained a broadcast bP of a privileged subset
P , P ∩ F = ∅. Then F chooses several privileged subsets Pi and messages mPi

adaptively, and can obtain from the TA, by using it as an oracle, the broadcast
bPi

, i = 1, 2, . . . .

Definition 1. A (P,F)-MBES is secure against chosen (message, privileged
subset of users) attacks if there is no probabilistic polynomial time algorithm
(adversary) A0 such as follows. Give as input to A0:

Q, g, F̃ ∈ F ,uF̃ , P̃ ∈ P, bP̃ = (gr, mP̃ grkP̃ )

with F̃ ∩P̃ = ∅. A0 then chooses Pi ∈ P and mi ∈ M adaptively, and sends these
to the TA as a query for i = 1, 2, . . . , l. The TA gives back bPi

= (gri , mPi
grikPi )

to A0. Finally, A0 outputs mP̃ with non-negligble probability for all (F̃ , P̃ ).



Some Bounds and a Construction 429

Definition 2. We say that the ElGamal cryptosystem is secure if there is no
probabilistic polynomial time algorithm A1 which on input (Q, g, y, gr, myr) out-
puts m with non-negligible probability, where r is a random number and y ∈ 〈g〉.

Definition 3. We say that a (P,F)-KPS is simulatable if there is a probabilistic
polynomial time algorithm (the simulator) B for which the following holds. On
input (Q, g, y, P ∈ P, F̃ ∈ F) with P ∩ F̃ = ∅, B outputs uF̃ , gkP1 , . . . , gkPh with
probability

Pr(KP1 = kP1 , . . . , KPh
= kPh

, uF̃ = uF̃ | KP = kP ),

where y = gkP and {P1, . . . , Ph} = {Pi | Pi ∈ P, Pi 6= P, Pi ∩ F̃ = ∅}.

Theorem 4. Suppose that a (P,F)-KPS is simulatable. Then the (P,F)-MBES
obtained by using this KPS in our construction is secure against chosen (mes-
sage, privileged subset of users) attacks if the ElGamal cryptosystem is secure.

Proof. Suppose that a (P,F)-KPS is simulatable and that the proposed (P,F)-
MBES is not secure against chosen (message, privileged subset of users) attacks.
Then there is a simulator B for the (P,F)-KPS, and an adversary A0 which
breaks bP̃ for P̃ ∈ P by controlling F̃ ∈ F for some P̃ ∩ F̃ = ∅.

We will describe a probabilistic polynomial time algorithm A1 which breaks
the ElGamal cryptosystem by using A0 and B as subroutines. Let the input to
A1 be (Q, g, y, gr, myr). Then there is a kP̃ such that y = gkP̃ . A1 works as
follows.

1. A1 gives (Q, g, y, P̃ , F̃ ) to B. Then B outputs uF̃ , gkP1 , . . . , gkPh .
2. A1 gives (Q, g, F̃ ,uF̃ , P̃ , gr, myr) to A0.
3. Since A1 has gkP1 , . . . , gkPh , A1 can answer any query of A0.
4. Finally, A0 outputs m with non-negligible probability.

Then A1 can output m with non-negligible probability. This is a contradiction.
ut

5.3 Simulatable (P, F)-KPSs

In what follows, we assume that
(
t+w−1

t−1

)
is polynomial in the length of Q for

the Blundo et al. scheme, that
∑w

i=0

(
n−1

i

)
is polynomial in the length of Q for

the Fiat-Naor scheme, and that 2n−1 − 1 is polynomial in the length of Q for
the Desmedt-Viswanathan scheme.

Theorem 5. The Fiat-Naor scheme and the Desmedt-Viswanathan scheme are
simulatable.

Proof. We give a proof for the Fiat-Naor scheme. The proof for the Desmedt-
Viswanathan scheme is obtained in a similar way.
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We shall describe a simulator B whose input is (Q, g, y, P, F̃ ), where P ∩ F̃ =
∅. B chooses sFi randomly for all Fi ∈ F . From the {sFi}, B can obtain uF̃ .
Note that sF̃ 6∈ uF̃ . On the other hand,

kP =
∑

F :|F |≤w,F∩P=∅
sF = sF̃ +

∑
F :F 6=F̃ ,|F |≤w,F∩P=∅

sF (modq − 1)

Therefore,

y = gkP = gsF̃ · g

∑
F :F 6=F̃ ,|F |≤w,F ∩P=∅ sF

,

gsF̃ = y/g

∑
F :F 6=F̃ ,|F |≤w,F ∩P=∅ sF

.

Thus B can compute gsF̃ which is consistent with kP such that y = gkP . Then
B can compute gkPi for all Pi ∈ P because B knows {sF | F 6= F̃ , F ∈ F} and
gsF̃ . ut

Definition 4. Let A = {ai1···it
| 0 ≤ i1 ≤ w, . . . , 0 ≤ it ≤ w}. We say that A

is symmetric if for any ai1···it
∈ A : ai1···it

= aπ(i1···it) for all permutations π of
(i1 · · · it). Furthermore, let

f(x1, . . . , xt) =
w∑

i1=0

· · ·
w∑

it=0

ai1···it
xi1

1 · · ·xit
t .

We say that f(x1, . . . , xt) is symmetric if {ai1···it
} is symmetric.

Lemma 1. For given D = {bj1···jt
| 1 ≤ j1 ≤ w + 1, . . . , 1 ≤ jt ≤ w + 1}, let

ai1···it

4
=

w+1∑
j1=1

· · ·
w+1∑
jt=1

bj1···jtwj1i1 · · ·wjtit ,

where [wij ]
4
= C−1 and

C
4
=




1 1 · · · 1
1 2 · · · w + 1
...

...
. . .

...
1 2w · · · (w + 1)w


 .

Then

bj1,...,jt
=

w∑
i1=0

· · ·
w∑

it=0

ai1···it
ji1
1 · · · jit

t .

Furthermore, if D is symmetric, then {ai1···it} is symmetric.

Theorem 6. The Blundo et al. scheme is simulatable.
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Proof. For simplicity, suppose that the input to the simulator B is

F̃ = {1, 2, . . . , w}, P = {v1, . . . , vt}, y = gkP , Q, g.

B first chooses a (dummy) symmetric polynomial

f(x1, . . . , xt) =
w∑

i1=0

· · ·
w∑

it=0

ai1···it
xi1

1 · · ·xit
t ,

randomly. Then uF̃ = (f(1, x2, . . . , xt), . . . , f(w, x2, . . . , xt)). Next we consider
a (real) symmetric polynomial

fc(x1, . . . , xt) =
w∑

i1=0

· · ·
w∑

it=0

âi1···it
xi1

1 · · ·xit
t (6)

such that fc(i, x2, . . . , xt) = f(i, x2, . . . , xt) for 1 ≤ i ≤ w and fc(v1, . . . , vt) =
kP . We first show that there exists such a polynomial fc. Let

J = {(j1 · · · jt) | 1 ≤ j1 ≤ w + 1, . . . , 1 ≤ jt ≤ w + 1} \ {(w + 1 · · ·w + 1)}.

Then B can compute bj1···jt
= fc(j1, . . . , jt) for all (j1 · · · jt) ∈ J by using uF̃ .

Let c = fc(w +1, . . . , w+1), where c is an unknown variable. From Lemma 1, B
can compute {âi1···it

} from {bj1···jt
} and c. Further, it is easy to see that âi1···it

has the form
âi1···it = αi1···it + βi1···itc, (7)

for some constants αi1···it and βi1···it . Then from eq.(6), we have

kP = fc(v1, . . . , vt) = e0 + e1c

for some constants e0 and e1. This means that there exists such an fc. Now

y = gkP = ge0(gc)e1 .

Then gc = (y/ge0)1/e1 . Therefore B can compute {gâi1···it } from equation (7).
Finally B can compute gkPi for all Pi ∈ P by using equation (6) and {gâi1···it }.

ut

Corollary 6. Suppose that the ElGamal cryptosystem is secure. The MBESs
obtained from the Blundo et al. scheme, the Fiat-Naor scheme and the Desmedt-
Viswanathan scheme by using our construction, are all secure against chosen
(message, privileged subset of users) attacks.

5.4 Generalization of Our MBES

We can generalize the MBESs in Corollary 6 so that anyone can do broadcast
encryption. In the Fiat-Naor based MBES, make each gsF public. In the Blundo
et al. based MBES, make each gai public, where ai is the coefficient of the
symmetric polynomial f . Finally in the Desmedt-Viswanathan based MBES,
make each gkP public. It can be proved that these modifications maintain the
security. The details will be given in the final paper.
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Proof of Theorem 3

Our proof is a generalization of the proof in [7, Theorem 3.1].

Lemma 2. Let P and Q be distinct subsets of {1, 2, . . . , n}.
Let F

4
= {1, 2, . . . , n} \ Q. If |Q| ≤ |P |, then

F ∩ P 6= ∅
Proof. First, suppose that |Q| < |P |. If F ∩ P = ∅, then

n ≥ |F ∪ P | = |F | + |P | = n − |Q| + |P | > n.

This is a contradiction. Therefore, F ∩ P 6= ∅.
Next, suppose that |Q| = |P |. If F ∩ P = ∅, then

|F ∪ P | = |F | + |P | = n − |Q| + |P | = n.
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Therefore,
F = {1, 2, . . . , n} \ P.

This means that P = Q = {1, 2, . . . , n} \ P . This is a contradiction. Hence,
F ∩ P 6= ∅.

ut
Proof of Theorem 3

For simplicity, we give a proof for |U1|. Take

P̃
4
= {P | 1 ∈ P ∈ P , {1, 2, . . . , n}\P ∈ F}.

Let l = δ1 = |P̃ | and let P̃ = {P1, P2, . . . , Pl}, where |P1| ≥ |P2| ≥ · · · ≥ |Pl|.
Let u = (u1, . . . , un) be a vector of secret information of the users such that

Pr[UU = u] > 0.

We define uF similarly.
For all k1 ∈ KP1 , for all F such that P1 ∩ F1 = ∅ and for all uF ,

Pr[KP1 = k1 | UF = uF ] = Pr[KP1 = k1] > 0,

from equation (2). Therefore, for all k1 ∈ KP1 there is a u = (u1, . . . , un) such
that the key of P1 reconstructed from u is k1. Now let k = (k1, . . . , kl) be any
vector in KP1 × · · · × KPl

. We claim that there is a u such that the key of Pi

reconstructed from u is ki for 1 ≤ i ≤ l.
Suppose that our claim is false. Let h(≤ l) be the maximum index such that

the keys of {Pi} are (k1, . . . , kh−1, k
′
h, . . . , k′

l) by some u, where k′
h 6= kh. Then

2 ≤ h from our discussion. Let

Fh
4
= {1, 2, . . . , n} \ Ph.

Then from Lemma 2 (let Q = Ph and P = Pi),

Fh ∩ Pi 6= ∅ for 1 ≤ i ≤ h − 1. (8)

Let uFh
be a subvector of u which corresponds to Fh. Then uFh

can compute
k1, . . . , kh−1 from equation (8). Suppose that

Pr[KPh
= kh|UFh

= uFh
] > 0.

This means that there exists a u such that the keys are k1, . . . , kh−1, kh. This
contradicts the maximality of h. Therefore,

Pr[KPh
= kh|UFh

= uFh
] = 0.

However, this is against eq.(2).
Hence, for any k ∈ KP1 ×· · ·×KPl

, there exists a u such that the keys are k.
Remember that user 1 is included in any Pi from our definition of P̃ . It follows
that ui must be distinct for each k. Therefore,

|U1| ≥ |KP1 | × · · · × |KPl
| = |K|l.

Hence,
log |U1| ≥ l log |K| = δ1 log |K|.
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